Networking in the Hadoop Cluster
|
|
|
- Dale Holt
- 10 years ago
- Views:
Transcription
1 Hadoop and other distributed systems are increasingly the solution of choice for next generation data volumes. A high capacity, any to any, easily manageable networking layer is critical for peak Hadoop performance. Hadoop Overview Data analytics has become a key element of the business decision process over the last decade, and the ability to process unprecedented volumes of data a consequent deliverable and differentiator in the information economy. Classic systems based on relational databases and expensive hardware, while still useful for some applications, are increasingly unattractive compared to the scalability, economics, processing power and availability offered by today s network driven distributed solutions. The perhaps most popular of these next generation systems is Hadoop, a software framework that drives the compute engines in data centers from IBM to Facebook.. Hadoop and the related Hadoop Distributed File System (HDFS) form an open source framework that allows clusters of commodity hardware servers to run parallelized, data intensive workloads. Actual clusters include shoe string research analytics to thirty petabyte data warehouses, and applications range from the most advanced machine learning algorithms to distributed databases and transcoding farms. Given sufficient storage, processing, and networking resources the possibilities are nearly endless. HDFS The Hadoop Distributed File System (HDFS) stores multiple copies of data in 64MB chunks throughout the system for fault tolerance and improved availability. File location is tracked by the Hadoop NameNode. Replication is increased relative to frequency of use, and a number of other tunable parameters and features such as RAID can be used depending on the application. Because replication is accomplished node to node rather than top down, a well architected Hadoop cluster needs to be able to handle significant any to any traffic loads. Figure 1: Hadoop Architecture Distributes Storage and Computation to the Cluster 1
2 Parallelization and Pushing The Computation to the Data The Hadoop JobTracker breaks down large problems into smaller computational tasks assigned to servers in the cluster. In order to handle large data sets, servers are given tasks relevant to the data already present in their directly attached storage (DAS). This is often referred to as pushing the computation to the data, and is a critical part of processing petabytes - even with 100 GbE, a badly allocated workload could take weeks to simply read in all the data necessary! Finally, rack awareness allows the JobTracker to assign servers close to the data in the network topology if no directly attached server is available. How the MapReduce Algorithm Works MapReduce is the algorithm originally used in Google s massively parallel web ranking systems and forms the cornerstone of the Hadoop system. It is composed of two steps: Map and Reduce. Map Mapping refers to the process of breaking a large file into manageable chunks that can be processed in parallel. In data warehousing applications where many types of analysis are conducted on the same data set, these chunks may have already been formed and distributed across the cluster. However, for many processes involving changing data or one time analyses, the entire multi-terabyte to multi-petabyte workload must be efficiently transferred from storage to the cluster members on a per case basis - Facebook s larger clusters often intake 2PB per day. In these situations a high capacity network is critical to time-sensitive analytics. Once the data has been distributed throughout the cluster, each of the servers processes the data into an intermediate format paired to a key which determines where it will be sent next for processing. A very simple example of this might be mapping each of the works of Monty Python to a separate server which will count how many times any word appears in that particular text. Figure 2: Data flows without persistence from Map to Reduce and requires complete, any to any network topologies. 2
3 Reduce When the Mapping Servers have completed their tasks, they send the intermediate data to the appropriate Reduce Server based on the data key. While many tasks have significant compression after the Mapping calculations are completed, other analyses such as the sorting used in descriptive statistics require almost the entire data set to be re-allocated, or shuffled to the Reduce Servers. At this point the data network is the critical path, and its performance and latency directly impact the shuffle phase of a data set reduction. High-speed, non-blocking network switches ensure that the Hadoop cluster is running at peak efficiency.. The Reduce Servers integrate the data received from Map servers and create an aggregate result per key that can be either reported directly or used for further analysis. To continue with our previous example, each Map Server would have by now sent the intermediate results of frequency keyed by word to the appropriate Reduce Servers. The Reduce Servers can thus perform a number of analytics such as calculating the aggregate sum of any word that Python wrote, or perhaps classifying which work had the greatest ratio of Spam to Cheese. Reductions are the final step before useful information can be extracted, but in many cases also generate entirely new data sets that can be fed back into the Hadoop cluster for further insight. Impact of Network Designs on Hadoop Cluster Performance A network designed for Hadoop applications, rather than standard enterprise applications, can make a big difference in the performance of the cluster.!"#$% & '% & (% & )% *& +% Figure 3: A high performance, any to any network architecture is critical to optimal Hadoop cluster performance. 3
4 High Capacity, Any-to-Any Topology, and Incremental Scalability Getting data into the cluster can be the first bottleneck, and whether replicating or shuffling data, Hadoop requires significant any to any node traffic to get its job done. In order to efficiently access stored results or simply calculate new ones, a well-provisioned network with full any to any capacity, low latency, and high bandwidth can significantly improve Hadoop cluster performance. Finally, as workloads grow, it is important that the network can sustain the inclusion of additional servers in an incremental fashion - Hadoop only scales in proportion to the compute resources networked together at any time. High Availability and Fault Tolerance While Hadoop has self-contained fault tolerance in any single node, a failure in network connectivity in any but the largest clusters will halt both HDFS data accessibility and any currently running jobs in their tracks. Highly available, fault-tolerant networking equipment can make sure that the Hadoop cluster stays running, and furthermore assist in a quick re-provisioning of any failed server nodes during execution. 78."9:3' ;2<+*:.)' ())*+)",-.'/ '5+*6+*' Figure 3: Hadoop s data shuffle between Map and Reduce creates unavoidable fan in when multiple Map servers must stream results to a single Reduce server. Dynamic Buffers and Visibility Traffic fan in is an unavoidable fact of aggregation. Networks employing dynamically allocated buffers can shift resources to congested ports in real time for superior adaptability in the face of rapidly changing traffic workloads. If dynamically allocated network buffers are employed, even the most oversubscribed Reduce server can receive all its intermediate data without lost packets and the consequent network overload and inefficiency that would otherwise occur. Finally, tools such as Arista s Latency Analyzer allow network introspection and cluster reconfiguration to eliminate bottlenecks and create workload dependent cluster optimization. Management And Extensibility Getting the most out of any scaled solution requires proper management tools and a framework for customized application needs. Because the EOS Extensible Operating System is based on Linux, EOS provides the perfect foundation for leveraging open source tools and creating user defined functionality. 4
5 Admins gain immediate productivity with their preferred binaries and scripts without needing to learn and relearn proprietary operating systems. Cluster management systems such as perfsonar, gmond, Nagios or Ganglia can be run directly on the switch to detect and proactively address any unexpected data center conditions - possible responses range from and SMS alerts to actions immediately shifting topology and configuration. EOS allows the full power of open source to be leveraged for a smoothly running cluster. '*+#,)& '()&!"#$%& -./(#)& Figure 4: Linux and open source tools can be combined for event driven reactivity and visibility in the next generation network. Furthermore, anyone who has managed large installations knows that data center class automation begins the moment hardware meets rack. Arista s Zero Touch Provisioning allows bare metal switches to be instantly configured and operational in the network, and EOS can even use PXE to provision servers parametizably by VLAN or optionid. Finally, dynamic topology detection can automate modification to the Hadoop XML files which control location aware programming - a daunting task when separate teams install hardware and write software, and one which is critical to efficiently pushing computation to the correct server. Ultimately, Arista s powerful tools for automation significantly reduce the overhead of large cluster management, allowing IT staff to focus on meeting and exceeding actual business deliverables. 5$%/)5,0/)) 3/$()6&%/)3$'4)78$+/#/..)!"#$%&'$((") *+,-&.&,#/0) 1$0,,2)3$'4)!"#$%&'$((") *+,-&.&,#/0) 1$0,,2)3$'4)!"#$%&'$((") *+,-&.&,#/0) 1$0,,2)3$'4) Figure 5: Arista s Zero Touch Provisioning and extensibility create dynamically provisioned deployment and real time rack awareness in Hadoop clusters. 5
6 Key Take Aways Hadoop and other distributed solutions are managing data sets of unprecedented and still growing scale. Business intelligence and other forms of analysis will increasingly rely on frameworks such as these whose peak performance is achieved with high capacity, any to any, easily manageable network technologies. Arista Networks is committed to delivering stable, high-performance solutions from the silicon up for Hadoop and any other demanding workloads of the next generation data center. 6
Hadoop Cluster Applications
Hadoop Overview Data analytics has become a key element of the business decision process over the last decade. Classic reporting on a dataset stored in a database was sufficient until recently, but yesterday
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay
Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
marlabs driving digital agility WHITEPAPER Big Data and Hadoop
marlabs driving digital agility WHITEPAPER Big Data and Hadoop Abstract This paper explains the significance of Hadoop, an emerging yet rapidly growing technology. The prime goal of this paper is to unveil
Introduction to Cloud Computing
Introduction to Cloud Computing Cloud Computing I (intro) 15 319, spring 2010 2 nd Lecture, Jan 14 th Majd F. Sakr Lecture Motivation General overview on cloud computing What is cloud computing Services
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
Energy Efficient MapReduce
Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing
Parallel Processing of cluster by Map Reduce
Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai [email protected] MapReduce is a parallel programming model
White Paper. Big Data and Hadoop. Abhishek S, Java COE. Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP
White Paper Big Data and Hadoop Abhishek S, Java COE www.marlabs.com Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP Table of contents Abstract.. 1 Introduction. 2 What is Big
The Impact of Virtualization on Cloud Networking Arista Networks Whitepaper
Virtualization takes IT by storm The Impact of Virtualization on Cloud Networking The adoption of virtualization in data centers creates the need for a new class of networking designed to support elastic
CDH AND BUSINESS CONTINUITY:
WHITE PAPER CDH AND BUSINESS CONTINUITY: An overview of the availability, data protection and disaster recovery features in Hadoop Abstract Using the sophisticated built-in capabilities of CDH for tunable
Distributed Computing and Big Data: Hadoop and MapReduce
Distributed Computing and Big Data: Hadoop and MapReduce Bill Keenan, Director Terry Heinze, Architect Thomson Reuters Research & Development Agenda R&D Overview Hadoop and MapReduce Overview Use Case:
Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches
Powerful Duo: MapR Big Data Analytics with Cisco ACI Network Switches Introduction For companies that want to quickly gain insights into or opportunities from big data - the dramatic volume growth in corporate
Data Warehousing and Analytics Infrastructure at Facebook. Ashish Thusoo & Dhruba Borthakur athusoo,[email protected]
Data Warehousing and Analytics Infrastructure at Facebook Ashish Thusoo & Dhruba Borthakur athusoo,[email protected] Overview Challenges in a Fast Growing & Dynamic Environment Data Flow Architecture,
The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM. 2012-13 CALIENT Technologies www.calient.
The Software Defined Hybrid Packet Optical Datacenter Network SDN AT LIGHT SPEED TM 2012-13 CALIENT Technologies www.calient.net 1 INTRODUCTION In datacenter networks, video, mobile data, and big data
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
A very short Intro to Hadoop
4 Overview A very short Intro to Hadoop photo by: exfordy, flickr 5 How to Crunch a Petabyte? Lots of disks, spinning all the time Redundancy, since disks die Lots of CPU cores, working all the time Retry,
Big Data Testbed for Research and Education Networks Analysis. SomkiatDontongdang, PanjaiTantatsanawong, andajchariyasaeung
Big Data Testbed for Research and Education Networks Analysis SomkiatDontongdang, PanjaiTantatsanawong, andajchariyasaeung Research and Education Networks ThaiREN is a specialized Internet Service Provider
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM Executive Summary The explosion of internet data, driven in large part by the growth of more and more powerful mobile devices, has created
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012 1 Market Trends Big Data Growing technology deployments are creating an exponential increase in the volume
Driving IBM BigInsights Performance Over GPFS Using InfiniBand+RDMA
WHITE PAPER April 2014 Driving IBM BigInsights Performance Over GPFS Using InfiniBand+RDMA Executive Summary...1 Background...2 File Systems Architecture...2 Network Architecture...3 IBM BigInsights...5
Manifest for Big Data Pig, Hive & Jaql
Manifest for Big Data Pig, Hive & Jaql Ajay Chotrani, Priyanka Punjabi, Prachi Ratnani, Rupali Hande Final Year Student, Dept. of Computer Engineering, V.E.S.I.T, Mumbai, India Faculty, Computer Engineering,
HADOOP ON ORACLE ZFS STORAGE A TECHNICAL OVERVIEW
HADOOP ON ORACLE ZFS STORAGE A TECHNICAL OVERVIEW 757 Maleta Lane, Suite 201 Castle Rock, CO 80108 Brett Weninger, Managing Director [email protected] Dave Smelker, Managing Principal [email protected]
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13 Astrid Rheinländer Wissensmanagement in der Bioinformatik What is Big Data? collection of data sets so large and complex
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
HadoopTM Analytics DDN
DDN Solution Brief Accelerate> HadoopTM Analytics with the SFA Big Data Platform Organizations that need to extract value from all data can leverage the award winning SFA platform to really accelerate
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
All-Flash Arrays Weren t Built for Dynamic Environments. Here s Why... This whitepaper is based on content originally posted at www.frankdenneman.
WHITE PAPER All-Flash Arrays Weren t Built for Dynamic Environments. Here s Why... This whitepaper is based on content originally posted at www.frankdenneman.nl 1 Monolithic shared storage architectures
Dell Reference Configuration for Hortonworks Data Platform
Dell Reference Configuration for Hortonworks Data Platform A Quick Reference Configuration Guide Armando Acosta Hadoop Product Manager Dell Revolutionary Cloud and Big Data Group Kris Applegate Solution
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science
A Seminar report On Hadoop Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A COMPREHENSIVE VIEW OF HADOOP ER. AMRINDER KAUR Assistant Professor, Department
Hadoop s Entry into the Traditional Analytical DBMS Market. Daniel Abadi Yale University August 3 rd, 2010
Hadoop s Entry into the Traditional Analytical DBMS Market Daniel Abadi Yale University August 3 rd, 2010 Data, Data, Everywhere Data explosion Web 2.0 more user data More devices that sense data More
Intro to Map/Reduce a.k.a. Hadoop
Intro to Map/Reduce a.k.a. Hadoop Based on: Mining of Massive Datasets by Ra jaraman and Ullman, Cambridge University Press, 2011 Data Mining for the masses by North, Global Text Project, 2012 Slides by
SDN CENTRALIZED NETWORK COMMAND AND CONTROL
SDN CENTRALIZED NETWORK COMMAND AND CONTROL Software Defined Networking (SDN) is a hot topic in the data center and cloud community. The geniuses over at IDC predict a $2 billion market by 2016
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Design of Electric Energy Acquisition System on Hadoop
, pp.47-54 http://dx.doi.org/10.14257/ijgdc.2015.8.5.04 Design of Electric Energy Acquisition System on Hadoop Yi Wu 1 and Jianjun Zhou 2 1 School of Information Science and Technology, Heilongjiang University
Big Data: A Storage Systems Perspective Muthukumar Murugan Ph.D. HP Storage Division
Big Data: A Storage Systems Perspective Muthukumar Murugan Ph.D. HP Storage Division In this talk Big data storage: Current trends Issues with current storage options Evolution of storage to support big
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Keywords: Big Data, HDFS, Map Reduce, Hadoop
Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Configuration Tuning
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop Kanchan A. Khedikar Department of Computer Science & Engineering Walchand Institute of Technoloy, Solapur, Maharashtra,
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
Scalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Switching Architectures for Cloud Network Designs
Overview Networks today require predictable performance and are much more aware of application flows than traditional networks with static addressing of devices. Enterprise networks in the past were designed
Cloud Networking: A Novel Network Approach for Cloud Computing Models CQ1 2009
Cloud Networking: A Novel Network Approach for Cloud Computing Models CQ1 2009 1 Arista s Cloud Networking The advent of Cloud Computing changes the approach to datacenters networks in terms of throughput
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
Building & Optimizing Enterprise-class Hadoop with Open Architectures Prem Jain NetApp
Building & Optimizing Enterprise-class Hadoop with Open Architectures Prem Jain NetApp Introduction to Hadoop Comes from Internet companies Emerging big data storage and analytics platform HDFS and MapReduce
Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.
Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray VMware
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray ware 2 Agenda The Hadoop Journey Why Virtualize Hadoop? Elasticity and Scalability Performance Tests Storage Reference
Cisco Unified Data Center Solutions for MapR: Deliver Automated, High-Performance Hadoop Workloads
Solution Overview Cisco Unified Data Center Solutions for MapR: Deliver Automated, High-Performance Hadoop Workloads What You Will Learn MapR Hadoop clusters on Cisco Unified Computing System (Cisco UCS
Architecting Low Latency Cloud Networks
Architecting Low Latency Cloud Networks Introduction: Application Response Time is Critical in Cloud Environments As data centers transition to next generation virtualized & elastic cloud architectures,
Impact of Virtualization on Cloud Networking Arista Networks Whitepaper
Overview: Virtualization takes IT by storm The adoption of virtualization in datacenters creates the need for a new class of networks designed to support elasticity of resource allocation, increasingly
R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5
Distributed data processing in heterogeneous cloud environments R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5 1 [email protected], 2 [email protected],
Fault Tolerance in Hadoop for Work Migration
1 Fault Tolerance in Hadoop for Work Migration Shivaraman Janakiraman Indiana University Bloomington ABSTRACT Hadoop is a framework that runs applications on large clusters which are built on numerous
Mark Bennett. Search and the Virtual Machine
Mark Bennett Search and the Virtual Machine Agenda Intro / Business Drivers What to do with Search + Virtual What Makes Search Fast (or Slow!) Virtual Platforms Test Results Trends / Wrap Up / Q & A Business
Hadoop Distributed File System. Jordan Prosch, Matt Kipps
Hadoop Distributed File System Jordan Prosch, Matt Kipps Outline - Background - Architecture - Comments & Suggestions Background What is HDFS? Part of Apache Hadoop - distributed storage What is Hadoop?
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
Apache Hadoop FileSystem and its Usage in Facebook
Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System [email protected] Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs
Big Fast Data Hadoop acceleration with Flash. June 2013
Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional
Solving I/O Bottlenecks to Enable Superior Cloud Efficiency
WHITE PAPER Solving I/O Bottlenecks to Enable Superior Cloud Efficiency Overview...1 Mellanox I/O Virtualization Features and Benefits...2 Summary...6 Overview We already have 8 or even 16 cores on one
Distributed File Systems
Distributed File Systems Mauro Fruet University of Trento - Italy 2011/12/19 Mauro Fruet (UniTN) Distributed File Systems 2011/12/19 1 / 39 Outline 1 Distributed File Systems 2 The Google File System (GFS)
Modern IT Operations Management. Why a New Approach is Required, and How Boundary Delivers
Modern IT Operations Management Why a New Approach is Required, and How Boundary Delivers TABLE OF CONTENTS EXECUTIVE SUMMARY 3 INTRODUCTION: CHANGING NATURE OF IT 3 WHY TRADITIONAL APPROACHES ARE FAILING
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015
7/04/05 Fundamentals of Distributed Systems CC5- PROCESAMIENTO MASIVO DE DATOS OTOÑO 05 Lecture 4: DFS & MapReduce I Aidan Hogan [email protected] Inside Google circa 997/98 MASSIVE DATA PROCESSING (THE
DEPLOYING AND MONITORING HADOOP MAP-REDUCE ANALYTICS ON SINGLE-CHIP CLOUD COMPUTER
DEPLOYING AND MONITORING HADOOP MAP-REDUCE ANALYTICS ON SINGLE-CHIP CLOUD COMPUTER ANDREAS-LAZAROS GEORGIADIS, SOTIRIOS XYDIS, DIMITRIOS SOUDRIS MICROPROCESSOR AND MICROSYSTEMS LABORATORY ELECTRICAL AND
The Performance Characteristics of MapReduce Applications on Scalable Clusters
The Performance Characteristics of MapReduce Applications on Scalable Clusters Kenneth Wottrich Denison University Granville, OH 43023 [email protected] ABSTRACT Many cluster owners and operators have
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Optimizing Data Center Networks for Cloud Computing
PRAMAK 1 Optimizing Data Center Networks for Cloud Computing Data Center networks have evolved over time as the nature of computing changed. They evolved to handle the computing models based on main-frames,
Benchmarking Hadoop & HBase on Violin
Technical White Paper Report Technical Report Benchmarking Hadoop & HBase on Violin Harnessing Big Data Analytics at the Speed of Memory Version 1.0 Abstract The purpose of benchmarking is to show advantages
Virtualizing Apache Hadoop. June, 2012
June, 2012 Table of Contents EXECUTIVE SUMMARY... 3 INTRODUCTION... 3 VIRTUALIZING APACHE HADOOP... 4 INTRODUCTION TO VSPHERE TM... 4 USE CASES AND ADVANTAGES OF VIRTUALIZING HADOOP... 4 MYTHS ABOUT RUNNING
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON HIGH PERFORMANCE DATA STORAGE ARCHITECTURE OF BIGDATA USING HDFS MS.
