A Classification of Model Checking-based Verification Approaches for Software Models

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Classification of Model Checking-based Verification Approaches for Software Models"

Transcription

1 A Classification of Model Checking-based Verification Approaches for Software Models Petra Brosch, Sebastian Gabmeyer, Martina Seidl Sebastian Gabmeyer Business Informatics Group Institute of Software Technology and Interactive Systems Vienna University of Technology Favoritenstraße 9-11/188-3, 1040 Vienna, Austria phone: +43 (1) (secretary), fax: +43 (1)

2 Background Motivation Why are we doing this? Existing Surveys focus on model transformations Broaden Scope: Verification approaches for software models Software models = formal, abstract representation of software Actually: plethora of different verification approaches > 70 different papers Points of Interest Influences from techniques used to verify hardware & software Any new techniques? Successful in practice? Difficult due to availability of tools Open research questions

3 Contributions Classification of Verification Approaches for Software Models Restricted to Model Checking based approaches 1. Feature Model (in the style of Czarnecki and Helsen) Advantages: flexible, sufficiently expressive, easily extensible 2. Classification of five verification approaches Two of which I will discuss during the presentation 3

4 Feature Model Main Features 1. Verification Goal Aim of the verification, e.g., inter-model consistency 2. Verification Technique Model Checking, Theorem Proving, Static Analysis 3. Specification Language Formalism used to define interesting properties of the system 4. Domain Representation Representation used by the user to create the software models 5. Verification Representation Representation used to verify the software models 4

5 Verification Goal Goals Consistency Intra-model vs. Inter-model Translation Correctness Source/Target Correctness Transformation Correctness Behavioral Correctness Specified by Operation Contracts Specified by Transformations 5

6 Consistency Verification Goal Intra-Model Consistency Example: 1. 1x Metamodel 2. 1x Set of Constraints (e.g.: OCL) Q: Does there exist an instance model conforming to the metamodel that satisfies all the constraints? Inter-Model Consistency Example: 1. 1x Model being the Specification 2. 1 Model being the Implementation Q: Is the implementation consistent with the specification? 6

7 Translation Correctness Verification Goal Goal: Assert that Model A is translated correctly into Model B Source/Target Correctness Q: Is the Target a correct image of the Source? Example Narayanan et al.: State Charts to Extended Hybrid Automata: verify if all states reachable in the SC are reachable in the EHA Transformation Correctness Q: Does the Transformation produce a correct Model B? Does the Transformation terminate? Is the Transformation confluent? Example Buettner et al.: Verify an ATL transformation by analyzing its trace model within Alloy 7

8 Behavioral Correctness Verification Goal Goal: Does the software described by a model behave as specified? Examples: Dining Philosophers Model: Philosopher + Table + Forks Specify: Every philosopher will eat some time Users printing over a shared printer Model: User + Printer Specify: No two users can print at the same time Behavior can be described either by Operation contracts consist of pre and post conditions Transformations (usually) consist of a LHS and a RHS 8

9 Verification Technique Theorem Proving Interactive: Guided by the modeler Automatic: CSP, SAT (modulo theories) Static Analysis Sound over-approximation of the real system Example: Constant Propagation Model Checking Automatic, exhaustive testing of all possible states of the implementation int a,b = 100; int t = 0; while (a > 0) do a := a 1; Representation if (a < 51) then t := a; a := b; b := t; fi od States are triples of <a,b,t> Init: <100,100,0> <99,100,0>,, <50,100,0>, <50,100,50>, <100,100,50>, <100,50,50>,, <0,50,50> Does the implementation S satisfy the specification φ, S = φ? φ = Is the state <50,50,50> reachable? 9

10 Idea behind Model Checking Verification by Model Checking Generate the state space: 1. Initialize the state space to the initial model 2. Apply all applicable transformations currently in the state space 3. Repeat Step 2 until no more states are added to the state space Then: Check if the specification holds in S, e.g., EG φ φ φ φ φ 10

11 Model Checking Verification Technique Distinguish approaches by State Space Representation: Enumerative vs. Symbolic Property Types Reachability: Can we reach a state from the initial state s.t. property P holds? Safety: Nothing bad happens, e.g., No two users print at the same time Liveness: Something good will eventually happen, e.g., Every philosopher will eat some time 11

12 Specification Language A property specifies desirable/undesirable system states First Order Logic Temporal Logic: LTL, CTL, CTL*, From every state it is possible to return to the initial state Rewriting Logic search <P : Philosopher state : thinking> =>1 <Q : Philosopher _> Automata There exists a trace to a state such that b always holds OCL 12

13 Domain Representation Domain Representation used by the modeler Graphs OMG-related: MOF (Ecore), UML, QVT, OCL DSLs, e.g., ATL+Ecore 13

14 Verification Representation Verification Representation used by the verification engine Algebraic Terms Transition Systems LTS, GTS, Petri Nets Relations & First -Order Logic 14

15 The Complete Feature Model 15

16 GROOVE Verifies the behavioral correctness of OO systems Based on Graph Transformation Theory Uses its own Model Checker State Space: User provides initial model User provides a set of transformations that define the behavior GROOVE builds the state space by applying the transformations to the initial graph then: applies the transformations to all resulting graphs stops when no more graphs can be added (or keeps on going indefinitely) Each graph represents a state Each transition corresponds to the application of graph transformation Result: Graph Transition System (GTS) Allows CTL formulas: safety & liveness 16

17 Classifying GROOVE Verification Goal Verification Technique Behavioral Correctness Model Checking Specification Language Temporal Logic CTL Domain Representation Verification Representation Graphs (Graph) Transition System Behavior specified by Transformation Enumerative Reachability, Safety, Liveness 17

18 HUGO Verifies the consistency between multiple UML State Charts and Sequence Diagrams SDs = Specification SCs = Implementation Derive Interaction Automaton from SDs Message Traces Uses SPIN model checker Translate Interaction Automaton and SCs into Promela Verifies safety properties Specified by LTL 18

19 Classifying HUGO Verification Goal Consistency Inter-Model Verification Technique Model Checking Specification Language Temporal Logic LTL Domain Representation Verification Representation UML Linear Transition System Enumerative Safety 19

20 Conclusion Survey of Verification Approaches for Software Models Feature Model Verification Goal Verification Technique: restricted to Model Checking Specification Language Domain Representation Verification Representation Classification of existing approaches Ongoing Work 20

21 Questions? 21

22 Thank you for attention! Visit our website at 22

A Classification of Model Checking-Based Verification Approaches for Software Models

A Classification of Model Checking-Based Verification Approaches for Software Models Volt Second Workshop on Verification Of Model Transformations, 2013, A Classification of Model Checking-Based Verification Approaches for Software Models Sebastian Gabmeyer a Petra Brosch a Martina Seidl

More information

Static Program Transformations for Efficient Software Model Checking

Static Program Transformations for Efficient Software Model Checking Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major

More information

Today s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary

Today s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary Today s Agenda Quiz 4 Temporal Logic Formal Methods in Software Engineering 1 Automata and Logic Introduction Buchi Automata Linear Time Logic Summary Formal Methods in Software Engineering 2 1 Buchi Automata

More information

The Model Checker SPIN

The Model Checker SPIN The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(

More information

Formal Verification by Model Checking

Formal Verification by Model Checking Formal Verification by Model Checking Natasha Sharygina Carnegie Mellon University Guest Lectures at the Analysis of Software Artifacts Class, Spring 2005 1 Outline Lecture 1: Overview of Model Checking

More information

Lecture 9 verifying temporal logic

Lecture 9 verifying temporal logic Basics of advanced software systems Lecture 9 verifying temporal logic formulae with SPIN 21/01/2013 1 Outline for today 1. Introduction: motivations for formal methods, use in industry 2. Developing models

More information

Formal Verification and Linear-time Model Checking

Formal Verification and Linear-time Model Checking Formal Verification and Linear-time Model Checking Paul Jackson University of Edinburgh Automated Reasoning 21st and 24th October 2013 Why Automated Reasoning? Intellectually stimulating and challenging

More information

Software Engineering using Formal Methods

Software Engineering using Formal Methods Software Engineering using Formal Methods Model Checking with Temporal Logic Wolfgang Ahrendt 24th September 2013 SEFM: Model Checking with Temporal Logic /GU 130924 1 / 33 Model Checking with Spin model

More information

Specification and Analysis of Contracts Lecture 1 Introduction

Specification and Analysis of Contracts Lecture 1 Introduction Specification and Analysis of Contracts Lecture 1 Introduction Gerardo Schneider gerardo@ifi.uio.no http://folk.uio.no/gerardo/ Department of Informatics, University of Oslo SEFM School, Oct. 27 - Nov.

More information

logic language, static/dynamic models SAT solvers Verified Software Systems 1 How can we model check of a program or system?

logic language, static/dynamic models SAT solvers Verified Software Systems 1 How can we model check of a program or system? 5. LTL, CTL Last part: Alloy logic language, static/dynamic models SAT solvers Today: Temporal Logic (LTL, CTL) Verified Software Systems 1 Overview How can we model check of a program or system? Modeling

More information

Fundamentals of Software Engineering

Fundamentals of Software Engineering Fundamentals of Software Engineering Model Checking with Temporal Logic Ina Schaefer Institute for Software Systems Engineering TU Braunschweig, Germany Slides by Wolfgang Ahrendt, Richard Bubel, Reiner

More information

INF5140: Specification and Verification of Parallel Systems

INF5140: Specification and Verification of Parallel Systems Motivation INF5140: Specification and Verification of Parallel Systems Lecture 1 Introduction: Formal Methods Gerardo Schneider Department of Informatics University of Oslo INF5140, Spring 2009 Outline

More information

Unified Static and Runtime Verification of Object-Oriented Software

Unified Static and Runtime Verification of Object-Oriented Software Unified Static and Runtime Verification of Object-Oriented Software Wolfgang Ahrendt 1, Mauricio Chimento 1, Gerardo Schneider 2, Gordon J. Pace 3 1 Chalmers University of Technology, Gothenburg, Sweden

More information

Algorithmic Software Verification

Algorithmic Software Verification Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal

More information

T-79.186 Reactive Systems: Introduction and Finite State Automata

T-79.186 Reactive Systems: Introduction and Finite State Automata T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software

More information

Formal Verification of Software

Formal Verification of Software Formal Verification of Software Sabine Broda Department of Computer Science/FCUP 12 de Novembro de 2014 Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 1 / 26 Formal Verification

More information

MODEL CHECKING OF SERVICES WORKFLOW RECONFIGURATION: A PERSPECTIVE ON DEPENDABILITY

MODEL CHECKING OF SERVICES WORKFLOW RECONFIGURATION: A PERSPECTIVE ON DEPENDABILITY MODEL CHECKING OF SERVICES WORKFLOW RECONFIGURATION: A PERSPECTIVE ON DEPENDABILITY 1 Juan Carlos Polanco Aguilar 1 Koji Hasebe 1 Manuel Mazzara 2 Kazuhiko Kato 1 1 University of Tsukuba Department of

More information

http://www.lip6.fr/cpn-ami Introduction Journée RdP France - 20 Juin 2004

http://www.lip6.fr/cpn-ami Introduction Journée RdP France - 20 Juin 2004 CPN-AMI (towards 2.6) Fabrice Kordon LIP6-SRC Université P. & M. Curie 75252 Paris cedex 05 http://www.lip6.fr/cpn-ami 1 2 Introduction CPN-AMI A Petri net based CASE environment Available on the web since

More information

Model Checking based Software Verification

Model Checking based Software Verification Model Checking based Software Verification 18.5-2006 Keijo Heljanko Keijo.Heljanko@tkk.fi Department of Computer Science and Engineering Helsinki University of Technology http://www.tcs.tkk.fi/~kepa/ 1/24

More information

Quick Start Guide. June 3, 2012

Quick Start Guide. June 3, 2012 The ERIGONE Model Checker Quick Start Guide Mordechai (Moti) Ben-Ari Department of Science Teaching Weizmann Institute of Science Rehovot 76100 Israel http://stwww.weizmann.ac.il/g-cs/benari/ June 3, 2012

More information

On the Modeling and Verification of Security-Aware and Process-Aware Information Systems

On the Modeling and Verification of Security-Aware and Process-Aware Information Systems On the Modeling and Verification of Security-Aware and Process-Aware Information Systems 29 August 2011 What are workflows to us? Plans or schedules that map users or resources to tasks Such mappings may

More information

Model Checking: An Introduction

Model Checking: An Introduction Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI

More information

A Logic Approach for LTL System Modification

A Logic Approach for LTL System Modification A Logic Approach for LTL System Modification Yulin Ding and Yan Zhang School of Computing & Information Technology University of Western Sydney Kingswood, N.S.W. 1797, Australia email: {yding,yan}@cit.uws.edu.au

More information

Formal verification of contracts for synchronous software components using NuSMV

Formal verification of contracts for synchronous software components using NuSMV Formal verification of contracts for synchronous software components using NuSMV Tobias Polzer Lehrstuhl für Informatik 8 Bachelorarbeit 13.05.2014 1 / 19 Problem description and goals Problem description

More information

Software Modeling and Verification

Software Modeling and Verification Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system

More information

Model checking test models. Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl

Model checking test models. Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl Model checking test models Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl February 14, 2014 Abstract This thesis is about model checking testing models. These testing

More information

An Approach for Generating Concrete Test Cases Utilizing Formal Specifications of Web Applications

An Approach for Generating Concrete Test Cases Utilizing Formal Specifications of Web Applications An Approach for Generating Concrete Test Cases Utilizing Formal Specifications of Web Applications Khusbu Bubna RC Junit concrete test cases suitable for execution on the implementation. The remainder

More information

Test Case Generation for Ultimately Periodic Paths Joint work with Saddek Bensalem Hongyang Qu Stavros Tripakis Lenore Zuck Accepted to HVC 2007 How to find the condition to execute a path? (weakest precondition

More information

Context-Bounded Model Checking of LTL Properties for ANSI-C Software. Jeremy Morse, Lucas Cordeiro, Bernd Fischer, Denis Nicole

Context-Bounded Model Checking of LTL Properties for ANSI-C Software. Jeremy Morse, Lucas Cordeiro, Bernd Fischer, Denis Nicole Context-Bounded Model Checking of LTL Properties for ANSI-C Software Jeremy Morse, Lucas Cordeiro, Bernd Fischer, Denis Nicole Model Checking C Model checking: normally applied to formal state transition

More information

Software Quality Exercise 1

Software Quality Exercise 1 Software Quality Exercise Model Checking Information. Dates Release: 7.0.0.5pm Deadline: 07.0.0.5pm Discussion:.0.0. Formalities While this exercise can be solved and handed in in groups of three, every

More information

Development of dynamically evolving and self-adaptive software. 1. Background

Development of dynamically evolving and self-adaptive software. 1. Background Development of dynamically evolving and self-adaptive software 1. Background LASER 2013 Isola d Elba, September 2013 Carlo Ghezzi Politecnico di Milano Deep-SE Group @ DEIB 1 Requirements Functional requirements

More information

Formal Specification and Verification

Formal Specification and Verification Formal Specification and Verification Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 2. 5. 2011 Stefan Ratschan (FIT ČVUT) PI-PSC 4 2.

More information

System modeling. Budapest University of Technology and Economics Department of Measurement and Information Systems

System modeling. Budapest University of Technology and Economics Department of Measurement and Information Systems System modeling Business process modeling how to do it right Partially based on Process Anti-Patterns: How to Avoid the Common Traps of Business Process Modeling, J Koehler, J Vanhatalo, IBM Zürich, 2007.

More information

The Course. http://www.cse.unsw.edu.au/~cs3153/

The Course. http://www.cse.unsw.edu.au/~cs3153/ The Course http://www.cse.unsw.edu.au/~cs3153/ Lecturers Dr Peter Höfner NICTA L5 building Prof Rob van Glabbeek NICTA L5 building Dr Ralf Huuck NICTA ATP building 2 Plan/Schedule (1) Where and When Tuesday,

More information

Tool Support for Model Checking of Web application designs *

Tool Support for Model Checking of Web application designs * Tool Support for Model Checking of Web application designs * Marco Brambilla 1, Jordi Cabot 2 and Nathalie Moreno 3 1 Dipartimento di Elettronica e Informazione, Politecnico di Milano Piazza L. Da Vinci,

More information

Validated Templates for Specification of Complex LTL Formulas

Validated Templates for Specification of Complex LTL Formulas Validated Templates for Specification of Complex LTL Formulas Salamah Salamah Department of Electrical, computer, Software, and Systems Engineering Embry Riddle Aeronautical University 600 S. Clyde Morris

More information

Research Questions for Validation and Verification in the Context of Model-Based Engineering

Research Questions for Validation and Verification in the Context of Model-Based Engineering Research Questions for Validation and Verification in the Context of Model-Based Engineering Catherine Dubois 1, Michalis Famelis 2, Martin Gogolla 3, Leonel Nobrega 4, Ileana Ober 5, Martina Seidl 6,

More information

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

More information

Model Checking II Temporal Logic Model Checking

Model Checking II Temporal Logic Model Checking 1/32 Model Checking II Temporal Logic Model Checking Edmund M Clarke, Jr School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 2/32 Temporal Logic Model Checking Specification Language:

More information

Development of global specification for dynamically adaptive software

Development of global specification for dynamically adaptive software Development of global specification for dynamically adaptive software Yongwang Zhao School of Computer Science & Engineering Beihang University zhaoyw@act.buaa.edu.cn 22/02/2013 1 2 About me Assistant

More information

Introduction to SPIN. Acknowledgments. Parts of the slides are based on an earlier lecture by Radu Iosif, Verimag. Ralf Huuck. Features PROMELA/SPIN

Introduction to SPIN. Acknowledgments. Parts of the slides are based on an earlier lecture by Radu Iosif, Verimag. Ralf Huuck. Features PROMELA/SPIN Acknowledgments Introduction to SPIN Parts of the slides are based on an earlier lecture by Radu Iosif, Verimag. Ralf Huuck Ralf Huuck COMP 4152 1 Ralf Huuck COMP 4152 2 PROMELA/SPIN PROMELA (PROcess MEta

More information

Introducing Formal Methods. Software Engineering and Formal Methods

Introducing Formal Methods. Software Engineering and Formal Methods Introducing Formal Methods Formal Methods for Software Specification and Analysis: An Overview 1 Software Engineering and Formal Methods Every Software engineering methodology is based on a recommended

More information

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

More information

Formal techniques for embedded safety critical systems

Formal techniques for embedded safety critical systems Formal techniques for embedded safety critical systems P. Bieber, C. Castel, C. Kehren, C. Seguin Office National d Études et de Recherches Aérospatiales www.cert.fr Presentation objectives Give a detailed

More information

RUMBA: Runtime Monitoring and Behavioral Analysis Framework for Java Software Systems

RUMBA: Runtime Monitoring and Behavioral Analysis Framework for Java Software Systems RUMBA: Runtime Monitoring and Behavioral Analysis Framework for Java Software Systems by Azin Ashkan A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree

More information

Model Checking of Software

Model Checking of Software Model Checking of Software Patrice Godefroid Bell Laboratories, Lucent Technologies SpecNCheck Page 1 August 2001 A Brief History of Model Checking Prehistory: transformational programs and theorem proving

More information

Automated Model-Based Testing of Embedded Real-Time Systems

Automated Model-Based Testing of Embedded Real-Time Systems Automated Model-Based Testing of Embedded Real-Time Systems Jan Peleska jp@tzi.de University of Bremen Bieleschweig Workshop 7 2006-05-05 Outline Technologie-Zentrum Informatik Objectives Basic concepts

More information

HECTOR a software model checker with cooperating analysis plugins. Nathaniel Charlton and Michael Huth Imperial College London

HECTOR a software model checker with cooperating analysis plugins. Nathaniel Charlton and Michael Huth Imperial College London HECTOR a software model checker with cooperating analysis plugins Nathaniel Charlton and Michael Huth Imperial College London Introduction HECTOR targets imperative heap-manipulating programs uses abstraction

More information

Simulative Model Checking of Steady State and Time-Unbounded Temporal Operators

Simulative Model Checking of Steady State and Time-Unbounded Temporal Operators Simulative Model Checking of Steady State and Time-Unbounded Temporal Operators Christian Rohr Department of Computer Science Brandenburg University of Technology Cottbus June 25, 2012 Outline 1 Introduction

More information

Institut für Parallele und Verteilte Systeme. Abteilung Anwendersoftware. Universität Stuttgart Universitätsstraße 38 D-70569 Stuttgart

Institut für Parallele und Verteilte Systeme. Abteilung Anwendersoftware. Universität Stuttgart Universitätsstraße 38 D-70569 Stuttgart Institut für Parallele und Verteilte Systeme Abteilung Anwendersoftware Universität Stuttgart Universitätsstraße 38 D-70569 Stuttgart Diplomarbeit Nr. 3243 Development and Evaluation of a Framework for

More information

Structure of Presentation. Stages in Teaching Formal Methods. Motivation (1) Motivation (2) The Scope of Formal Methods (1)

Structure of Presentation. Stages in Teaching Formal Methods. Motivation (1) Motivation (2) The Scope of Formal Methods (1) Stages in Teaching Formal Methods A. J. Cowling Structure of Presentation Introduction to Issues Motivation for this work. Analysis of the Role of Formal Methods Define their scope; Review their treatment

More information

TEACHING MODEL CHECKING TO UNDERGRADUATES

TEACHING MODEL CHECKING TO UNDERGRADUATES STUDIA UNIV. BABEŞ BOLYAI, INFORMATICA, Volume LV, Number 3, 2010 TEACHING MODEL CHECKING TO UNDERGRADUATES A.VESCAN AND M. FRENŢIU Abstract. The way program verification is taught in our faculty is firstly

More information

8.5 PETRI NETS. Figure A computer program. Figure 8.5.2

8.5 PETRI NETS. Figure A computer program. Figure 8.5.2 8.5 PETRI NETS Consider the computer program shown in Figure 8.5.1. Normally, the instructions would be processed sequentially first, A = 1, then B = 2, and so on. However, notice that there is no logical

More information

CISC422/853: Formal Methods

CISC422/853: Formal Methods Outline CISC422/853: Formal Methods in Software Engineering: Computer-Aided Verification Topic 7: Specifying, or How to Describe How the System Should (or Should Not) Behave Juergen Dingel Feb, 2009 Readings:

More information

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL

Using Patterns and Composite Propositions to Automate the Generation of Complex LTL University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 8-1-2007 Using Patterns and Composite Propositions to Automate the Generation of Complex

More information

tutorial: hardware and software model checking

tutorial: hardware and software model checking tutorial: hardware and software model checking gerard holzmann and anuj puri { gerard anuj } @research.bell-labs.com Bell Labs, USA outline introduction (15 mins) theory and algorithms system modeling

More information

Introduction to Promela and SPIN. LACL, Université Paris 12

Introduction to Promela and SPIN. LACL, Université Paris 12 Introduction to Promela and SPIN LACL, Université Paris 12 Promela = Process Meta Language A specification language! No programming language! Used for system description : Specify an abstraction of the

More information

Policy Modeling and Compliance Verification in Enterprise Software Systems: a Survey

Policy Modeling and Compliance Verification in Enterprise Software Systems: a Survey Policy Modeling and Compliance Verification in Enterprise Software Systems: a Survey George Chatzikonstantinou, Kostas Kontogiannis National Technical University of Athens September 24, 2012 MESOCA 12,

More information

Introduction to Formal Methods. Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm

Introduction to Formal Methods. Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm Introduction to Formal Methods Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm Outline Introduction Formal Specification Formal Verification Model Checking Theorem Proving Introduction Good papers to

More information

Model-Checking Verification for Reliable Web Service

Model-Checking Verification for Reliable Web Service Model-Checking Verification for Reliable Web Service Shin NAKAJIMA Hosei University and PRESTO, JST nkjm@i.hosei.ac.jp Abstract Model-checking is a promising technique for the verification and validation

More information

Software Verification: Infinite-State Model Checking and Static Program

Software Verification: Infinite-State Model Checking and Static Program Software Verification: Infinite-State Model Checking and Static Program Analysis Dagstuhl Seminar 06081 February 19 24, 2006 Parosh Abdulla 1, Ahmed Bouajjani 2, and Markus Müller-Olm 3 1 Uppsala Universitet,

More information

VeriTech - A Framework for Translating among Model Description Notations

VeriTech - A Framework for Translating among Model Description Notations Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) VeriTech - A Framework for Translating among Model Description Notations Orna Grumberg and Shmuel Katz Computer Science

More information

On General-purpose Textual Modeling Languages. On General-purpose Textual Modeling Languages

On General-purpose Textual Modeling Languages. On General-purpose Textual Modeling Languages On General-purpose Textual Modeling Languages On General-purpose Textual Modeling Languages Martin Mazanec and Ondřej Macek Martin Mazanec and Ondřej Macek Department of Computer Science, FEL, Czech Technical

More information

Stylianos Basagiannis

Stylianos Basagiannis Interlocking control by Distributed Signal Boxes Technical Report (TR) 4 Stylianos Basagiannis Supervisors: Dr Andrew Pombortsis, Dr Panagiotis Katsaros Aristotle University of Thessaloniki Department

More information

Business Process Verification: The Application of Model Checking and Timed Automata

Business Process Verification: The Application of Model Checking and Timed Automata Business Process Verification: The Application of Model Checking and Timed Automata Luis E. Mendoza Morales Processes and Systems Department, Simón Bolívar University, P.O. box 89000, Baruta, Venezuela,

More information

Dr. Jana Koehler IBM Zurich Research Laboratory

Dr. Jana Koehler IBM Zurich Research Laboratory Precise Modeling of Business Processes with the Business Process Modeling Notation BPMN 2.0 Dr. Jana Koehler IBM Zurich Research Laboratory ZRL BIT at a Glance Computer Science at ZRL: Security/Cryptography

More information

http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86

http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 Atlantic Electronic http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 AUTOMATED RECOGNITION OF STUTTER INVARIANCE OF LTL FORMULAS Jeffrey Dallien 1 and Wendy

More information

Jairson Vitorino. PhD Thesis, CIn-UFPE February 2009. Supervisor: Prof. Jacques Robin. Ontologies Reasoning Components Agents Simulations

Jairson Vitorino. PhD Thesis, CIn-UFPE February 2009. Supervisor: Prof. Jacques Robin. Ontologies Reasoning Components Agents Simulations CHROME: A Model-Driven Component- Based Rule Engine Jairson Vitorino PhD Thesis, CIn-UFPE February 2009 Supervisor: Prof. Jacques Robin Ontologies Reasoning Components Agents Simulations Contents 1. Context

More information

Suppor&ng the Design of Safety Cri&cal Systems Using AADL

Suppor&ng the Design of Safety Cri&cal Systems Using AADL Suppor&ng the Design of Safety Cri&cal Systems Using AADL T. Correa, L. B. Becker, J.- M. Farines, J.- P. Bodeveix, M. Filali, F. Vernadat IRIT LAAS UFSC Agenda Introduc&on Proposed Approach Verifica&on

More information

INF5140: Specification and Verification of Parallel Systems

INF5140: Specification and Verification of Parallel Systems INF5140: Specification and Verification of Parallel Systems Lecture 7 LTL into Automata and Introduction to Promela Gerardo Schneider Department of Informatics University of Oslo INF5140, Spring 2007 Gerardo

More information

Formal Verification Toolkit for Requirements and Early Design Stages

Formal Verification Toolkit for Requirements and Early Design Stages Formal Verification Toolkit for Requirements and Early Design Stages Julia M. Badger 1 and Sheena Judson Miller 2 1 NASA Johnson Space Center, Houston, TX 77058, USA 2 Barrios Technology, Houston, TX 77058,

More information

MODEL CHECKING CONCURRENT AND REAL-TIME SYSTEMS: THE PAT APPROACH. LIU YANG (B.Sc. (Hons.), NUS)

MODEL CHECKING CONCURRENT AND REAL-TIME SYSTEMS: THE PAT APPROACH. LIU YANG (B.Sc. (Hons.), NUS) MODEL CHECKING CONCURRENT AND REAL-TIME SYSTEMS: THE PAT APPROACH LIU YANG (B.Sc. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF COMPUTER SCIENCE NATIONAL UNIVERSITY

More information

TECH. Requirements. Why are requirements important? The Requirements Process REQUIREMENTS ELICITATION AND ANALYSIS. Requirements vs.

TECH. Requirements. Why are requirements important? The Requirements Process REQUIREMENTS ELICITATION AND ANALYSIS. Requirements vs. CH04 Capturing the Requirements Understanding what the customers and users expect the system to do * The Requirements Process * Types of Requirements * Characteristics of Requirements * How to Express

More information

Model Checking LTL Properties over C Programs with Bounded Traces

Model Checking LTL Properties over C Programs with Bounded Traces Noname manuscript No. (will be inserted by the editor) Model Checking LTL Properties over C Programs with Bounded Traces Jeremy Morse 1, Lucas Cordeiro 2, Denis Nicole 1, Bernd Fischer 1,3 1 Electronics

More information

Bounded LTL Model Checking with Stable Models

Bounded LTL Model Checking with Stable Models Under consideration for publication in Theory and Practice of Logic Programming 1 Bounded LTL Model Checking with Stable Models KEIJO HELJANKO and ILKKA NIEMELÄ Helsinki University of Technology Department

More information

Software Verification and Testing. Lecture Notes: Temporal Logics

Software Verification and Testing. Lecture Notes: Temporal Logics Software Verification and Testing Lecture Notes: Temporal Logics Motivation traditional programs (whether terminating or non-terminating) can be modelled as relations are analysed wrt their input/output

More information

PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

More information

Introduction to Functional Verification. Niels Burkhardt

Introduction to Functional Verification. Niels Burkhardt Introduction to Functional Verification Overview Verification issues Verification technologies Verification approaches Universal Verification Methodology Conclusion Functional Verification issues Hardware

More information

SHARED HASH TABLES IN PARALLEL MODEL CHECKING

SHARED HASH TABLES IN PARALLEL MODEL CHECKING SHARED HASH TABLES IN PARALLEL MODEL CHECKING IPA LENTEDAGEN 2010 ALFONS LAARMAN JOINT WORK WITH MICHAEL WEBER AND JACO VAN DE POL 23/4/2010 AGENDA Introduction Goal and motivation What is model checking?

More information

COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

More information

LTL Model Checking with Logic Based Petri Nets

LTL Model Checking with Logic Based Petri Nets LTL Model Checking with Logic Based Petri Nets Tristan M. Behrens and Jürgen Dix IfI Technical Report Series IfI-07-04 Impressum Publisher: Institut für Informatik, Technische Universität Clausthal Julius-Albert

More information

Runtime Verification - Monitor-oriented Programming - Monitor-based Runtime Reflection

Runtime Verification - Monitor-oriented Programming - Monitor-based Runtime Reflection Runtime Verification - Monitor-oriented Programming - Monitor-based Runtime Reflection Martin Leucker Technische Universität München (joint work with Andreas Bauer, Christian Schallhart et. al) FLACOS

More information

CosyVerif: An Open Source Extensible Verication Environment

CosyVerif: An Open Source Extensible Verication Environment CosyVerif: An Open Source Extensible Verication Environment Étienne André, Lom Hillah, Francis Hulin-Hubard, Fabrice Kordon, Yousra Lembachar, Alban Linard, Laure Petrucci ENS Cachan, Univ. Paris 6, Univ.

More information

Principles of Software Engineering: Course Outline. Ethan Jackson And Wolfram Schulte, Research in Software Engineering (RiSE) Microsoft Research

Principles of Software Engineering: Course Outline. Ethan Jackson And Wolfram Schulte, Research in Software Engineering (RiSE) Microsoft Research Principles of Software Engineering: Course Outline Ethan Jackson And Wolfram Schulte, Research in Software Engineering (RiSE) Microsoft Research Overview Motivation and Focus Syllabus Projects i. Motivation

More information

MODEL CHECKING AND CODE GENERATION FOR UML DIAGRAMS USING GRAPH TRANSFORMATION

MODEL CHECKING AND CODE GENERATION FOR UML DIAGRAMS USING GRAPH TRANSFORMATION MODEL CHECKING AND CODE GENERATION FOR UML DIAGRAMS USING GRAPH TRANSFORMATION Wafa Chama 1, Raida Elmansouri 2 and Allaoua Chaoui 3 MISC Laboratory, University Mentouri2 Constantine, Algeria 1 wafachama@gmail.com,

More information

Model-Based Testing and Formal Verification in IEC ed2.0. Mika Katara Tampere University of Technology Department of Software Systems

Model-Based Testing and Formal Verification in IEC ed2.0. Mika Katara Tampere University of Technology Department of Software Systems Model-Based Testing and Formal Verification in IEC 61508-3 ed2.0 Mika Katara Tampere University of Technology Department of Software Systems 2 Outline Motivation IEC 61508: Verification & Validation How

More information

A Scala DSL for Rete-based Runtime Verification

A Scala DSL for Rete-based Runtime Verification A Scala DSL for Rete-based Runtime Verification Klaus Havelund Jet Propulsion Laboratory California Institute of Technology, California, USA Abstract. Runtime verification (RV) consists in part of checking

More information

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

More information

From Hybrid Data-Flow Languages to Hybrid Automata: A Complete Translation

From Hybrid Data-Flow Languages to Hybrid Automata: A Complete Translation From Hybrid Data-Flow Languages to Hybrid Automata: A Complete Translation Peter Schrammel peter.schrammel@inria.fr (joint work with Bertrand Jeannet) INRIA Grenoble Rhône-Alpes INRIA large-scale initiative

More information

Digital Design Verification

Digital Design Verification Digital Design Verification Course Instructor: Debdeep Mukhopadhyay Dept of Computer Sc. and Engg. Indian Institute of Technology Madras, Even Semester Course No: CS 676 1 Verification??? What is meant

More information

An Approach for Quality Assurance of Model Transformations

An Approach for Quality Assurance of Model Transformations An Approach for Quality Assurance of Model Transformations Duc-Hanh Dang Department of Software Engineering, VNU - University of Engineering and Technology, 144 Xuan Thuy, Hanoi, Vietnam hanhdd@vnu.edu.vn

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Towards a Comprehensive Design-time Compliance Management: A Roadmap

Towards a Comprehensive Design-time Compliance Management: A Roadmap Towards a Comprehensive Design-time Management: A Roadmap Amal Elgammal, Ph.D. Candidate, Tilburg, The Netherlands, a.f.s.a.elgammal@uvt.nl Oktay Turetken, Post-doc Researcher, Tilburg, The Netherlands,

More information

Modelling the Railway Control Domain rigorously with a UML 2.0 Profile

Modelling the Railway Control Domain rigorously with a UML 2.0 Profile Modelling the Railway Control Domain rigorously with a UML 2.0 Profile Kirsten Berkenkötter Ulrich Hannemann Germany kirsten,ulrichh@informatik.uni-bremen.de Outline Outline 1. Context 2. Railway Control

More information

Language-Independent Model Transformation Verification K. Lano, S. Kolahdouz-Rahimi, T. Clark King s College London; University of Middlesex

Language-Independent Model Transformation Verification K. Lano, S. Kolahdouz-Rahimi, T. Clark King s College London; University of Middlesex Language-Independent Model Transformation Verification K. Lano, S. Kolahdouz-Rahimi, T. Clark King s College London; University of Middlesex 1 Language-independent MT verification One hinderance to MT

More information

Access Control Based on Dynamic Monitoring for Detecting Software Malicious Behaviours

Access Control Based on Dynamic Monitoring for Detecting Software Malicious Behaviours Access Control Based on Dynamic Monitoring for Detecting Software Malicious Behaviours K. Adi, L. Sullivan & A. El Kabbal Computer Security Research Laboratory http://w3.uqo.ca/lrsi NCAC'05 1 Motivation

More information

School of Computer Science

School of Computer Science School of Computer Science Computer Science - Honours Level - 2014/15 October 2014 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level

More information

Research Article Towards Support for Software Model Checking: Improving the Efficiency of Formal Specifications

Research Article Towards Support for Software Model Checking: Improving the Efficiency of Formal Specifications Advances in Software Engineering Volume 2011, Article ID 869182, 13 pages doi:10.1155/2011/869182 Research Article Towards Support for Software Model Checking: Improving the Efficiency of Formal Specifications

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Software Model Checking: Theory and Practice

Software Model Checking: Theory and Practice Software Model Checking: Theory and Practice Lecture: Secification Checking - Temoral Logic Coyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are coyrighted

More information