Managing a Fragmented XML Data Cube with Oracle and Timesten
|
|
|
- Myra Richard
- 10 years ago
- Views:
Transcription
1 ACM Fifteenth International Workshop On Data Warehousing and OLAP (DOLAP 2012) Maui, Hawaii, USA November 2nd, 2012 Managing a Fragmented XML Data Cube with Oracle and Timesten Doulkifli BOUKRAA, ESI, Algiers, Algeria Omar BOUSSAID, Fadila BENTAYEB, ERIC Lab, Univ. Lyon 2 France {omar.boussaid, fadila.bentayeb}@univ-lyon2.fr Djamel Eddine ZEGOUR, ESI, Algiers, Algeria 1
2 Outline Context and Motivation Timesten in-memory Database XML Data Cube XML Cube Management Configurations Implementation and Testing Related Work Conclusion 2
3 Context and motivation Performance optimization of data warehouses (DW) Focus on a special type of DWs: XML warehouses Warehousing and analyzing complex data Multidimensional model: conceptual, logical, physical level Performance issues Vertical fragmentation approach proposed Crossing two techniques Vertical Fragmentation Caching 3
4 Objectives and Contribution Objective: Analyze the impact of vertical fragmentation on caching and vice versa A better cache management (data organization-aware) Leverage the vertical fragmentation Contributions A set of configurations to manage a fragmented XML cube A comparision between the configurations 4
5 TimesTen In-Memory database Oracle s In-memory database solution Different uses of TimesTen As a database cache for a disk resident database Read-only transactions Read-Write transactions As a full-featured relational database Persistence Recovery 5
6 XML cubemodel General Cube Schema 6
7 XML Cube Model Instantiation: Auction cube 7
8 XML Cube Model Unfragmented XML cube Basic configuration Fact and each dimension member = one XML document Formally: UXCube ={D i, i=1, } set of XML documents Di ={P i j, i=1,, j=1, }set of XML properties accessed by XPath 8
9 XML Cube Model Before fragmentation After fragmentation 9
10 XML Cube Model 10
11 XML Cube Model Fragmented XML cube: example 11
12 XML Cube Management Configurations 12
13 XML Cube Management Configurations Instantiation: Auction cube configurations 13
14 Implementation and Testing Disk Resident Database: Oracle 11g Rel. 2 Database cache and in-memory database: Oracle TimesTen Data Set: XML Cube of auctions: 6 XML document types Fragmented Cube: 28 XML fragment types Query load: 100 analytical queries targeting different aggregation levels of UXCube Queries rewritten against FXCube 14
15 Implementation and Testing First measure: average query response times Unfragmented Vs Fragmented XML Cube 15
16 Implementation and Testing First measure: average query response times Unfragmented Vs Fragmented XML Cube 16
17 Implementation and Testing First measure: average query response times Unfragmented Vs Fragmented XML Cube 17
18 Response time Implementation and Testing First measure: average query response times Disk-resident Vs Cached Vs in-memory XML Cube 18
19 Response time Implementation and Testing First measure: average query response times Disk-resident Vs Cached Vs in-memory XML Cube 19
20 Implementation and Testing Second measure: percentage of efficient queries Unfragmented Vs Fragmented XML Cube Disk resident configurations 20
21 Implementation and Testing Second measure: percentage of efficient queries Unfragmented Vs Fragmented XML Cube Disk resident configurations 21
22 Implementation and Testing Second measure: percentage of efficient queries Unfragmented Vs Fragmented XML Cube Disk resident configurations 22
23 Implementation and Testing Second measure: percentage of efficient queries Disk-resident Vs Cached Vs in-memory XML Cube DU=MU=CU F 23
24 Implementation and Testing Second measure: percentage of efficient queries Disk-resident Vs Cached Vs in-memory XML Cube DU=MU=CU F 24
25 Related Work (1/2) Category of work Database & Web Data Warehouses XML Examples Altinel et al (2003): Static and dynamic caching Manegold et al (2000): Optimizing main memory access Dar et al. (1996): Semantic caching Huang and Hsu (2008): Web document caching Andrade et al. (2007): Optimizing multiple data analysis queries Deshpande et al. (1998) Cache small regions of a multidimensional space Lehner et al. (2000): Dynamic caching for multidimensional data Scheuermann et al. (1996): Caching small sets of query results Muto & Kitsuregawa (1998) : Main memory for compressed cube management Ross & Zaman (2000): Cache data cube subset materialization Yang et al. (2003): Cache frequent XML patterns Mandhani & Suciu (2005): Semantic cache of materialized Xpath queries Obermeier and Bottcher (2008): XML splitting over mobile devices 25
26 Related Work (2/2) Discussion Our work meets the same motivation of Obermeier and Bottcher (2008) but applied to XML cubes Combination of Vertical fragmentation, main memory data management and caching not tackled before 26
27 Conclusion and Perspectives Conclusion Crossed two optimization techniques of data warehouses: caching and vertical fragmentation Benefits of fragmentation when the cube is managed in main memory In-memory enhances both fragmented and unfragmented cube Main memory increases the % of efficient queries 27
28 Conclusion and Perspectives Pespectives Implement our proposals on an ad hoc network Combine horizontal and vertical fragmentation with cache and in-memory management 28
Alejandro Vaisman Esteban Zimanyi. Data. Warehouse. Systems. Design and Implementation. ^ Springer
Alejandro Vaisman Esteban Zimanyi Data Warehouse Systems Design and Implementation ^ Springer Contents Part I Fundamental Concepts 1 Introduction 3 1.1 A Historical Overview of Data Warehousing 4 1.2 Spatial
Using the column oriented NoSQL model for implementing big data warehouses
Int'l Conf. Par. and Dist. Proc. Tech. and Appl. PDPTA'15 469 Using the column oriented NoSQL model for implementing big data warehouses Khaled. Dehdouh 1, Fadila. Bentayeb 1, Omar. Boussaid 1, and Nadia
Data Warehousing Systems: Foundations and Architectures
Data Warehousing Systems: Foundations and Architectures Il-Yeol Song Drexel University, http://www.ischool.drexel.edu/faculty/song/ SYNONYMS None DEFINITION A data warehouse (DW) is an integrated repository
LEARNING SOLUTIONS website milner.com/learning email [email protected] phone 800 875 5042
Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
DIMENSION HIERARCHIES UPDATES IN DATA WAREHOUSES A User-driven Approach
DIMENSION HIERARCHIES UPDATES IN DATA WAREHOUSES A User-driven Approach Cécile Favre, Fadila Bentayeb, Omar Boussaid ERIC Laboratory, University of Lyon, 5 av. Pierre Mendès-France, 69676 Bron Cedex, France
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Description: This five-day instructor-led course teaches students how to design and implement a BI infrastructure. The
Building Views and Charts in Requests Introduction to Answers views and charts Creating and editing charts Performing common view tasks
Oracle Business Intelligence Enterprise Edition (OBIEE) Training: Working with Oracle Business Intelligence Answers Introduction to Oracle BI Answers Working with requests in Oracle BI Answers Using advanced
DWEB: A Data Warehouse Engineering Benchmark
DWEB: A Data Warehouse Engineering Benchmark Jérôme Darmont, Fadila Bentayeb, and Omar Boussaïd ERIC, University of Lyon 2, 5 av. Pierre Mendès-France, 69676 Bron Cedex, France {jdarmont, boussaid, bentayeb}@eric.univ-lyon2.fr
Data Warehouses & OLAP
Riadh Ben Messaoud 1. The Big Picture 2. Data Warehouse Philosophy 3. Data Warehouse Concepts 4. Warehousing Applications 5. Warehouse Schema Design 6. Business Intelligence Reporting 7. On-Line Analytical
OLAP and OLTP. AMIT KUMAR BINDAL Associate Professor M M U MULLANA
OLAP and OLTP AMIT KUMAR BINDAL Associate Professor Databases Databases are developed on the IDEA that DATA is one of the critical materials of the Information Age Information, which is created by data,
DATA CUBES E0 261. Jayant Haritsa Computer Science and Automation Indian Institute of Science. JAN 2014 Slide 1 DATA CUBES
E0 261 Jayant Haritsa Computer Science and Automation Indian Institute of Science JAN 2014 Slide 1 Introduction Increasingly, organizations are analyzing historical data to identify useful patterns and
Business Intelligence, Data warehousing Concept and artifacts
Business Intelligence, Data warehousing Concept and artifacts Data Warehousing is the process of constructing and using the data warehouse. The data warehouse is constructed by integrating the data from
OLAP and Data Warehousing! Introduction!
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still
Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services
Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services Length: Delivery Method: 3 Days Instructor-led (classroom) About this Course Elements of this syllabus are subject
Tiber Solutions. Understanding the Current & Future Landscape of BI and Data Storage. Jim Hadley
Tiber Solutions Understanding the Current & Future Landscape of BI and Data Storage Jim Hadley Tiber Solutions Founded in 2005 to provide Business Intelligence / Data Warehousing / Big Data thought leadership
Concepts of Database Management Seventh Edition. Chapter 9 Database Management Approaches
Concepts of Database Management Seventh Edition Chapter 9 Database Management Approaches Objectives Describe distributed database management systems (DDBMSs) Discuss client/server systems Examine the ways
Data W a Ware r house house and and OLAP II Week 6 1
Data Warehouse and OLAP II Week 6 1 Team Homework Assignment #8 Using a data warehousing tool and a data set, play four OLAP operations (Roll up (drill up), Drill down (roll down), Slice and dice, Pivot
BUILDING OLAP TOOLS OVER LARGE DATABASES
BUILDING OLAP TOOLS OVER LARGE DATABASES Rui Oliveira, Jorge Bernardino ISEC Instituto Superior de Engenharia de Coimbra, Polytechnic Institute of Coimbra Quinta da Nora, Rua Pedro Nunes, P-3030-199 Coimbra,
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Appliances and DW Architectures John O Brien President and Executive Architect Zukeran Technologies 1 TDWI 1 Agenda What
CUBE INDEXING IMPLEMENTATION USING INTEGRATION OF SIDERA AND BERKELEY DB
CUBE INDEXING IMPLEMENTATION USING INTEGRATION OF SIDERA AND BERKELEY DB Badal K. Kothari 1, Prof. Ashok R. Patel 2 1 Research Scholar, Mewar University, Chittorgadh, Rajasthan, India 2 Department of Computer
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1
Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics
<Insert Picture Here> Extending Hyperion BI with the Oracle BI Server
Extending Hyperion BI with the Oracle BI Server Mark Ostroff Sr. BI Solutions Consultant Agenda Hyperion BI versus Hyperion BI with OBI Server Benefits of using Hyperion BI with the
Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Course 20467A; 5 Days
Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Designing Business Intelligence Solutions with Microsoft SQL Server 2012
Modelling Architecture for Multimedia Data Warehouse
Modelling Architecture for Warehouse Mital Vora 1, Jelam Vora 2, Dr. N. N. Jani 3 Assistant Professor, Department of Computer Science, T. N. Rao College of I.T., Rajkot, Gujarat, India 1 Assistant Professor,
Data Warehousing and Decision Support. Introduction. Three Complementary Trends. Chapter 23, Part A
Data Warehousing and Decision Support Chapter 23, Part A Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1 Introduction Increasingly, organizations are analyzing current and historical
SAP HANA In-Memory Database Sizing Guideline
SAP HANA In-Memory Database Sizing Guideline Version 1.4 August 2013 2 DISCLAIMER Sizing recommendations apply for certified hardware only. Please contact hardware vendor for suitable hardware configuration.
Whitepaper. Innovations in Business Intelligence Database Technology. www.sisense.com
Whitepaper Innovations in Business Intelligence Database Technology The State of Database Technology in 2015 Database technology has seen rapid developments in the past two decades. Online Analytical Processing
In-Memory Analytics: A comparison between Oracle TimesTen and Oracle Essbase
In-Memory Analytics: A comparison between Oracle TimesTen and Oracle Essbase Agenda Introduction Why In-Memory? Options for In-Memory in Oracle Products - Times Ten - Essbase Comparison - Essbase Vs Times
<Insert Picture Here> Enhancing the Performance and Analytic Content of the Data Warehouse Using Oracle OLAP Option
Enhancing the Performance and Analytic Content of the Data Warehouse Using Oracle OLAP Option The following is intended to outline our general product direction. It is intended for
Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option
Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option Kai Yu, Senior Principal Architect Dell Oracle Solutions Engineering Dell, Inc. Abstract: By adding the In-Memory
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
Implementing Data Models and Reports with Microsoft SQL Server
Course 20466C: Implementing Data Models and Reports with Microsoft SQL Server Course Details Course Outline Module 1: Introduction to Business Intelligence and Data Modeling As a SQL Server database professional,
Data Warehousing Concepts
Data Warehousing Concepts JB Software and Consulting Inc 1333 McDermott Drive, Suite 200 Allen, TX 75013. [[[[[ DATA WAREHOUSING What is a Data Warehouse? Decision Support Systems (DSS), provides an analysis
OLAP Theory-English version
OLAP Theory-English version On-Line Analytical processing (Business Intelligence) [Ing.J.Skorkovský,CSc.] Department of corporate economy Agenda The Market Why OLAP (On-Line-Analytic-Processing Introduction
MS 50511A The Microsoft Business Intelligence 2010 Stack
MS 50511A The Microsoft Business Intelligence 2010 Stack Description: This instructor-led course provides students with the knowledge and skills to develop Microsoft End-to-End business solutions using
"The performance driven Enterprise" Emerging trends in Enterprise BI Platforms
1 Month, Day, Year Venue City "The performance driven Enterprise" Emerging trends in Enterprise BI Platforms Kostiantyn Stupak Oracle BI representative in Ukraine 2 The Race to Gain Insight 2014? 50% 2009
SQL Server Analysis Services Complete Practical & Real-time Training
A Unit of Sequelgate Innovative Technologies Pvt. Ltd. ISO Certified Training Institute Microsoft Certified Partner SQL Server Analysis Services Complete Practical & Real-time Training Mode: Practical,
IMPLEMENTATION OF DATA WAREHOUSE SAP BW IN THE PRODUCTION COMPANY. Maria Kowal, Galina Setlak
174 No:13 Intelligent Information and Engineering Systems IMPLEMENTATION OF DATA WAREHOUSE SAP BW IN THE PRODUCTION COMPANY Maria Kowal, Galina Setlak Abstract: in this paper the implementation of Data
Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2
Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue
When to consider OLAP?
When to consider OLAP? Author: Prakash Kewalramani Organization: Evaltech, Inc. Evaltech Research Group, Data Warehousing Practice. Date: 03/10/08 Email: [email protected] Abstract: Do you need an OLAP
Databases in Organizations
The following is an excerpt from a draft chapter of a new enterprise architecture text book that is currently under development entitled Enterprise Architecture: Principles and Practice by Brian Cameron
An Integrated Analytics & Big Data Infrastructure September 21, 2012 Robert Stackowiak, Vice President Data Systems Architecture Oracle Enterprise
An Integrated Analytics & Big Data Infrastructure September 21, 2012 Robert Stackowiak, Vice President Data Systems Architecture Oracle Enterprise Solutions Group The following is intended to outline our
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
Part 22. Data Warehousing
Part 22 Data Warehousing The Decision Support System (DSS) Tools to assist decision-making Used at all levels in the organization Sometimes focused on a single area Sometimes focused on a single problem
A Model-based Software Architecture for XML Data and Metadata Integration in Data Warehouse Systems
Proceedings of the Postgraduate Annual Research Seminar 2005 68 A Model-based Software Architecture for XML and Metadata Integration in Warehouse Systems Abstract Wan Mohd Haffiz Mohd Nasir, Shamsul Sahibuddin
SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here
PLATFORM Top Ten Questions for Choosing In-Memory Databases Start Here PLATFORM Top Ten Questions for Choosing In-Memory Databases. Are my applications accelerated without manual intervention and tuning?.
The IBM Cognos Platform for Enterprise Business Intelligence
The IBM Cognos Platform for Enterprise Business Intelligence Highlights Optimize performance with in-memory processing and architecture enhancements Maximize the benefits of deploying business analytics
OLAP. Business Intelligence OLAP definition & application Multidimensional data representation
OLAP Business Intelligence OLAP definition & application Multidimensional data representation 1 Business Intelligence Accompanying the growth in data warehousing is an ever-increasing demand by users for
Dimensional Modeling for Data Warehouse
Modeling for Data Warehouse Umashanker Sharma, Anjana Gosain GGS, Indraprastha University, Delhi Abstract Many surveys indicate that a significant percentage of DWs fail to meet business objectives or
Data Warehouse Design
Data Warehouse Design Modern Principles and Methodologies Matteo Golfarelli Stefano Rizzi Translated by Claudio Pagliarani Mc Grauu Hill New York Chicago San Francisco Lisbon London Madrid Mexico City
Oracle Architecture, Concepts & Facilities
COURSE CODE: COURSE TITLE: CURRENCY: AUDIENCE: ORAACF Oracle Architecture, Concepts & Facilities 10g & 11g Database administrators, system administrators and developers PREREQUISITES: At least 1 year of
14. Data Warehousing & Data Mining
14. Data Warehousing & Data Mining Data Warehousing Concepts Decision support is key for companies wanting to turn their organizational data into an information asset Data Warehouse "A subject-oriented,
M2074 - Designing and Implementing OLAP Solutions Using Microsoft SQL Server 2000 5 Day Course
Module 1: Introduction to Data Warehousing and OLAP Introducing Data Warehousing Defining OLAP Solutions Understanding Data Warehouse Design Understanding OLAP Models Applying OLAP Cubes At the end of
Turning your Warehouse Data into Business Intelligence: Reporting Trends and Visibility Michael Armanious; Vice President Sales and Marketing Datex,
Turning your Warehouse Data into Business Intelligence: Reporting Trends and Visibility Michael Armanious; Vice President Sales and Marketing Datex, Inc. Overview Introduction What is Business Intelligence?
SQL Server 2012 End-to-End Business Intelligence Workshop
USA Operations 11921 Freedom Drive Two Fountain Square Suite 550 Reston, VA 20190 solidq.com 800.757.6543 Office 206.203.6112 Fax [email protected] SQL Server 2012 End-to-End Business Intelligence Workshop
Data W a Ware r house house and and OLAP Week 5 1
Data Warehouse and OLAP Week 5 1 Midterm I Friday, March 4 Scope Homework assignments 1 4 Open book Team Homework Assignment #7 Read pp. 121 139, 146 150 of the text book. Do Examples 3.8, 3.10 and Exercise
Oracle Database 11g Comparison Chart
Key Feature Summary Express 10g Standard One Standard Enterprise Maximum 1 CPU 2 Sockets 4 Sockets No Limit RAM 1GB OS Max OS Max OS Max Database Size 4GB No Limit No Limit No Limit Windows Linux Unix
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
SQL Server and MicroStrategy: Functional Overview Including Recommendations for Performance Optimization. MicroStrategy World 2016
SQL Server and MicroStrategy: Functional Overview Including Recommendations for Performance Optimization MicroStrategy World 2016 Technical Integration with Microsoft SQL Server Microsoft SQL Server is
Implementing Data Models and Reports with Microsoft SQL Server 20466C; 5 Days
Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Implementing Data Models and Reports with Microsoft SQL Server 20466C; 5
Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.
Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any
MDM for the Enterprise: Complementing and extending your Active Data Warehousing strategy. Satish Krishnaswamy VP MDM Solutions - Teradata
MDM for the Enterprise: Complementing and extending your Active Data Warehousing strategy Satish Krishnaswamy VP MDM Solutions - Teradata 2 Agenda MDM and its importance Linking to the Active Data Warehousing
Birds of a Feather Session: Best Practices for TimesTen on Exalytics
Birds of a Feather Session: Best Practices for TimesTen on Exalytics Chris Jenkins Senior Director, In-Memory Technology, Oracle Antony Heljula Technical Director, Peak Indicators Ltd. Mark Rittman CTO,
SAS BI Course Content; Introduction to DWH / BI Concepts
SAS BI Course Content; Introduction to DWH / BI Concepts SAS Web Report Studio 4.2 SAS EG 4.2 SAS Information Delivery Portal 4.2 SAS Data Integration Studio 4.2 SAS BI Dashboard 4.2 SAS Management Console
SQL Server 2012 Business Intelligence Boot Camp
SQL Server 2012 Business Intelligence Boot Camp Length: 5 Days Technology: Microsoft SQL Server 2012 Delivery Method: Instructor-led (classroom) About this Course Data warehousing is a solution organizations
Data warehousing with PostgreSQL
Data warehousing with PostgreSQL Gabriele Bartolini http://www.2ndquadrant.it/ European PostgreSQL Day 2009 6 November, ParisTech Telecom, Paris, France Audience
<Insert Picture Here> Oracle Database Directions Fred Louis Principal Sales Consultant Ohio Valley Region
Oracle Database Directions Fred Louis Principal Sales Consultant Ohio Valley Region 1977 Oracle Database 30 Years of Sustained Innovation Database Vault Transparent Data Encryption
Introducing Oracle Exalytics In-Memory Machine
Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle
Curriculum of the research and teaching activities. Matteo Golfarelli
Curriculum of the research and teaching activities Matteo Golfarelli The curriculum is organized in the following sections I Curriculum Vitae... page 1 II Teaching activity... page 2 II.A. University courses...
Big Data, Fast Data, Complex Data. Jans Aasman Franz Inc
Big Data, Fast Data, Complex Data Jans Aasman Franz Inc Private, founded 1984 AI, Semantic Technology, professional services Now in Oakland Franz Inc Who We Are (1 (2 3) (4 5) (6 7) (8 9) (10 11) (12
Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances
INSIGHT Oracle's All- Out Assault on the Big Data Market: Offering Hadoop, R, Cubes, and Scalable IMDB in Familiar Packages Carl W. Olofson IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA
The Microsoft Business Intelligence 2010 Stack Course 50511A; 5 Days, Instructor-led
The Microsoft Business Intelligence 2010 Stack Course 50511A; 5 Days, Instructor-led Course Description This instructor-led course provides students with the knowledge and skills to develop Microsoft End-to-
DATA WAREHOUSE CONCEPTS DATA WAREHOUSE DEFINITIONS
DATA WAREHOUSE CONCEPTS A fundamental concept of a data warehouse is the distinction between data and information. Data is composed of observable and recordable facts that are often found in operational
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Sai Phanindra. Summary. Experience. SQL Server, SQL DBA and MSBI Trainer @ SQL School [email protected]
Sai Phanindra SQL Server, SQL DBA and MSBI Trainer @ SQL School [email protected] Summary Having 8+ Years Working experience on SQL Server 2005, 2008 R2 and SQL Server 2012 Database Management and
Decision Support. Chapter 23. Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1
Decision Support Chapter 23 Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke 1 Introduction Increasingly, organizations are analyzing current and historical data to identify useful
New Approach of Computing Data Cubes in Data Warehousing
International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 14 (2014), pp. 1411-1417 International Research Publications House http://www. irphouse.com New Approach of
Introduction to Oracle Business Intelligence Standard Edition One. Mike Donohue Senior Manager, Product Management Oracle Business Intelligence
Introduction to Oracle Business Intelligence Standard Edition One Mike Donohue Senior Manager, Product Management Oracle Business Intelligence The following is intended to outline our general product direction.
End to End Microsoft BI with SQL 2008 R2 and SharePoint 2010
www.etidaho.com (208) 327-0768 End to End Microsoft BI with SQL 2008 R2 and SharePoint 2010 5 Days About This Course This instructor-led course provides students with the knowledge and skills to develop
Microsoft 20466 - Implementing Data Models and Reports with Microsoft SQL Server
1800 ULEARN (853 276) www.ddls.com.au Microsoft 20466 - Implementing Data Models and Reports with Microsoft SQL Server Length 5 days Price $4070.00 (inc GST) Version C Overview The focus of this five-day
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Subject Description Form
Subject Description Form Subject Code Subject Title COMP417 Data Warehousing and Data Mining Techniques in Business and Commerce Credit Value 3 Level 4 Pre-requisite / Co-requisite/ Exclusion Objectives
Conceptual Workflow for Complex Data Integration using AXML
Conceptual Workflow for Complex Data Integration using AXML Rashed Salem, Omar Boussaïd and Jérôme Darmont Université de Lyon (ERIC Lyon 2) 5 av. P. Mendès-France, 69676 Bron Cedex, France Email: [email protected]
Report Model (SMDL) Alternatives in SQL Server 2012. A Guided Tour of Microsoft Business Intelligence
Report Model (SMDL) Alternatives in SQL Server 2012 A Guided Tour of Microsoft Business Intelligence Technical Article Author: Mark Vaillancourt Published: August 2013 Table of Contents Report Model (SMDL)
Safe Harbor Statement
Safe Harbor Statement "Safe Harbor" Statement: Statements in this presentation relating to Oracle's future plans, expectations, beliefs, intentions and prospects are "forward-looking statements" and are
Oracle Warehouse Builder 10g
Oracle Warehouse Builder 10g Architectural White paper February 2004 Table of contents INTRODUCTION... 3 OVERVIEW... 4 THE DESIGN COMPONENT... 4 THE RUNTIME COMPONENT... 5 THE DESIGN ARCHITECTURE... 6
