OLAP. Data Mining Decision

Size: px
Start display at page:

Download "OLAP. Data Mining Decision"

Transcription

1 Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES

2 A multidisciplinary research... Decision Multicriteria aggregation Uncertain environments Knowledge On-line analytical processing (OLAP) Personalization Reinjection Machine learning Graph mining, Opinion mining Data mining Multidimensional modeling Security Internal ISs Documents Data warehouse DBs Social media and networks COMPLEX DATA Data integration s Web Cloud From data to decision

3 ... with close ties to humanities and social sciences Research team (EA 3083) accredited by the French Ministry of Higher Education and Research Research Domain : Business intelligence and decision ERIC s ID card Home universities : Lyon 1 (Sciences - Health) Lyon 2 (Humanities - Social Sciences) Member of the Institut des Sciences de l Homme Research at ERIC aims at extracting value from huge, complex databases, especially in the fields of humanities and social sciences. La Saône La Croix-Rousse Fourvière Le Rhône Gerland Caluire et Cuire Parc Tête d Or La Part-Dieu LYON Villeurbanne Parc Bron - Parilly Bron ERIC s fields of expertise include issues related to modeling and managing complex data warehouses, mining heterogeneous, massive and little-structured data, and decision-support processes. St-Fons Venissieux

4 Two research teams The DIS team s research mainly focuses on complex data (texts, social networks, Web data...) warehousing and on-line analysis processing (OLAP) in various domains. The team aims at designing new warehouse models that are user-centric, efficient and secure. For this sake, we rest on methods from the fields of databases, data mining, information retrieval and service technologies at all levels of the warehousing process: data integration (ETL), multidimensional modeling and OLAP. The main topics we address are text data warehouses, social OLAP and personalization. Moreover, to devise solutions to big data storage and analysis issues, the team investigates business intelligence in the cloud (cloud analytics), including NoSQL databases and on-demand OLAP. DATA WAREHOUSES CLOUD COMPUTING cryptography XML data warehouses Benchmarks complex documents security recommendation NoSQL security olap D COMPLEx data DATA recommendation BIG data data integration cryptography ETL big data olap security BENCHMARKS NoSQL personalization multidimensional modeling I Social networks cloud big data XML performance data warehouses documents XML computing olap performance S cryptography security SOCIAL networks multidimensional olap modeling Decision-support Information System (DIS) Team manager : Fadila BENTAYEB

5 The DMD team s objective is to design new systems, models and algorithms for complex data mining and decision support. Complex data are heterogeneous, diversely structured, voluminous, imprecise and dynamic. decision - making communities machine WEB learning opinions decision - making COMPLEX data social media graphs data mining statistics D social media texts COMPLEX data texts artificial intelligence multiobjective optimization multicriteria aggregation uncertainty data mining social statistics media association opinionsd rules multicriteria aggregation graphs uncertainty machine learning decision - making M WEB opinions communities clustering multiobjective optimization machine learning artificial intelligence WEB graphs association rules texts clustering statistics multicriteria aggregation data mining To manipulate such data, the team rests on approaches from the fields of statistics and artificial intelligence: information retrieval, machine learning, multicriteria aggregation, reasoning in uncertainty, etc. We aim to output both theoretical results and practical applications. For instance, let us cite ranking comparisons, medical image reconstruction, sentiment analysis and social media mining. Data Mining & Decision (DMD) Team manager : Julien VELCIN

6 A proven expertise Consulting Industrial valorization, Technological transfer R&D internships and theses ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES National and international academic and R&D projects Partenaire du projet ANR Imagiweb

7 National and international collaborations Paris - LIP6, LRI, ETIS Montpellier - LIRMM Grenoble - LIG Rennes - IRISA Clermont-Ferrand - LIMOS, IRSTEA Toulouse- IRIT, IMT University of Quebec University of Oklahoma University of Tunis University of Aalborg National University in Economy of Kharkov University of Tondji University Hassan 1er Settat University of Montevideo NICTA Sydney University of Fianarantsoa

8 ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES ERIC Lab Director : Jérôme DARMONT Vice-Director : Stéphane BONNEVAY Contact:Université Lyon 2-5 avenue Pierre Mendès-France Bron Cedex - FRANCE Phone: Fax :

Data Science and Decision Support at ERIC

Data Science and Decision Support at ERIC Data Science and Decision Support at ERIC Fadila Bentayeb, Julien Velcin, Stephane Bonnevay and Jerome Darmont Universite de Lyon (Laboratoire ERIC) Universite Lumiere Lyon 2 5 avenue Pierre Mendes-France

More information

Efficient Integration of Data Mining Techniques in Database Management Systems

Efficient Integration of Data Mining Techniques in Database Management Systems Efficient Integration of Data Mining Techniques in Database Management Systems Fadila Bentayeb Jérôme Darmont Cédric Udréa ERIC, University of Lyon 2 5 avenue Pierre Mendès-France 69676 Bron Cedex France

More information

A Design and implementation of a data warehouse for research administration universities

A Design and implementation of a data warehouse for research administration universities A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon

More information

OLAP Visualization Operator for Complex Data

OLAP Visualization Operator for Complex Data OLAP Visualization Operator for Complex Data Sabine Loudcher and Omar Boussaid ERIC laboratory, University of Lyon (University Lyon 2) 5 avenue Pierre Mendes-France, 69676 Bron Cedex, France Tel.: +33-4-78772320,

More information

Whitepaper. Business Intelligence Tool Evaluation using Analytic Hierarchy Process (AHP) Published on: March 2010 Author: Karthikeyan Sankaran

Whitepaper. Business Intelligence Tool Evaluation using Analytic Hierarchy Process (AHP) Published on: March 2010 Author: Karthikeyan Sankaran Published on: March 2010 Author: Karthikeyan Sankaran Hexaware Technologies. All rights reserved. Table of Contents 1. Introduction 2. Traditional Approach to Tool Evaluation 3. Business Fitment Author

More information

Warehousing Web Data

Warehousing Web Data Warehousing Web Data Jérôme Darmont, Omar Boussaïd, Fadila Bentayeb To cite this version: Jérôme Darmont, Omar Boussaïd, Fadila Bentayeb. Warehousing Web Data. Sep 2002, Bandung, Indonesia. Team Asia,

More information

Web and Big Data at LIG. Marie-Christine Rousset (Pr UJF, déléguée scientifique du LIG)

Web and Big Data at LIG. Marie-Christine Rousset (Pr UJF, déléguée scientifique du LIG) Web and Big Data at LIG Marie-Christine Rousset (Pr UJF, déléguée scientifique du LIG) Data and Knowledge Processing at Large Scale Officers: Massih-Reza Amini - Jean-Pierre Chevallet Teams: AMA EXMO GETALP

More information

Specialized Masters in business intelligence Jean-François Fiorina Groupe ESC Grenoble

Specialized Masters in business intelligence Jean-François Fiorina Groupe ESC Grenoble Specialized Masters in business intelligence Jean-François Fiorina Groupe ESC Grenoble 1 «introduction» According to an IDC France study the French market for the business intelligence companies grew by

More information

M.Tech. Software Systems

M.Tech. Software Systems M.Tech. Software Systems Input Requirements Employed professionals holding an Integrated First Degree of BITS or its equivalent in relevant disciplines, with minimum one year work experience in relevant

More information

Conceptual Workflow for Complex Data Integration using AXML

Conceptual Workflow for Complex Data Integration using AXML Conceptual Workflow for Complex Data Integration using AXML Rashed Salem, Omar Boussaid, Jérôme Darmont To cite this version: Rashed Salem, Omar Boussaid, Jérôme Darmont. Conceptual Workflow for Complex

More information

Data Warehouse Architecture Overview

Data Warehouse Architecture Overview Data Warehousing 01 Data Warehouse Architecture Overview DW 2014/2015 Notice! Author " João Moura Pires (jmp@di.fct.unl.pt)! This material can be freely used for personal or academic purposes without any

More information

Conceptual Workflow for Complex Data Integration using AXML

Conceptual Workflow for Complex Data Integration using AXML Conceptual Workflow for Complex Data Integration using AXML Rashed Salem, Omar Boussaïd and Jérôme Darmont Université de Lyon (ERIC Lyon 2) 5 av. P. Mendès-France, 69676 Bron Cedex, France Email: firstname.lastname@univ-lyon2.fr

More information

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems DATA WAREHOUSING RESEARCH TRENDS Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Data source heterogeneity and incongruence Filtering out uncorrelated data Strongly unstructured

More information

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing

More information

Recommended Piscine Lyon Show hotels

Recommended Piscine Lyon Show hotels Recommended Piscine Lyon Show hotels 1. Historical district Centre ville Hotels Public transportation: Subway/Underground. 2. Part Dieu business district central - Public transportation: Subway/Underground.

More information

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

More information

Warehousing complex data from the web. O. Boussaïd*, J. Darmont*, F. Bentayeb and S. Loudcher

Warehousing complex data from the web. O. Boussaïd*, J. Darmont*, F. Bentayeb and S. Loudcher 408 Int. J. Web Engineering and Technology, Vol. 4, No. 4, 2008 Warehousing complex data from the web O. Boussaïd, J. Darmont, F. Bentayeb and S. Loudcher ERIC University of Lyon 2 5 Avenue Pierre Mendès-France

More information

A COMPLEX DATA WAREHOUSE FOR PERSONALIZED, ANTICIPATIVE MEDICINE. Phone: +33 478 774 403, Fax: +33 478 772 378, E-mail: jerome.darmont@univ-lyon2.

A COMPLEX DATA WAREHOUSE FOR PERSONALIZED, ANTICIPATIVE MEDICINE. Phone: +33 478 774 403, Fax: +33 478 772 378, E-mail: jerome.darmont@univ-lyon2. A COMPLEX DATA WAREHOUSE FOR PERSONALIZED, ANTICIPATIVE MEDICINE Jérôme Darmont and Emerson Olivier ERIC, University of Lyon 2 5 avenue Pierre Mendès-France 69676 Bron Cedex, FRANCE Phone: +33 478 774

More information

Study and Analysis of Data Mining Concepts

Study and Analysis of Data Mining Concepts Study and Analysis of Data Mining Concepts M.Parvathi Head/Department of Computer Applications Senthamarai college of Arts and Science,Madurai,TamilNadu,India/ Dr. S.Thabasu Kannan Principal Pannai College

More information

The University of Jordan

The University of Jordan The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S

More information

European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project

European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project European Archival Records and Knowledge Preservation Database Archiving in the E-ARK Project Janet Delve, University of Portsmouth Kuldar Aas, National Archives of Estonia Rainer Schmidt, Austrian Institute

More information

Avigdor Gal Technion Israel Institute of Technology

Avigdor Gal Technion Israel Institute of Technology Avigdor Gal Technion Israel Institute of Technology Tutorial Big data integration Applications of big data integration Current challenges and future research directions Big data is a game changer From

More information

Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data

Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are

More information

A Proposed Quality Assurance Intelligent Model for Higher Education Institutions in Saudi Arabia

A Proposed Quality Assurance Intelligent Model for Higher Education Institutions in Saudi Arabia A Proposed Quality Assurance Intelligent Model for Higher Education Institutions in Saudi Arabia Abdelmonim M. Artoli, Hassan I. Mathkour, and Alaaeldin M. Hafez College of Computer and Information Systems,

More information

M. Lamine BA Post-doc fellow

M. Lamine BA Post-doc fellow M. Lamine BA Post-doc fellow 212 rue de Tolbiac 75013 Paris, France H (+33) 6-66-80-75-60 B mouhamadou.ba@telecom-paristech.fr Í http://perso.telecom-paristech.fr/ ba Personal data January 4, 1984 Dakar,

More information

Search and Data Mining: Techniques. Introduction Anna Yarygina Boris Novikov

Search and Data Mining: Techniques. Introduction Anna Yarygina Boris Novikov Search and Data Mining: Techniques Introduction Anna Yarygina Boris Novikov Data Analytics: Conference Sections Fundamentals for data analytics Mechanisms and features Big Data Huge data Target analytics

More information

DWEB: A Data Warehouse Engineering Benchmark

DWEB: A Data Warehouse Engineering Benchmark DWEB: A Data Warehouse Engineering Benchmark Jérôme Darmont, Fadila Bentayeb, and Omar Boussaïd ERIC, University of Lyon 2, 5 av. Pierre Mendès-France, 69676 Bron Cedex, France {jdarmont, boussaid, bentayeb}@eric.univ-lyon2.fr

More information

Turkish Journal of Engineering, Science and Technology

Turkish Journal of Engineering, Science and Technology Turkish Journal of Engineering, Science and Technology 03 (2014) 106-110 Turkish Journal of Engineering, Science and Technology journal homepage: www.tujest.com Integrating Data Warehouse with OLAP Server

More information

Elixir Business Analytics Platform and Data API Server for Harnessing Data for Value Creation CFC Presented by:

Elixir Business Analytics Platform and Data API Server for Harnessing Data for Value Creation CFC Presented by: Elixir Business Analytics Platform and Data API Server for Harnessing Data for Value Creation CFC Presented by: Lau Shih Hor Chief Executive Officer Elixir Technology About Elixir Technology Company Founded

More information

Research Activity Report 2004 2007

Research Activity Report 2004 2007 Research Activity Report 2004 2007 Laboratoire ERIC Université Lumière Lyon 2 5, avenue Pierre Mendès-France Bât L. 69600 Bron France Tel. +33 478 772 376 Fax. +33 478 772 375 Web. http://eric.univ-lyon2.fr

More information

TURN YOUR DATA INTO KNOWLEDGE

TURN YOUR DATA INTO KNOWLEDGE TURN YOUR DATA INTO KNOWLEDGE 100% open source Business Intelligence and Big Data Analytics www.spagobi.org @spagobi Copyright 2016 Engineering Group, SpagoBI Labs. All rights reserved. Why choose SpagoBI

More information

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE SECOND EDITION BUSINESS INTELLIGENCE A MANAGERIAL APPROACH INTERNATIONAL EDITION Efraim Turban University of Hawaii Ramesh Sharda Oklahoma State University Dursun Deleii Oklahoma State University David

More information

[callout: no organization can afford to deny itself the power of business intelligence ]

[callout: no organization can afford to deny itself the power of business intelligence ] Publication: Telephony Author: Douglas Hackney Headline: Applied Business Intelligence [callout: no organization can afford to deny itself the power of business intelligence ] [begin copy] 1 Business Intelligence

More information

Managing a Fragmented XML Data Cube with Oracle and Timesten

Managing a Fragmented XML Data Cube with Oracle and Timesten ACM Fifteenth International Workshop On Data Warehousing and OLAP (DOLAP 2012) Maui, Hawaii, USA November 2nd, 2012 Managing a Fragmented XML Data Cube with Oracle and Timesten Doulkifli BOUKRAA, ESI,

More information

Business Intelligence services

Business Intelligence services Business Intelligence services 2013 Benefit from ScienceSoft BI expertise By offering analytic tool development & support, on-demand reporting and comprehensive data analysis, ScienceSoft helps its Customers

More information

An Overview of Knowledge Discovery Database and Data mining Techniques

An Overview of Knowledge Discovery Database and Data mining Techniques An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,

More information

SPATIAL DATA CLASSIFICATION AND DATA MINING

SPATIAL DATA CLASSIFICATION AND DATA MINING , pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal

More information

Chapter 5. Warehousing, Data Acquisition, Data. Visualization

Chapter 5. Warehousing, Data Acquisition, Data. Visualization Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives

More information

Oracle9i Data Warehouse Review. Robert F. Edwards Dulcian, Inc.

Oracle9i Data Warehouse Review. Robert F. Edwards Dulcian, Inc. Oracle9i Data Warehouse Review Robert F. Edwards Dulcian, Inc. Agenda Oracle9i Server OLAP Server Analytical SQL Data Mining ETL Warehouse Builder 3i Oracle 9i Server Overview 9i Server = Data Warehouse

More information

PRIME DIMENSIONS. Revealing insights. Shaping the future.

PRIME DIMENSIONS. Revealing insights. Shaping the future. PRIME DIMENSIONS Revealing insights. Shaping the future. Service Offering Prime Dimensions offers expertise in the processes, tools, and techniques associated with: Data Management Business Intelligence

More information

Programme Specification Postgraduate Programmes

Programme Specification Postgraduate Programmes Programme Specification Postgraduate Programmes Awarding Body/Institution Teaching Institution University of London Goldsmiths, University of London Name of Final Award and Programme Title MSc Data Science

More information

DIMENSION HIERARCHIES UPDATES IN DATA WAREHOUSES A User-driven Approach

DIMENSION HIERARCHIES UPDATES IN DATA WAREHOUSES A User-driven Approach DIMENSION HIERARCHIES UPDATES IN DATA WAREHOUSES A User-driven Approach Cécile Favre, Fadila Bentayeb, Omar Boussaid ERIC Laboratory, University of Lyon, 5 av. Pierre Mendès-France, 69676 Bron Cedex, France

More information

Stochastic Methods for the Analysis of NUMerical COdes

Stochastic Methods for the Analysis of NUMerical COdes Stochastic Methods for the Analysis of NUMerical COdes Research group sponsored by the French National Center for Scientific Research aims at coordinating research efforts in developing tools for design,

More information

LEARNING SOLUTIONS website milner.com/learning email training@milner.com phone 800 875 5042

LEARNING SOLUTIONS website milner.com/learning email training@milner.com phone 800 875 5042 Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300

More information

BIG. Big Data Analysis John Domingue (STI International and The Open University) Big Data Public Private Forum

BIG. Big Data Analysis John Domingue (STI International and The Open University) Big Data Public Private Forum Big Data Analysis John Domingue (STI International and The Open University) Project co-funded by the European Commission within the 7th Framework Program (Grant Agreement No. 257943) 1 The Data landscape

More information

In principle, SAP BW architecture can be divided into three layers:

In principle, SAP BW architecture can be divided into three layers: Unit 1(Day 2): Data Warehousing Against this background, SAP decided to create its own data warehousing Solution that classifies reporting tasks as a self-contained business component. To circumvent the

More information

Business Intelligence

Business Intelligence Business Intelligence Southeastern Actuaries Fall 2012 Meeting Baltimore, MD Paul Ramirez, ASA, MAAA What is Business Intelligence? The ability to process raw data in order to make actionable, strategic

More information

SQL Server 2012 End-to-End Business Intelligence Workshop

SQL Server 2012 End-to-End Business Intelligence Workshop USA Operations 11921 Freedom Drive Two Fountain Square Suite 550 Reston, VA 20190 solidq.com 800.757.6543 Office 206.203.6112 Fax info@solidq.com SQL Server 2012 End-to-End Business Intelligence Workshop

More information

Data Warehouse: Introduction

Data Warehouse: Introduction Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,

More information

Foundations of Business Intelligence: Databases and Information Management

Foundations of Business Intelligence: Databases and Information Management Foundations of Business Intelligence: Databases and Information Management Content Problems of managing data resources in a traditional file environment Capabilities and value of a database management

More information

OLAP on Complex Data : Visualization Operator Based on Correspondence Analysis

OLAP on Complex Data : Visualization Operator Based on Correspondence Analysis OLAP on Complex Data : Visualization Operator Based on Correspondence Analysis Sabine Loudcher and Omar Boussaid ERIC laboratory, University of Lyon (University Lyon 2) 5 avenue Pierre Mendes-France, 69676

More information

Web Data Mining: A Case Study. Abstract. Introduction

Web Data Mining: A Case Study. Abstract. Introduction Web Data Mining: A Case Study Samia Jones Galveston College, Galveston, TX 77550 Omprakash K. Gupta Prairie View A&M, Prairie View, TX 77446 okgupta@pvamu.edu Abstract With an enormous amount of data stored

More information

The SYTRAL Presentation and agenda 2002-2008. SYTRAL. SYNDICAT MIXTE DES TRANSPORTS POUR LE RHONE ET l AGGLOMERATION LYONNAISE

The SYTRAL Presentation and agenda 2002-2008. SYTRAL. SYNDICAT MIXTE DES TRANSPORTS POUR LE RHONE ET l AGGLOMERATION LYONNAISE The SYTRAL Presentation and agenda 2002-2008 SYTRAL. SYNDICAT MIXTE DES TRANSPORTS POUR LE RHONE ET l AGGLOMERATION LYONNAISE Rhône-Alpes region and Rhône county Rhône county Rhône-Alpes region Field of

More information

The Database Systems and Information Management Group at Technische Universität Berlin

The Database Systems and Information Management Group at Technische Universität Berlin Group at Technische Universität Berlin 1 Introduction Group, in German known by the acronym DIMA, is part of the Department of Software Engineering and Theoretical Computer Science at the TU Berlin. It

More information

A National Data Warehouse Project for French Universities

A National Data Warehouse Project for French Universities A National Data Warehouse Project for French Universities Jean-François Desnos Université de Grenoble and Agence de Modernisation des Universités, Paris, France 1 Introduction. The French national Agence

More information

DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.

DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM. DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,

More information

DSS based on Data Warehouse

DSS based on Data Warehouse DSS based on Data Warehouse C_13 / 6.01.2015 Decision support system is a complex system engineering. At the same time, research DW composition, DW structure and DSS Architecture based on DW, puts forward

More information

Client Overview. Engagement Situation. Key Requirements

Client Overview. Engagement Situation. Key Requirements Client Overview Our client is one of the leading providers of business intelligence systems for customers especially in BFSI space that needs intensive data analysis of huge amounts of data for their decision

More information

CINECA Innovative Open Source Technologies for a CRIS: SURplus ~ www.cineca.it

CINECA Innovative Open Source Technologies for a CRIS: SURplus ~ www.cineca.it CINECA Innovative Open Source Technologies for a CRIS: SURplus ~ www.cineca.it Topics CINECA: a brief overview Solutions for Higher Education & Research Institutions Three innovative open-source technologies

More information

Chapter 6. Foundations of Business Intelligence: Databases and Information Management

Chapter 6. Foundations of Business Intelligence: Databases and Information Management Chapter 6 Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:

More information

This Symposium brought to you by www.ttcus.com

This Symposium brought to you by www.ttcus.com This Symposium brought to you by www.ttcus.com Linkedin/Group: Technology Training Corporation @Techtrain Technology Training Corporation www.ttcus.com Big Data Analytics as a Service (BDAaaS) Big Data

More information

Search and Data Mining Techniques. OLAP Anna Yarygina Boris Novikov

Search and Data Mining Techniques. OLAP Anna Yarygina Boris Novikov Search and Data Mining Techniques OLAP Anna Yarygina Boris Novikov The Database: Shared Data Store? A dream from database textbooks: Sharing data between applications This NEVER happened. Applications

More information

Reference Architecture, Requirements, Gaps, Roles

Reference Architecture, Requirements, Gaps, Roles Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture

More information

Big and Smart Data for efficient decisions: How to share with decision makers the practices of Big Data Analytics?

Big and Smart Data for efficient decisions: How to share with decision makers the practices of Big Data Analytics? Big and Smart Data for efficient decisions: How to share with decision makers the practices of Big Data Analytics? Ali FOULADKAR (ali.fouladkar@upmf-grenoble.fr) PhD candidate, Grenoble University (UPMF),

More information

Third School on Belief Functions and Their Applications. Final report

Third School on Belief Functions and Their Applications. Final report BFAS School 05 Third School on Belief Functions and Their Applications Final report The 3rd school on belief functions and their applications was held at Stella Plage, a French seaside town located in

More information

Master of Science in Health Information Technology Degree Curriculum

Master of Science in Health Information Technology Degree Curriculum Master of Science in Health Information Technology Degree Curriculum Core courses: 8 courses Total Credit from Core Courses = 24 Core Courses Course Name HRS Pre-Req Choose MIS 525 or CIS 564: 1 MIS 525

More information

EIT ICT Labs MASTER SCHOOL DSS Programme Specialisations

EIT ICT Labs MASTER SCHOOL DSS Programme Specialisations EIT ICT Labs MASTER SCHOOL DSS Programme Specialisations DSS EIT ICT Labs Master Programme Distributed System and Services (Cloud Computing) The programme in Distributed Systems and Services focuses on

More information

Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University

Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products

More information

Bachelor of Science in Business Administration with Specialization in Business Analytics

Bachelor of Science in Business Administration with Specialization in Business Analytics November 2, 2013 Bachelor of Science in Business Administration with Specialization in Business Analytics Trogo, R 1., Pelayo, S. 2, Sabido, D. 1, Loma, E 3., De La Cuesta, J. 3, Torralba, O. 4 1 IBM Philippines

More information

OLAP, Knowledge Discovery from Database, Social Security Fund, Oracle Warehouse Builder, Oracle Discoverer.

OLAP, Knowledge Discovery from Database, Social Security Fund, Oracle Warehouse Builder, Oracle Discoverer. ABSTRACT Mohamed Salah GOUIDER 1, Amine FARHAT 2 BESTMOD Laboratory Institut Supérieur de Gestion 41, rue de la liberté, cite Bouchoucha Bardo, 2000, Tunis, TUNISIA ms.gouider@isg.rnu.tn 1, farhat_amine@yahoo.fr

More information

A Professional Big Data Master s Program to train Computational Specialists

A Professional Big Data Master s Program to train Computational Specialists A Professional Big Data Master s Program to train Computational Specialists Anoop Sarkar, Fred Popowich, Alexandra Fedorova! School of Computing Science! Education for Employable Graduates: Critical Questions

More information

Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer

Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer Alejandro Vaisman Esteban Zimanyi Data Warehouse Systems Design and Implementation ^ Springer Contents Part I Fundamental Concepts 1 Introduction 3 1.1 A Historical Overview of Data Warehousing 4 1.2 Spatial

More information

Towards a galaxy.prabi.fr

Towards a galaxy.prabi.fr Towards a galaxy.prabi.fr IFB- galaxy Day 04/12/2013 Navra5l V., PhD, UCBL navra5l@prabi.fr www.prabi.fr One among the six IFB regional nodes Region: Rhône- Alpes Director: Guy Perrière 11 Research Team,

More information

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014 5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for

More information

Knowledge Discovery and Data. Data Mining vs. OLAP

Knowledge Discovery and Data. Data Mining vs. OLAP Knowledge Discovery and Data Mining Data Mining vs. OLAP Sajjad Haider Spring 2010 1 Acknowledgement All the material in this presentation is taken from the Internet. A simple search of Data Mining vs.

More information

Deriving Business Intelligence from Unstructured Data

Deriving Business Intelligence from Unstructured Data International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 9 (2013), pp. 971-976 International Research Publications House http://www. irphouse.com /ijict.htm Deriving

More information

fédération de données et de ConnaissancEs Distribuées en Imagerie BiomédicaLE Data fusion, semantic alignment, distributed queries

fédération de données et de ConnaissancEs Distribuées en Imagerie BiomédicaLE Data fusion, semantic alignment, distributed queries fédération de données et de ConnaissancEs Distribuées en Imagerie BiomédicaLE Data fusion, semantic alignment, distributed queries Johan Montagnat CNRS, I3S lab, Modalis team on behalf of the CrEDIBLE

More information

PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY

PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY QÜESTIIÓ, vol. 25, 3, p. 509-520, 2001 PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY GEORGES HÉBRAIL We present in this paper the main applications of data mining techniques at Electricité de France,

More information

Distance Learning and Examining Systems

Distance Learning and Examining Systems Lodz University of Technology Distance Learning and Examining Systems - Theory and Applications edited by Sławomir Wiak Konrad Szumigaj HUMAN CAPITAL - THE BEST INVESTMENT The project is part-financed

More information

Chapter 6 8/12/2015. Foundations of Business Intelligence: Databases and Information Management. Problem:

Chapter 6 8/12/2015. Foundations of Business Intelligence: Databases and Information Management. Problem: Foundations of Business Intelligence: Databases and Information Management VIDEO CASES Chapter 6 Case 1a: City of Dubuque Uses Cloud Computing and Sensors to Build a Smarter, Sustainable City Case 1b:

More information

Course Design Document. IS417: Data Warehousing and Business Analytics

Course Design Document. IS417: Data Warehousing and Business Analytics Course Design Document IS417: Data Warehousing and Business Analytics Version 2.1 20 June 2009 IS417 Data Warehousing and Business Analytics Page 1 Table of Contents 1. Versions History... 3 2. Overview

More information

Automating Big Data Management, by DISIT Lab Distributed [Systems and Internet, Data Intelligence] Technologies Lab Prof. Ph.D. Eng.

Automating Big Data Management, by DISIT Lab Distributed [Systems and Internet, Data Intelligence] Technologies Lab Prof. Ph.D. Eng. Automating Big Data Management, by DISIT Lab Distributed [Systems and Internet, Data Intelligence] Technologies Lab Prof. Ph.D. Eng. Paolo Nesi Dipartimento di Ingegneria dell Informazione, DINFO Università

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,

More information

IT services for analyses of various data samples

IT services for analyses of various data samples IT services for analyses of various data samples Ján Paralič, František Babič, Martin Sarnovský, Peter Butka, Cecília Havrilová, Miroslava Muchová, Michal Puheim, Martin Mikula, Gabriel Tutoky Technical

More information

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1 Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics

More information

Decision Support and Business Intelligence Systems. Chapter 1: Decision Support Systems and Business Intelligence

Decision Support and Business Intelligence Systems. Chapter 1: Decision Support Systems and Business Intelligence Decision Support and Business Intelligence Systems Chapter 1: Decision Support Systems and Business Intelligence Types of DSS Two major types: Model-oriented DSS Data-oriented DSS Evolution of DSS into

More information

INTERNATIONAL RELATIONS PRESENTATION

INTERNATIONAL RELATIONS PRESENTATION INTERNATIONAL RELATIONS PRESENTATION Clermont Ferrand A central position in Europe and in France! 400 000 inhabitants (with 37 000 students) Clermont Ferrand Ranked 8 among the 40 most important French

More information

SQL Server 2012 Business Intelligence Boot Camp

SQL Server 2012 Business Intelligence Boot Camp SQL Server 2012 Business Intelligence Boot Camp Length: 5 Days Technology: Microsoft SQL Server 2012 Delivery Method: Instructor-led (classroom) About this Course Data warehousing is a solution organizations

More information

Master in Robotics & Transport

Master in Robotics & Transport Master in Robotics & Transport MRT Objectives The international Master MRT is designed to train international students interested in developing their professional knowledge and skills in engineering sciences,

More information

Improving Decision Making and Managing Knowledge

Improving Decision Making and Managing Knowledge Improving Decision Making and Managing Knowledge Decision Making and Information Systems Information Requirements of Key Decision-Making Groups in a Firm Senior managers, middle managers, operational managers,

More information

GIS - AllianSTIC. Director : Prof. Dan Istrate (dan.istrate@esigetel.fr) Katarzyna Węgrzyn-Wolska, AllianSTIC. Page 1

GIS - AllianSTIC. Director : Prof. Dan Istrate (dan.istrate@esigetel.fr) Katarzyna Węgrzyn-Wolska, AllianSTIC. Page 1 GIS - AllianSTIC Director : Prof. Dan Istrate (dan.istrate@esigetel.fr) Page 1 AllianSTIC LRIE LRIT AllianSTIC Joint research lab. with 14 researchers (2 HDR), 10 PhD students Page 2 Research topics E-health

More information

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the

More information

Chapter ML:XI. XI. Cluster Analysis

Chapter ML:XI. XI. Cluster Analysis Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster

More information

Analyzing the Customer Experience. With Q-Flow and SSAS

Analyzing the Customer Experience. With Q-Flow and SSAS Q.nomy Analyzing the Customer Experience With Q-Flow and SSAS Using Microsoft SQL Server Analysis Service to analyze Q-Flow data, and to gain an insight of customer experience. July, 2012 Analyzing the

More information

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

More information

GeoKettle: A powerful open source spatial ETL tool

GeoKettle: A powerful open source spatial ETL tool GeoKettle: A powerful open source spatial ETL tool FOSS4G 2010 Dr. Thierry Badard, CTO Spatialytics inc. Quebec, Canada tbadard@spatialytics.com Barcelona, Spain Sept 9th, 2010 What is GeoKettle? It is

More information

Foundations of Business Intelligence: Databases and Information Management

Foundations of Business Intelligence: Databases and Information Management Foundations of Business Intelligence: Databases and Information Management Wienand Omta Fabiano Dalpiaz 1 drs. ing. Wienand Omta Learning Objectives Describe how the problems of managing data resources

More information

Text Analytics and Big Data

Text Analytics and Big Data Text Analytics and Big Data META-FORUM 2012 Brussels, 20 th June 2012 Atos Research & Innovation 1 Table of Contents 1. Atos and why we are here 2. Examples 3. BIG: Big Data Public Private Forum 2 2 Atos:

More information

Tracking System for GPS Devices and Mining of Spatial Data

Tracking System for GPS Devices and Mining of Spatial Data Tracking System for GPS Devices and Mining of Spatial Data AIDA ALISPAHIC, DZENANA DONKO Department for Computer Science and Informatics Faculty of Electrical Engineering, University of Sarajevo Zmaja

More information