SESSION III. UAV Payloads and Data Dissemination Ltc.Dr.Erdal Torun (TLFC Tech. & Prj. Mng. Department-Türkiye)

Size: px
Start display at page:

Download "SESSION III. UAV Payloads and Data Dissemination Ltc.Dr.Erdal Torun (TLFC Tech. & Prj. Mng. Department-Türkiye)"

Transcription

1 SESSION III UAV Payloads and Data Dissemination Ltc.Dr.Erdal Torun (TLFC Tech. & Prj. Mng. Department-Türkiye) LOROP Systems and Operational Benefits of Dual Band LOROP Systems Mr. Larry Maver-Mr. Tony Costales (Raytheon Systems Company- USA) Operational Requirements and System Constraints of Automatic Landing System for UAVs Mr.H.Anthony Hoskins (Sierra Nevada Cooperation-USA) Operational Concepts of UAVs for Tactical Recce BGen.Doron Tamir (Ret.)-Mr. Shumel Feldman, (Israel Aircraft Industries, Malat Division-Israel) The Use of Adaptive Approaches in Manoeuvring Target Tracking Dr. Murat EFE (Ankara Univ., EE Dept.-Türkiye)

2 UAV PAYLOADS AND DATA DISSEMINATION Ltc. Dr. Erdal TORUN Technical and Project Management Department Turkish Land Forces Command Yücetepe, ANKARA Tel: +90 (312) Fax: +90 (312) E/Mail: 1. ABSTRACT The types of the payloads carried by the air vehicle are defined by the different mission requirements of the user. Recognition, intelligence, surveillance and target acquisition (RISTA) payloads are the most common used by UAV systems and are of the highest priority for most missions. The primary payloads technology for RISTA purposes are Electro Optic (EO), Infrared and synthetic Aperture Radar (SAR) sensors. Resolution, area to be searched, dimensions, cost-effectiveness, air vehicle s performance and tactical requirements are some of the important parameters to define payloads specifications. Having payload images at Ground Control Station is not sufficient requirement itself. After receiving the raw data, evaluated information must be disseminated to the operational units at the time. This paper deals with the UAV payload specification and choosing the optimum payloads for the mission requirements. Data link and data dissemination requirements and some applications will also be reviewed. An

3

4 assessment will be given to have efficient surveillance and reconnaissance capabilities and real time data transmission. 2. INTRODUCTION There have been increasing demands in modern world to use UAV systems as Intelligence, Reconnaissance, Surveillance and Target Acquisition Systems. Although requirements for UAVs change based on the missions to be carried, expectations are generally similar for each type. Cost-effectiveness, reliability, maintainability, usefulness and operational availability are some of the requirements that all systems should have. Besides these, all UAV system should also fulfill certain basic requirements, which will be given in next sections. These requirement help to define the UAV system specifications in terms of the performance parameters of the basic subsystems, such as air vehicle, ground control station, payloads, data link, and C4I systems and support equipment. Performance parameters are closely interrelated and usually shape these subsystems. At the beginning of the program definition phase, requirements are always beyond the technological advances [1]. Requirements and system specifications for payloads, data link and C4I systems are considered in next sections of this paper. 3. UAV TASKS AND BASIC REQUIREMENTS Some of the today s and future's tasks for UAVs can be listed as follows; Reconnaissance, intelligence, surveillance and target acquisition Communication and navigation EW/Jamming Mine Countermeasure Chemical/Biological reconnaissance Mapping Suppression of enemy air defenses (SEAD)

5 Fixed and moving target attack

6 All UAV systems should fulfill certain basic requirements, as outlined below; Performing efficient surveillance and reconnaissance missions for the armed forces Day and night operations Operating in a wide range of weather conditions Various altitude operation Beyond Line-of-Sight (BLOS) operation Real-time operation Multi-mission capability, etc. 4. AIR VEHICLE PERFORMANCE PARAMETERS Radius of action is defined as the maximum distance that the UAV can travel away from its base along a given course with normal mission payload and return without refueling. This distance is directly dependent on the level of military unit that will operate the system and will ideally cover their area of interest. The endurance at the radius of action is an important parameter that defines the coverage of the air vehicle at the specified loiter speed, typical operating altitude and sensor properties. Endurance is mainly dependent on the air vehicle aerodynamic design, and fuel amount carried. Fuel increase capacity is usually a problem since the space and weight available for fuel is limited. Typical operating altitude can be defined as the altitude where the specified payload performance (e.g. image quality) and coverage can be obtained with the desired mode of operation (through data link or autonomous recording). Higher altitudes are desirable for better coverage, survivability and line-of-sight for data link operations. The cruise and maximum speed is dependent on the engine power and aerodynamic design of the air vehicle. As mentioned before, a high endurance requirement is conflicting with a high speed requirement since high endurance designs usually have efficient small engines (compared to their size) and big

7 wings with high drag. Cruise speed requirements are driven by the timeliness of mission.

8 Loiter speed is usually the optimum speed for endurance and is somehow slow (close to the stall speed). The loiter speed directly affects the payload coverage area. Climb rate is related with the speed and altitude performance of the air vehicle. It is an operationally important parameter especially when the terrain to clear is close and/or steep. A high climb rate also improves the survivability of the air vehicle. 5. GROUND CONTROL STATION The Ground Control Station (GCS) is the operational control center of the entire UAV system. It controls the launch, flight and recovery of the air vehicle, receives and processes data from the payloads, controls the operation of those payloads (often in real time), and provides the interface between the UAV system and the outside world [2,3] GCS should be scalable, modular, flexible, be capable of executing maintenance software and displaying appropriate status results, capable of operation within the specified environmental conditions, easily deployed and transported. It should also provide open system architecture and have ergonomically designed operator controls and displays. 6. PAYLOADS The term payload is referred to the equipment that is added to the UAV for the purpose of performing some operational mission. In other words, the equipment for which the basic UAV provides a platform and transportation. This excludes the flight avionics, data-link and fuel. Using this definition, the payload capacity of a UAV is a measure of the size, weight and power available to perform functions over and above the basic ability to take-off, fly around and landing. The types of payloads carried by the air vehicle are defined by the different mission requirements of the user. Reconnaissance payloads are the most common used by UAV systems and are of the highest priority for most users. The primary payload technologies for reconnaissance mission are Electro- Optic (EO), Infrared and Synthetic Aperture Radar (SAR). The key issues

9 associated with them are; having the resolution to see far enough and at the same time over a wide enough area, and having a payload that is small, light,

10 low power consumption and at an affordable price, such that a UAV can carry it for a period long enough to satisfy the end users needs. Additionally, in conjunction with other sensors, such as range finders, and the UAV s navigation system, the payload may be required to determine the location of the target with a degree of precision that depends on the use to which the information will be put [2,3,4]. For the users and designers of UAV systems, choosing the optimum payload for the mission requirements is of prime importance. The relative advantages of the sensor types and their potential for satisfying a range of common mission goals should be evaluated. Technology is advancing rapidly in many sensor and signal processing fields and the probability (potential) for new solutions to current problems should be considered. Some mission requires putting and controlling more than one payload at same time. But AV size, data link and interface limitations and GCS control capabilities allow having this request. Whatever the operational requirements are for payloads, the other important point is to have payload modularity. In another words, different types of payloads such as reconnaissance, Electronic Warfare (EW), mine detection, NBC, meteorology and etc. should be easily plugged in the AV without SW and HW modifications. Having payload data in GCS is not sufficient itself. Evaluated data should also be disseminated to the active units in real time through the well-established C 4 I network. 7. DATA-LINK The data-link is a key subsystem for any UAV system. It provides two-way communication, either upon demand or a continuous basis. An up-link provides control of the air vehicle flight path and commands to its payloads. The down link provides both a low data rate channel to acknowledge commands and transmit status information about the air vehicle and a high data rate channel for payload data such as video and radar.

11 The data-link typically consists of two major subsystems; the Air Data Terminal (ADT, the portion of the data-link that is located on the AV) and the Ground Data Terminal (GDT, the equipment on the ground).

12 On a battlefield the UAV system may face a variety of EW threats, including direction finding used to target artillery on the ground station, anti-radiation munitions (ARMs) that home on the emissions from the GDT, interception and exploitation, deception and jamming of the data-link. It is highly desirable that the data-link provides as much protection against these threats as reasonably can be afforded. Depending on the mission and scenarios, the desirable attributes for a UAV data-link can be summarised as follows [1]: Worldwide Availability of Frequency Allocation: Operate on frequencies at all locations of interest to the user in peacetime as well as being available during wartime. Resistance to Unintentional Interference: Operate successfully despite the intermittent presence of in-band signals from other RF systems. Low Probability of Intercept (LPI): This is highly desirable for the up-link, since the GCS is likely to have to remain stationary for long periods of time while it has air vehicle(s) in the air, making it a target for artillery or homing missiles if it is located. LPI can be provided by frequency spreading, frequency agility, power management, low duty cycles and using directional antennas. Security: Unintelligible if intercepted, due to signal encoding. As a general rule, it appears that security is of only marginal value in a UAV data-link. However, some intelligence missions could introduce security requirements. Resistance to Jamming: Operate successfully despite deliberate attempts to jam the up and/or down link. The overall priority of anti-jam capability depends on the threat that the UAV is expected to face and the degree to which the mission can tolerate jamming. Resistance to Deception: Reject attempts by an enemy to send commands to the air vehicle or deceptive information to the GDT. Deception of the up-link would allow an enemy to take control of the air

13 vehicle and either crash, redirect, or recover it. Deception of the up-link only requires getting the air vehicle to accept one catastrophic command

14 (e.g., stop engine, switch datalink frequency, change altitude to lower than terrain, etc.). Deception on the down link is more difficult, since the operators are likely to recognize it. Resistance to deception can be provided by authentication codes and by some of the techniques that provide resistance to jamming, such as spread-spectrum transmission using secure codes. Line-of-Sight range constrains, AV/GCS relative position, link availability, data characteristics, EW environments and installation requirements are the main characteristics to define data link for a UAV system [2]. Data link can be established by hub/prime site deployments and utilization of relays (ground, airborne, satellite). Operational cost, missions, deployment area and above characteristics are important parameters to choose the means that extend the mission radius. Since users never prefer link loss between air vehicle and ground control station during real time operations, both telemetry data and video link should be well established. Since the interaction between the data-link and the rest of the UAV system is complex and multifaceted, the design tradeoff between them should occur early in the overall system design process. This allows a partitioning of the burden between the data-link, processing in the air and on the ground, mission requirements, and operator training. 8. DATA DISSEMINATION The purpose of UAV is to provide high quality timely data to the place where it provides the greatest military advantage. Data dissemination is done either directly from A/C or GCS after evaluation to operational units or headquarters. Distribution of payload data real time/or near real time from GCS to operational units is needed in order to maximum benefit from UAV missions. The GCS must be able to disseminate UAV payload data to a variety of users via C4I systems in digitised battle space environment. The GCS must be able to exploit the full performance potential of payloads consistent with mission tasking. Data reception can either be secondary (indirect receipt of imagery and/or data) or direct (direct line of sight with the UAV or a relay device having direct line of sight with the UAV.) Payload data can be disseminated to user by RVT (Remote Video Terminals) or C4I Systems.

15

16 Raw target data together with telemetry info usually are not transferred to the end users. UAV RISTA data should be normally processed at intelligence station, and then send processed data to C2 station through the C4I interface. Air defense data obtained by UAV is sent to RAP facilities directly, where all source information is correlated. UAV data dissemination capabilities are inherently flexible to support the operations 9. CONCLUSION In recent years, the high demand for UAVs has resulted in quest for technological advancements expected from these systems. Different payload types are becoming popular for UAVs. AVs and payloads should be considered for cost-effectiveness. Near-real time pictures and formatted data are useful for end users, not near-real time data REFERENCES [1] E. TORUN, UAV Requirement and Design Consideration, RTO SCI Panel Symp, 26 April 1999 Ankara [2] Pre-Feasibility Study on UAV Systems Interoperability, NIAG SG-53, Feb [3] Introduction to UAV Systems, Paul G. Fahlstrom, Thomas J. Gleason, Dec [4] Remotely Piloted Vehicles, Twelfth International Conference, Bristol, UK..

17 This paper represents the views of the author; it does not necessarily represent the official views of the Turkish Armed Forces.

18 BIOGRAPHY LTC Dr. Erdal TORUN has graduated from the Military War Academy and Electrical Engineering Department of Istanbul Bosphorous University in 1981 and 1984, respectively. He received his Ph.D. degree from the Ankara University and he started working at the R&D Department of the Turkish MOD as project manager. During the same period, he work as an academic instructor and gave lectures in the Military War Academy. LTC TORUN joined at Communication Research Center in Ottawa, Canada in 1994 for one year. He is currently Chief of the Electronics Branch of the Technical & Project Management Department of the TLFC.

19 LOROP Reconnaissance Systems: The Operational Benefits of Dual-Band / Multi-Mission LOROP Sensors Larry Maver Raytheon Systems Company 4 Hartwell Place Lexington, Massachusetts USA lamaver@west.raytheon.com 1. ABSTRACT Optical reconnaissance sensors are undergoing a revolution from primarily daytime-only film camera based systems to 24-hour, day/night digital sensor systems. The changing world environment, in terms of technological advances and new operational requirements, has brought about this transition. There is a worldwide trend to replace film LOROP (LOng-Range Oblique Photographic) cameras with dual-band E-O/IR (electro-optical/infrared) systems. This paper reviews the motivations for these changes and presents examples of the benefits of these new generation systems. 2. INTRODUCTION Before discussing the advances made by modern LOROPs, it will be useful to consider the general classes of mission types. Airborne reconnaissance (recce) sensors are generally categorized by their mission type and altitude

20 range as illustrated in Figure 1. Descriptions and examples of these categories follow.

21 Low Altitude Overflight Nadir ± 1000 ft Medium Altitude Overflight/Standoff Nadir ± 5-8 nm High Altitude Standoff 5-50 nm Figure 1. Traditional Recce Mission Categories Low Altitude Overflight: High speed, low-altitude penetrating missions are employed in high threat (wartime) environments to collect imagery directly over targets (nadir ± 5,000 ft swath width). Altitude ranges of 200-3,000 ft are typical, as are high velocity/range (V/R) ratio operation. Due to the short range to target and high V/R, low altitude sensors are based on short focal length optical systems. In the United States, the US Marine Corps ATARS (Advanced Tactical Air Reconnaissance System) used in the F-18 platform is one example of a lowaltitude system. The daytime sensor is the Low Altitude Electro-Optical (LAEO) sensor (1-inch focal length). For day or night, D-500 Infrared Line Scanner (7.3-inch focal length) can be used.

22 Medium Altitude Overflight/Standoff: Medium altitude missions are used to collect imagery for both overflight and standoff missions. In general, medium altitude operations are in the range of 2,500-25,000 ft. In high threat environments, an aircraft would fly a lowaltitude penetration mission, pop-up to medium altitude to quickly image the area of interest, and then revert to low-altitude for safe exit. In lower threat environments, the platform may fly at medium altitude and image at either nadir (overflight) or at left, right or forward oblique (standoff). Medium altitude sensors employ focal lengths generally in the 6-18 inch range. In the ATARS sensor suite, the 12-inch focal length Medium Altitude Electro- Optical (MAEO) sensor is utilized for side looking oblique (pushbroom) imaging in the daytime. The Predator UAV (Unmanned Aerial Vehicle) utilizes day and night video sensors with zoom optics. High Altitude Standoff LOROP sensors systems are utilized to image at long-range in peacetime as well as in threat environments. The high altitude category is generally applied to systems typically operating in the 20,000-50,000 foot range (and above on special mission platforms). The fundamental design characteristic to support long-range operations is focal length. LOROP s employ focal lengths of 36- inches or greater. LOROP collections are generally at standoff ranges from 5 to 10 miles out to the horizon. In the United States, the only operational LOROP system is the SYERS (Senior Year Electro-Optical Sensor) operating on the U-2 aircraft. The Global Hawk UAV is also high-altitude standoff platform utilizing a 70- inch focal length sensor in both the visible and infrared (IR) spectrums, in addition to integrated synthetic aperture radar system. Mission Requirements During the Cold War, the predominant tactical recce mission anticipated was low-altitude overflight to operate in a wartime/high-threat environment. Following the Cold War, and with the experience of Desert Storm, military recce requirements underwent a change in emphasis.

23

24 Most recce operations today will occur during peacetime. Overflying a neighboring country is unacceptable; a border surveillance mission must be flown in order to collect intelligence information. Long-range standoff (long focal length) systems are essential to collect useful imagery. Peacekeeping missions (Bosnia, Southern Watch) are usually restricted to a minimum altitude (e.g. 10,000 feet), therefore also mandating longer focal length sensors to achieve high quality imagery. Still, recce capabilities must be available for crisis and wartime environments. Both low altitude overflight and medium altitude (pop-up) systems will be used in high threat environments, as will high altitude standoff sensors which increase survivability by collecting imagery far from groundbased threats. Flexibility to reprogram missions is an implicit requirement in order to adjust collection strategies in a dynamic environment, for example to collect Targets of Opportunity. Systems must be interoperable. Film-based systems are typically single stove-pipe solutions imagery is collected and exploited within a single squadron. Use of the data outside of that unit may be difficult to implement in a timely fashion. Today s operations require a fused data environment to allow data to be shared within the services as well as with Coalition partners in NATO operations, for example. NATO Standard Agreements (STANAGs) have been developed to define the formats for interoperable data format, recorders and data links. Day/night capable systems with near real-time intelligence dissemination are fundamental requirements. An adversary s operations can take place at any time of day or night. It is an essential requirement to detect and monitor such exercises on a 24-hour basis to allow commanders to react within an opponent s decision cycle. To do so, relevant information must get to decisionmakers and the warfighter in a timely manner. Film systems can only support daytime operations and require return-to-base and chemical processing before any intelligence can be derived. Such timelines are too lengthy for modern operations. Digital intelligence data from an airborne recce system to users can be accomplished in near real-time using airborne data links and ground receive terminals. Secondary dissemination of

25 intelligence reports and selected imagery to field commanders can be achieved over lower bandwidth ground communications.

26 Although the recce responsibility typically belongs to the military, there is a growing need to supply data to political and civilian decision-makers. Border control, counter-terrorism, smuggling interdiction are examples of national requirements which can be supported by recce systems, in particular real-time systems that can provide law enforcement authorities the ability to quickly react. Disaster assessment can be conducted on large scale, at day or night, in order to provide authorities the best information to make humanitarian assistance decisions. LOROP System Design Optical Sub-Systems Most film cameras used refractive lenses alone to image the ground. Refractors allowed broad area coverage to be achieved from low altitude as such lenses could economically provide wide-fields-of-view. Although refractive optics can be used with electro-optical focal planes, normal optical lenses will not pass infrared energy. Thus, film cameras can be upgraded by replacing the film cartridge with CCD (charge coupled device) detectors, but only daytime imaging can accomplished with this method. An additional consideration is that a lens optimized for a film camera is rarely an optimum design for a digital E-O system. As longer-range performance is required today, designers of modern systems typically select catadioptric (mirror plus refractive lens) or pure reflective imaging systems. Mirror systems offer several benefits: Substantial savings of weight in large aperture, long focal length systems Mirror systems are more amenable to folding the optical path to reduce length and volume Less sensitive to thermal perturbations Mirror systems show no chromatic aberrations, thus allowing wide spectral bandwidths to be collected by a single optical system (e.g. visible and infrared)

27 Focal Plane Assemblies Both line and area array focal plane assemblies are available to detect visible and infrared energy. Curiously, film has been used both as an effective area array and a line array in LOROP cameras. In a framing camera, a single image could comprise a 4ºx4º field of view, exposed at one time onto film. Upgrading such film cameras to E-O, an area array CCD is used to maintain this same format. In pushbroom and sector scan (whiskbroom) cameras, film is continually exposed through a variable slit while the film travels behind it. Line array CCD s employ the same operation, using variable Time, Delay and Integration (TDI) to vary the effective exposure in like manner to the variable slit. Either a line or area array can be used to collect LOROP imagery. Figure 2 illustrates a pan-scanning collection system, in which the sensor scans the ground scene perpendicular to the flight path. The upper rectangles indicate the operation of a dual-area array system. Individual frames are collected in what is called a step-stare method. The area arrays are focused (held constant) on a single ground area for the duration of an exposure. A backscan mirror or prism assembly may be used to keep the line-of-sight stationary during the integration period. Once the exposure is completed, the arrays are projected to the next ground position, overlapping the first exposure by a small amount to maintain continuous coverage. A line array provides a continuous scan of the same ground area, as illustrated by the lower region. When the image is reconstructed on the ground, both images will appear to be a continuous scan to the viewer.

28 Figure 2. Pan-scan collection system can use area array or line array to collect the ground scene. Dual-Band LOROP Design Figure 3 illustrates the fundamental components of a dual-band LOROP. A common, all-reflective front-end optical system collects reflected (visible) and emitted (infrared) energy of the ground scene. A beam splitter behind the optics separates the visible and the infrared wavelength energy and directs each to their corresponding focal plane assemblies. There may be additional optics used in the individual visible and infrared optical chain (e.g. field flattener lens).

29 Ground Scene Front-End Optics Beam Splitter Visible FPA IR FPA Figure 3. Fundamental components of dual-band sensor using common front-end optical system. Benefits of Dual-Band E-O/IR LOROP Systems A fundamental benefit of a digital sensor system, as compared to a film system, is timeliness. Using a data link, time-critical information can be collected and transmitted to users in near-real time. Even without an airborne data link, upon landing a digital tape or solid-state memory device with the collected imagery can be removed from the airborne system and brought to an exploitation workstation for immediate use.

30 There are a number of other benefits that can be realized with a dual-band LOROP that result from the spectral content of the imagery. Examples are presented below. Additional Haze Penetration Film is sensitive from approximately 0.4 to 0.7 µm, whereas E-O (silicon CCD detectors) are predominantly sensitive in the 0.6 to 0.9 µm region. Atmospheric haze is predominantly blue (0.4 to 0.5 µm), as the shorter wavelengths are scattered more than longer. Haze is a non-image forming light, that is a uniform radiance imposed over the image forming light (from the ground scene). The effect of haze is a reduction in the contrast of the ground scene image, which equates to a reduction in the signal-to-noise ratio (SNR). The SNR reduction causes degradation in image quality. Film simply cannot record wavelengths from just above 0.7 to 0.9 µm, as can an EO detector. This wavelength region is referred to as the near infrared, or NIR. There is significant image forming NIR energy from a ground scene that leads to greatly improved contrast and quality in an EO image. Figure 4 illustrates this difference. The near IR (right hand image) penetrates the haze better than visible wavelengths, thus better contrast between objects in the scene and increased interpretability.

31 Figure 4. Images looking at long range across valley. Lefthand image is 0.4 to 0.7 µm spectral bandpass (equivalent to film), whereas righthand image is µm (equivalent to E-O CCD), illustrating the improved contrast in the near IR wavelengths. Photographs courtesy of Duncan Technology. Short-Wave Infrared Infrared focal plane arrays, such as Indium Antimonide (InSb) detectors, provide sensitivity in both the short-wave (1.2-3 µm) and mid-wave infrared (3-5 µm) wavelengths. The short-wave infrared (SWIR) spectrum can provide still additional haze penetration with respect to a visible CCD. This effect is most pronounced under poor imaging conditions that would be encountered under very hazy daytime conditions or at very long range. The images in Figure 5 were collected under clear and hazy conditions to illustrate this effect.

32 Figure 5. Comparison of visible wavelength (left column) and SWIR images (right column) acquired under clear (top row) and poor atmospheric conditions (lower row). Images courtesy of Raytheon Systems Company. The upper images were acquired from a 46 nautical mile slant range under very clear (46 nautical mile meteorological visibility). The top left image was collected in the µm spectral range and top right image in the µm

33 SWIR bandpass. Under these conditions, there is little difference in the image quality. In the lower images, the meteorological visibility had dropped to 9 nautical miles. Slant range to target was 35 nautical miles. Under these conditions, the visible E-O image (lower left) is very low contrast and as a result, very little information can be extracted from the image. In the lower right SWIR image, contrast is much greater as is the information content. It should be noted that only certain spectral regions within the full SWIR range provide windows through which haze can be effectively penetrated. Mid-Wave Thermal Information The mid-wave infrared (MWIR) can be used collect imagery in both the day and night. At night, MWIR detects emitted thermal energy. The amount of energy emitted is a function of an object s temperature and emissivity. With a MWIR detector, a dual-band LOROP can image at any time of the day. In most situations, the MWIR will be used at night, but it can also be used to provide additional information during the day. Figure 6 illustrates a unique characteristic of MWIR imagery. It is possible to see the level of fuel in the POL storage tanks based on their residual thermal signature. The dense fuel oil, which would be heated during the daytime, retains some of that heat throughout the night. The sides of the tank cool more quickly at night than the fuel, and are lighter in appearance in the thermal IR image. The tops of the tanks appear black as they are reflecting the cold sky.

IAI/Malat Solutions for the Maritime Arena

IAI/Malat Solutions for the Maritime Arena IAI/Malat Solutions for the Maritime Arena Any country with a proximity to the sea has an important operational need to positively and unambiguously identify, in time, threats that originate in the maritime

More information

UAV Road Surface Monitoring and Traffic Information

UAV Road Surface Monitoring and Traffic Information UAV Road Surface Monitoring and Traffic Information Czech Road and Motorway Network New capabilities for Unmanned Aerial Systems Current usage (military operation service) Possible civil usage (possible

More information

www.thalesgroup.com/watchkeeper WATCHKEEPER X UNMANNED AIRCRAFT SYSTEM (UAS)

www.thalesgroup.com/watchkeeper WATCHKEEPER X UNMANNED AIRCRAFT SYSTEM (UAS) www.thalesgroup.com/watchkeeper WATCHKEEPER X UNMANNED AIRCRAFT SYSTEM (UAS) Certified Foundation Watchkeeper X is built to the same standards as a manned aircraft, and conforms to CAA/MAA standards. It

More information

AeroVironment, Inc. Unmanned Aircraft Systems Overview Background

AeroVironment, Inc. Unmanned Aircraft Systems Overview Background AeroVironment, Inc. Unmanned Aircraft Systems Overview Background AeroVironment is a technology solutions provider with a more than 40-year history of practical innovation in the fields of unmanned aircraft

More information

Using Tactical Unmanned Aerial Systems to Monitor and Map Wildfires

Using Tactical Unmanned Aerial Systems to Monitor and Map Wildfires Using Tactical Unmanned Aerial Systems to Monitor and Map Wildfires Michael Tranchitella, Stephen Fujikawa, Tzer Leei Ng, David Yoel, Don Tatum IntelliTech Microsystems, Inc. Bowie, Maryland Philippe Roy,

More information

Position Descriptions. Aerospace

Position Descriptions. Aerospace Position Descriptions Aerospace Aerospace Engineering? Aeromechanics / Flight Control / Flight Qualities Engineer Predict, analyze, and verify air vehicle flight dynamics including aircraft aerodynamics,

More information

KZO Tactical UAV System Overview

KZO Tactical UAV System Overview KZO Tactical UAV System Overview KZO TUAV / FTS / 08.02.2006 / Chart 1 Content System Elements Air Vehicle Ground Control Station Data Link Vehicle Launch Vehicle Refurbishing Vehicle Technical Summary

More information

BMS Digital Microwave Solutions for National Security & Defense

BMS Digital Microwave Solutions for National Security & Defense BMS Digital Microwave Solutions for National Security & Defense Broadcast Microwave Services, Inc. P.O. Box 84630 San Diego, CA 92138 Phone: +1.800.669.9667 Email: sales@bms-inc.com Web: www.bms-inc.com

More information

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future 16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed

More information

Matthew O. Anderson Scott G. Bauer James R. Hanneman. October 2005 INL/EXT-05-00883

Matthew O. Anderson Scott G. Bauer James R. Hanneman. October 2005 INL/EXT-05-00883 INL/EXT-05-00883 Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications That Require Reliable Extended Range Operations in Time Critical Scenarios Matthew

More information

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - nzarrin@qiau.ac.ir

More information

The Boeing Company Strategic Missile & Defense Systems

The Boeing Company Strategic Missile & Defense Systems The Boeing Company Strategic Missile & Defense Systems Brad Bruce November 8, 2011 Boeing Business Units How SM&DS Fits Organizationally Boeing BDS Network & Space Systems Boeing Defense, Space & Security

More information

Engineers from Geodetics select KVH for versatile high-performance inertial sensors. White Paper. kvh.com

Engineers from Geodetics select KVH for versatile high-performance inertial sensors. White Paper. kvh.com White Paper Overcoming GNSS Vulnerability by Applying Inertial Data Integration in Multi-Sensor Systems for High Accuracy Navigation, Pointing, and Timing Solutions Engineers from Geodetics select KVH

More information

ITEM FOR FINANCE COMMITTEE

ITEM FOR FINANCE COMMITTEE For discussion on 12 June 2009 FCR(2009-10)24 ITEM FOR FINANCE COMMITTEE HEAD 166 - GOVERNMENT FLYING SERVICE Subhead 603 Plant, vehicles and equipment New Item Replacement of two fixed-wing aircraft and

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

How To Discuss Unmanned Aircraft System (Uas)

How To Discuss Unmanned Aircraft System (Uas) Unmanned Aerial Systems (UAS) for American Association of Port Authorities Administration and Legal Issues Seminar New Orleans, LA April 9, 2015 Briefly about Flight Guardian Our Services: Educating public

More information

Nasams. Air Defence System. www.kongsberg.com

Nasams. Air Defence System. www.kongsberg.com Nasams Air Defence System www.kongsberg.com World class - through people, technology and dedication Kongsberg Gruppen ASA (KONGSBERG) is an international technology corporation that delivers advanced and

More information

Israel s Aerospace Industry. Higher Faster Farther

Israel s Aerospace Industry. Higher Faster Farther Israel s Aerospace Industry Higher Faster Farther April 2013 Areas of Activity Civil/Commercial Aviation Space Applications Military & Defense Israel Aerospace Innovation Aviation Space UAV Gulfstream

More information

White Paper Assured PNT Inside Military Ground Vehicles Using D3

White Paper Assured PNT Inside Military Ground Vehicles Using D3 White Paper Assured PNT Inside Military Ground Vehicles Using D3 Brian Paul December 2013 Introduction Global Positioning System (GPS) technology has become an integral part of Mission Command systems

More information

Venator -110 General Purpose Light Frigate Technical Brief

Venator -110 General Purpose Light Frigate Technical Brief Technical Brief VENATOR-110 GENERAL PURPOSE LIGHT FRIGATE A TECHNICAL BRIEF 1. INTRODUCTION Flexible and affordable Globally deployable Fulfils comprehensive range of roles Designed for optimum balance

More information

Table of Contents 1. INTRODUCTION 2 2. DEFINITION 4 3. UAS CLASSIFICATION 6 4. REGULATORY PRINCIPLES 16 5. INTERACTION WITH AIR TRAFFIC CONTROL 16

Table of Contents 1. INTRODUCTION 2 2. DEFINITION 4 3. UAS CLASSIFICATION 6 4. REGULATORY PRINCIPLES 16 5. INTERACTION WITH AIR TRAFFIC CONTROL 16 FOREWORD Table of Contents 1. INTRODUCTION 2 2. DEFINITION 4 3. UAS CLASSIFICATION 6 4. REGULATORY PRINCIPLES 16 5. INTERACTION WITH AIR TRAFFIC CONTROL 16 6. SENSE AND AVOID ( required for applicants

More information

Connecting Air-Ground Operators through the Upper Aerial Layer

Connecting Air-Ground Operators through the Upper Aerial Layer Connecting Air-Ground Operators through the Upper Aerial Layer Jerry Knoblach, Chairman & CEO (480) 403-0032 www.spacedata.net 0 Wide Area Comm Platforms Near Space much closer than satellites 400 X Lower

More information

The 7 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 15 th 2012

The 7 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 15 th 2012 The 7 th International Scientific Conference DEFENSE RESOURCES MANAGEMENT IN THE 21st CENTURY Braşov, November 15 th 2012 COMMUNICATION ISSUES OF UAV 1 INTEGRATION INTO NON 1 st. Lt. Gábor Pongrácz, ATM

More information

What, Why and How. Hosted Payloads: A guide to commercially hosted government payloads from the Hosted Payload Alliance. www.hostedpayloadalliance.

What, Why and How. Hosted Payloads: A guide to commercially hosted government payloads from the Hosted Payload Alliance. www.hostedpayloadalliance. Hosted Payloads: What, Why and How A guide to commercially hosted government payloads from the Hosted Payload Alliance The Hosted Payload Alliance (HPA) is a satellite industry alliance formed in 2011

More information

Methane to Markets Oil and Natural Gas Technology Transfer Workshop

Methane to Markets Oil and Natural Gas Technology Transfer Workshop Methane to Markets Oil and Natural Gas Technology Transfer Workshop Airborne Differential Absorption Lidar (DIAL) Detection and Measurement of Fugitive Emissions Steven Stearns ANGEL Service ITT Space

More information

ARIES SAAS HELICOPTER CONTROL AND APPROACH RADAR

ARIES SAAS HELICOPTER CONTROL AND APPROACH RADAR SECURITY AND DEFENSE ARIES SAAS HELICOPTER CONTROL AND APPROACH RADAR Defense and security in five continents indracompany.com ARIES-SAAS ARIES SAAS HELICOPTER CONTROL AND APPROACH RADAR ARIES-SAAS radar

More information

29.01.2015. Industry and Business Applications. Industry and Business Applications

29.01.2015. Industry and Business Applications. Industry and Business Applications Industry and Business Applications ETH Zürich 30 January 2015 Dr. Jürg Wildi Vice President Technology RUAG Aviation 1 Industry and Business Applications Where is the business for the industry? A Swiss

More information

Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics

Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics Passive Millimeter-Wave Imaging and Potential Applications in Homeland Security and Aeronautics Magdy Attia, Ph.D. James B. Duke Distinguished Professor Chair, Computer Science & Engineering Department

More information

www. thalesgroup. com Network Management Systems

www. thalesgroup. com Network Management Systems www. thalesgroup. com Network Management Systems NETWORK MANAGEMENT SYSTEMS FROM THALES Based on Thales' highly successful dynamic management software, the NMS family of Link 16 products provides fully

More information

ImStrat Corporation. Geospatial Intelligence Training Support Programs 2013. Course Catalogue

ImStrat Corporation. Geospatial Intelligence Training Support Programs 2013. Course Catalogue Geospatial Intelligence Training Support Programs 2013 Course Catalogue Providing Advanced Geospatial Intelligence Solutions Since 1997 Suite 100, 20 Bennett Street Carleton Place, Ontario K7C 4J9 Canada

More information

Current Challenges in UAS Research Intelligent Navigation and Sense & Avoid

Current Challenges in UAS Research Intelligent Navigation and Sense & Avoid Current Challenges in UAS Research Intelligent Navigation and Sense & Avoid Joerg Dittrich Institute of Flight Systems Department of Unmanned Aircraft UAS Research at the German Aerospace Center, Braunschweig

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

More information

Coordinated Operation Capability Using Scalable C2

Coordinated Operation Capability Using Scalable C2 Coordinated Operation Capability Using Scalable C2 Authors: Hüseyin KUTLUCA, İbrahim AKSU, Arda ÜNAL MilSOFT Yazılım Teknolojileri A.Ş. Teknokent, 06800 ODTU Ankara / TURKEY hkutluca@milsoft.com.tr iaksu@milsoft.com.tr

More information

PATRIOT MISSILE DEFENSE Software Problem Led to System Failure at Dhahran, Saudi Arabia

PATRIOT MISSILE DEFENSE Software Problem Led to System Failure at Dhahran, Saudi Arabia --.- /Initcd Stdcs General Accounting Offiw Ikport to the Chairman, Subcommittee on Investigations and Oversight, Committee on Science, Space, and Technology, House of Rcprcsentativcs PATRIOT MISSILE DEFENSE

More information

Unmanned Aerial Vehicles in the Hungarian Defence Forces

Unmanned Aerial Vehicles in the Hungarian Defence Forces Unmanned Aerial Vehicles in the Hungarian Defence Forces László Kovács, László Ványa kovacs.laszlo@zmne.hu; vanya.laszlo@zmne.hu Abstract: The history of research and development of unmanned aerial vehicles

More information

Propsim enabled Aerospace, Satellite and Airborne Radio System Testing

Propsim enabled Aerospace, Satellite and Airborne Radio System Testing www.anite.com Propsim enabled Aerospace, Satellite and Airborne Radio System Testing Anite is now part of Keysight Technologies Realistic and repeatable real-time radio channel emulation solutions for

More information

Totally Wireless Video Security

Totally Wireless Video Security Traditional Video Surveillance ($50,000+) vs. Event-Based Videofied Solution ($2,500) Executive Summary: Totally Wireless Video Security has been effective but cost and complexity has limited deployment

More information

Defog Image Processing

Defog Image Processing Introduction Expectations for a camera s performance, no matter the application, are that it must work and provide clear usable images, regardless of any environmental or mechanical challenges the camera

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Solar Tracking Application

Solar Tracking Application Solar Tracking Application A Rockwell Automation White Paper Solar trackers are devices used to orient photovoltaic panels, reflectors, lenses or other optical devices toward the sun. Since the sun s position

More information

Service, Security, Solutions Since 1924. Insurance and Risk Management Considerations for UAS RPAS Symposium, Montreal. March 2015

Service, Security, Solutions Since 1924. Insurance and Risk Management Considerations for UAS RPAS Symposium, Montreal. March 2015 Service, Security, Solutions Since 1924 Insurance and Risk Management Considerations for UAS RPAS Symposium, Montreal Global Aerospace Begins Spirit of St. Louis First Transatlantic flight by unmanned

More information

ELBIT SYSTEMS. Jefferies Global Industrials Conference - August 2014. Joseph Gaspar EVP & CFO

ELBIT SYSTEMS. Jefferies Global Industrials Conference - August 2014. Joseph Gaspar EVP & CFO ELBIT SYSTEMS Jefferies Global Industrials Conference - August 2014 Joseph Gaspar EVP & CFO AT A GLANCE HEADQUARTED ISRAEL with International Operations 11,700 EMPLOYEES 50% engineers TEL AVIV & NASDAQ

More information

LaserMotive White Paper Power Beaming for UAVs. A White Paper By T.J. Nugent and J.T. Kare LaserMotive, LLC

LaserMotive White Paper Power Beaming for UAVs. A White Paper By T.J. Nugent and J.T. Kare LaserMotive, LLC Laser Power for UAVs A White Paper By T.J. Nugent and J.T. Kare LaserMotive, LLC Summary: Lasers can transmit power to UAVs in flight, giving them potentially unlimited endurance aloft. Silent, refueling-

More information

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS 1. INTRODUCTION Navigation technologies with precision approach and landing systems, for civilian and military purposes, enable aircrafts to perform their

More information

XIS-3420/XIS-31HCX XIS-3310/XIS-31NT Wide Area Monitoring Solutions

XIS-3420/XIS-31HCX XIS-3310/XIS-31NT Wide Area Monitoring Solutions XIS-3420/XIS-31HCX XIS-3310/XIS-31NT Wide Area Monitoring Solutions Wide Area Monitoring Monitor Your Grounds, Borders, and Key Facilities with a Sony Wide Area Monitoring (WAM) Solution - Which can help

More information

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and

More information

ADS-B is intended to transform air traffic control by providing more accurate and reliable tracking of airplanes in flight and on the ground.

ADS-B is intended to transform air traffic control by providing more accurate and reliable tracking of airplanes in flight and on the ground. ADS-B is intended to transform air traffic control by providing more accurate and reliable tracking of airplanes in flight and on the ground. New Air Traffic Surveillance Technology Air traffic service

More information

Nighthawk IV UAS. Versatility. User Friendly Design. Capability. Aerial Surveillance Simplified. forcepro@ara.com 800.639.6315 www.ara.

Nighthawk IV UAS. Versatility. User Friendly Design. Capability. Aerial Surveillance Simplified. forcepro@ara.com 800.639.6315 www.ara. Aerial Surveillance Simplified The Nighthawk IV small unmanned aerial vehicle brings military hardened technology to civil agencies and commercial user groups. Supremely easy to operate and recently certified

More information

Marine Corps Tank Employment MCWP 3-12 (CD) Appendix F. Scout and TOW Platoons

Marine Corps Tank Employment MCWP 3-12 (CD) Appendix F. Scout and TOW Platoons Appendix F Scout and TOW Platoons Section 1. Scout Platoon Section 2. TOW Platoon F - 1 Section 1. Scout Platoon. Mission. The battalion scout platoon performs reconnaissance, provides limited security,

More information

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne

More information

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT GLOBAL NAVIGATION SATELLITE SYSTEM LANDING SYSTEM The aviation industry is developing a new positioning and landing system based on the Global Navigation Satellite System (GNSS). The GNSS landing system

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

Tracking of Small Unmanned Aerial Vehicles

Tracking of Small Unmanned Aerial Vehicles Tracking of Small Unmanned Aerial Vehicles Steven Krukowski Adrien Perkins Aeronautics and Astronautics Stanford University Stanford, CA 94305 Email: spk170@stanford.edu Aeronautics and Astronautics Stanford

More information

The Potential of Light UAS for Police Applications

The Potential of Light UAS for Police Applications Enno Dittmar Federal Ministry of the Interior, Germany Directorate-General Federal Police Division B 6 Technical Equipment and Logistics Potential users (German Authorities) Federal Police BPOL (border,

More information

MARITIME SURVEILLANCE SYSTEM

MARITIME SURVEILLANCE SYSTEM MARITIME SURVEILLANCE SYSTEM In security you cannot choose the second best option indracompany.com SIVE MARITIME SURVEILLANCE SYSTEM A sophisticated border surveillance system for coastal and terrestrial

More information

Micro and Mini UAV Airworthiness, European and NATO Activities

Micro and Mini UAV Airworthiness, European and NATO Activities Recent Development in Unmanned Aircraft Systems Micro and Mini UAV Airworthiness, European and NATO Activities iti Fulvia Quagliotti Politecnico di Torino Department of Aerospace Engineering Torino, Italy

More information

Unmanned Aircraft Systems (UAS)

Unmanned Aircraft Systems (UAS) Unmanned Aircraft Systems (UAS) UAS 101 Presented to: Airports Consultant Council Technical Workshop Presented by: Victoria Wei, Deputy Director Airport Planning and Programming Date: July 16, 2015 FAA

More information

COMBATSS-21 Scalable combat management system for the world s navies

COMBATSS-21 Scalable combat management system for the world s navies COMBATSS-21 Scalable combat management system for the world s navies The COMBATSS-21 total ship combat management system was designed to deliver capability rapidly and affordably. Built on an open architecture,

More information

WHAT ARE THE IMPLICATIONS OF ENHANCED AIR INSERTION OF THE BCT, SUCH AS BY VERTICAL ENVELOPMENT?

WHAT ARE THE IMPLICATIONS OF ENHANCED AIR INSERTION OF THE BCT, SUCH AS BY VERTICAL ENVELOPMENT? Chapter Five WHAT ARE THE IMPLICATIONS OF ENHANCED AIR INSERTION OF THE BCT, SUCH AS BY VERTICAL ENVELOPMENT? The final research question concerns the use of air insertion of most of the Blue force into

More information

UAS Training Solutions

UAS Training Solutions UAS Training Solutions UAS Training Solutions Training and operational support for mission readiness The use of unmanned aerial systems (UAS) by defence and security forces globally has grown over the

More information

Advanced Electronics Company. Photonics Based ELINT for Interception and Analysis of Radar Signals

Advanced Electronics Company. Photonics Based ELINT for Interception and Analysis of Radar Signals Advanced Electronics Company (An Economic Offset Program Company) Radar Symposium 2014 Photonics Based ELINT for Interception and Analysis of Radar Signals Presented By: Engr. Ziad H. Al-Musallam Senior

More information

WHITE PAPER. Are More Pixels Better? www.basler-ipcam.com. Resolution Does it Really Matter?

WHITE PAPER. Are More Pixels Better? www.basler-ipcam.com. Resolution Does it Really Matter? WHITE PAPER www.basler-ipcam.com Are More Pixels Better? The most frequently asked question when buying a new digital security camera is, What resolution does the camera provide? The resolution is indeed

More information

Primus 880 Weather Radar. Reliable Weather Avoidance Radar

Primus 880 Weather Radar. Reliable Weather Avoidance Radar Primus 880 Weather Radar Reliable Weather Avoidance Radar Honeywell, the world s leader in avionics continues the development of weather radar systems with the Primus 880 featuring 10 kilowatts of transmitter

More information

Satellite Basics. Benefits of Satellite

Satellite Basics. Benefits of Satellite Satellite Basics Benefits of Satellite People need access to enterprise-class, high-speed voice, video and data applications wherever they happen to be. Satellite connectivity has the power to drive communications

More information

MITSUBISHI ELECTRIC ANNOUNCES THE SUCCESSFUL DEVELOPMENT OF AN AIRBORNE Ku-BAND ANTENNA SUBSYSTEM FOR SATELLITE COMMUNICATIONS

MITSUBISHI ELECTRIC ANNOUNCES THE SUCCESSFUL DEVELOPMENT OF AN AIRBORNE Ku-BAND ANTENNA SUBSYSTEM FOR SATELLITE COMMUNICATIONS FOR IMMEDIATE RELEASE No. 2330 Product Inquiries: Media Contact: Yutaka Kamada Oliver Cox Mitsubishi Electric Corporation Mitsubishi Electric Corporation Tel: +81-3-3218-2391 Tel: +81-3-3218-2346 Yutaka.Kamada@hq.melco.co.jp

More information

CUSTOMER KEYNOTE Hal Buddenbohm

CUSTOMER KEYNOTE Hal Buddenbohm CUSTOMER KEYNOTE Hal Buddenbohm Supply Chain Director ITT Force Protection Systems Hal Buddenbohm is the Supply Chain Director at ITT Force Protection Systems in Thousand Oaks, CA. Prior to joining ITT,

More information

BMS Primer on Microwave Downlinks for Public Safety & Law Enforcement

BMS Primer on Microwave Downlinks for Public Safety & Law Enforcement BMS Primer on Microwave Downlinks for Public Safety & Law Enforcement Prepared by: Steve Yanke Broadcast Microwave Services, Inc. P.O. Box 84630 San Diego, CA 92138 Phone: 1.858.391.3050 Web: www.bms-inc.com

More information

Thermal Imaging Test Target THERMAKIN Manufacture and Test Standard

Thermal Imaging Test Target THERMAKIN Manufacture and Test Standard Thermal Imaging Test Target THERMAKIN Manufacture and Test Standard June 2014 This document has been produced by CPNI as the standard for the physical design, manufacture and method of use of the Thermal

More information

ViaLight. Communications

ViaLight. Communications ViaLight Communications ViaLight Communications Laser Communication for Aerial Applications ViaLight Communications (VLC) is a spin-off company from the German Aerospace Center DLR, founded in 2009. The

More information

RPAS for homeland security applications. Jean CARON Mission Air Systems Lima April 2012

RPAS for homeland security applications. Jean CARON Mission Air Systems Lima April 2012 RPAS for homeland security applications Jean CARON Mission Air Systems Lima April 2012 Agenda RPAS, what is it? Homeland security, what is it? RPAS for Homeland security RPAS Industry capabilities and

More information

Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition

Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition Paulo Marques 1 Instituto Superior de Engenharia de Lisboa / Instituto de Telecomunicações R. Conselheiro Emídio

More information

Satellite Solutions for Emergency Relief and Disaster Recovery Management. May 2009

Satellite Solutions for Emergency Relief and Disaster Recovery Management. May 2009 Satellite Solutions for Emergency Relief and Disaster Recovery Management May 2009 Introduction Disasters can occur anytime and anywhere. Whether the emergency is an act of nature or an act of man, the

More information

Sensor Integration in the Security Domain

Sensor Integration in the Security Domain Sensor Integration in the Security Domain Bastian Köhler, Felix Opitz, Kaeye Dästner, Guy Kouemou Defence & Communications Systems Defence Electronics Integrated Systems / Air Dominance & Sensor Data Fusion

More information

Argos Thuraya Interception L-Band System

Argos Thuraya Interception L-Band System Argos Thuraya Interception L-Band System Introduction In a world of crisis and conflict, and as part of measures to fight crime and terrorism, the interception and analysis of satellite communication has

More information

Surveillance and Security Technologies for Bridges and Tunnels

Surveillance and Security Technologies for Bridges and Tunnels Surveillance and Security Technologies for Bridges and Tunnels Sheila Rimal Duwadi, P.E., Team Leader Bridge Safety, Reliability and Security, Federal Highway Administration, 6300 Georgetown Pike, McLean

More information

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

More information

Two primary advantages of radars: all-weather and day /night imaging

Two primary advantages of radars: all-weather and day /night imaging Lecture 0 Principles of active remote sensing: Radars. Objectives: 1. Radar basics. Main types of radars.. Basic antenna parameters. Required reading: G: 8.1, p.401-40 dditional/advanced reading: Online

More information

Department of Defense Workbook Information File In Support of AWS-3 Transition Planning for the 1755-1780 MHz Band Rev. 9/10/14

Department of Defense Workbook Information File In Support of AWS-3 Transition Planning for the 1755-1780 MHz Band Rev. 9/10/14 Department of Defense Workbook Information File In Support of AWS-3 Transition Planning for the 1755-1780 MHz Band Rev. 9/10/14 AWS-3 auction bidders should read and comprehend this document in its entirety

More information

Emerging Threats and Challenges for Homeland Air Security

Emerging Threats and Challenges for Homeland Air Security Emerging Threats and Challenges for Homeland Air Security Presentation to National Defense Industrial Association (NDIA) Missile Defense RADM Mike Mathis, Lt. Col., Carey Briefer Director, Joint Air and

More information

Radio Resource Management in HiveOS. solution brief

Radio Resource Management in HiveOS. solution brief Radio Resource Management in HiveOS solution brief Radio Resource Management in HiveOS Introduction As enterprise wireless LANs have grown from a curiosity providing access in conference rooms into the

More information

Spectrum Technology Assessment Test Range Spectrum Challenges

Spectrum Technology Assessment Test Range Spectrum Challenges 1 Spectrum Technology Assessment Test Range Spectrum Challenges Mr. Derrick Hinton Principal Deputy Director Test Resource Management Center December 5, 2014 2 Topics of Discussion RF Spectrum Demand Drivers

More information

OPERATIONAL RISK MANAGEMENT B130786 STUDENT HANDOUT

OPERATIONAL RISK MANAGEMENT B130786 STUDENT HANDOUT UNITED STATES MARINE CORPS THE BASIC SCHOOL MARINE CORPS TRAINING COMMAND CAMP BARRETT, VIRGINIA 22134-5019 OPERATIONAL RISK MANAGEMENT B130786 STUDENT HANDOUT Basic Officer Course (ORM) Introduction Importance

More information

TAMU-CC UAS Program 1

TAMU-CC UAS Program 1 TAMU-CC UAS Program 1 TAMU-CC Major Research Initiatives Coastal & Marine Economic & environmental sustainability Ecosystem evaluation Shoreline mapping Water supply studies Policy Engineering Science

More information

SentryScope. Achieving Ultra-high Resolution Video Surveillance through Linescan Camera Technology. Spectrum San Diego, Inc. 10907 Technology Place

SentryScope. Achieving Ultra-high Resolution Video Surveillance through Linescan Camera Technology. Spectrum San Diego, Inc. 10907 Technology Place SentryScope Achieving Ultra-high Resolution Video Surveillance through Linescan Camera Technology Spectrum San Diego, Inc. 10907 Technology Place San Diego, CA 92127 858 676-5382 www.sentryscope.com Introduction

More information

Seapower Capability Systems is Raytheon Integrated Defense Systems business area dedicated to the development and delivery of critical seapower

Seapower Capability Systems is Raytheon Integrated Defense Systems business area dedicated to the development and delivery of critical seapower Seapower Seapower Capability Systems is Raytheon Integrated Defense Systems business area dedicated to the development and delivery of critical seapower capabilities to naval forces worldwide. Offering

More information

The Unmanned Little Bird (ULB) Decking Risk Reduction Test Approach

The Unmanned Little Bird (ULB) Decking Risk Reduction Test Approach The Unmanned Little Bird (ULB) Decking Risk Reduction Test Approach Authors: Dino Cerchie Mark Hardesty Roger Hehr Jason Graham Unmanned Little Bird (ULB) Rapid prototyping test platform for developing

More information

How To Fuse A Point Cloud With A Laser And Image Data From A Pointcloud

How To Fuse A Point Cloud With A Laser And Image Data From A Pointcloud REAL TIME 3D FUSION OF IMAGERY AND MOBILE LIDAR Paul Mrstik, Vice President Technology Kresimir Kusevic, R&D Engineer Terrapoint Inc. 140-1 Antares Dr. Ottawa, Ontario K2E 8C4 Canada paul.mrstik@terrapoint.com

More information

Automotive Applications of 3D Laser Scanning Introduction

Automotive Applications of 3D Laser Scanning Introduction Automotive Applications of 3D Laser Scanning Kyle Johnston, Ph.D., Metron Systems, Inc. 34935 SE Douglas Street, Suite 110, Snoqualmie, WA 98065 425-396-5577, www.metronsys.com 2002 Metron Systems, Inc

More information

CAT VIII WORKING DRAFT

CAT VIII WORKING DRAFT Category VIII Military Aircraft and Associated Equipment A. End Items, Systems, Accessories, Attachments, Equipment, Parts and Components 1. Fighter, bomber, attack, or specialized fixed or rotary wing

More information

12 AERO Second-Quarter 2003 April CAPT. RAY CRAIG 737 CHIEF PILOT FLIGHT OPERATIONS BOEING COMMERCIAL AIRPLANES

12 AERO Second-Quarter 2003 April CAPT. RAY CRAIG 737 CHIEF PILOT FLIGHT OPERATIONS BOEING COMMERCIAL AIRPLANES CAPT. RAY CRAIG 737 CHIEF PILOT FLIGHT OPERATIONS BOEING COMMERCIAL AIRPLANES DREW HOUCK ASSOCIATE TECHNICAL FELLOW FLIGHT DECK DISPLAYS BOEING COMMERCIAL AIRPLANES ROLAN SHOMBER ASSOCIATE TECHNICAL FELLOW

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

Multisensor Data Fusion and Applications

Multisensor Data Fusion and Applications Multisensor Data Fusion and Applications Pramod K. Varshney Department of Electrical Engineering and Computer Science Syracuse University 121 Link Hall Syracuse, New York 13244 USA E-mail: varshney@syr.edu

More information

Deployment of Advanced Technologies in Mari8me Security: Effec8ve use of Unmanned Aerial Surveillance Systems

Deployment of Advanced Technologies in Mari8me Security: Effec8ve use of Unmanned Aerial Surveillance Systems Deployment of Advanced Technologies in Mari8me Security: Effec8ve use of Unmanned Aerial Surveillance Systems March 11, 2015 Presented by: Richard Garcia, PhD Southwest Research Ins%tute 210-522- 3786

More information

Physical Security Simulation and Analysis Tools A presentation for the Canada & United States Security Simulation Technologies Group

Physical Security Simulation and Analysis Tools A presentation for the Canada & United States Security Simulation Technologies Group SAND 2014-3718P Physical Security Simulation and Analysis Tools A presentation for the Canada & United States Security Simulation Technologies Group Unclassified Unlimited Information For Public Dissemination

More information

Navy Information Dominance Industry Day

Navy Information Dominance Industry Day Navy Information Dominance Industry Day Vice Admiral Kendall Card Deputy Chief of Naval Operations for Information Dominance and Director of Naval Intelligence OPNAV N2/N6 Evolution of Warfare 1990 Non-Kinetic

More information

Overview of Sensors and Detection Systems for Wildlife Hazard Management

Overview of Sensors and Detection Systems for Wildlife Hazard Management Overview of Sensors and Detection Systems for Wildlife Hazard Management Edwin E. Herricks Professor Emeritus University of Illinois Center of Excellence for Airport Technology Airport Safety Management

More information

Humayun Bakht School of Computing and Mathematical Sciences Liverpool John Moores University Email:humayunbakht@yahoo.co.uk

Humayun Bakht School of Computing and Mathematical Sciences Liverpool John Moores University Email:humayunbakht@yahoo.co.uk Applications of mobile ad-hoc networks my article applications of mobile ad-hoc networks at http://www.computingunplugged.com/issues/issue2004 09/00001371001.html Humayun Bakht School of Computing and

More information

CORPORATE PRESENTATION December 2015

CORPORATE PRESENTATION December 2015 CORPORATE PRESENTATION December 2015 FORWARD LOOKING STATEMENT Certain information and statements in this presentation constitute forward-looking statements. Words such as forecast, project, intend, expect,

More information

Bi-Directional DGPS for Range Safety Applications

Bi-Directional DGPS for Range Safety Applications Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background

More information