Traffic protection in MPLS networks using an off-line flow optimization model

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Traffic protection in MPLS networks using an off-line flow optimization model"

Transcription

1 Traffic protection in MPLS networks using an off-line flow optimization model A.E. Krzesinski and K.E. Müller Department of Computer Science University of Stellenbosch, 76 Stellenbosch, South Africa Phone: Fax: P.G. Taylor Department of Mathematics and Statistics University of Melbourne, Melbourne, Australia Abstract MPLS-based recovery is intended to effect rapid and complete restoration of traffic affected by a fault in an MPLS network. We present a model of protection switching in MPLS networks. A variant of the flow deviation method is used to find and capacitate a set of optimal label switched paths. The traffic is routed over a set of working LSPs. Protection switching is implemented by reserving a set of pre-established recovery LSPs. A simulation model is used to evaluate the MPLS recovery cycle in terms of the time needed to restore the traffic after a unidirectional link failure. The model is applied to evaluate the effectiveness of protection switching in a 2-node network. Keywords Label switched paths, multi-protocol label switching, traffic engineered routes, traffic recovery, protection switching. I. INTRODUCTION The Internet is becoming the ideal platform to support all forms of modern communications including voice, data and multimedia transmissions. However, the standard IP routing protocols were developed on the basis of a connectionless model where routing decisions are based on simple metrics such as delay or hop count which leads to the selection of shortest path routes. Despite its ability to scale to very large networks, this approach provides support for only rudimentary Quality of Service (QoS) capabilities which cannot be used to provide scalable service level agreements for bandwidth intensive applications in modern networks. Multi-protocol label switching (MPLS) [1] extends the IP destination-based routing protocols to provide new and scalable routing capabilities. MPLS routing/switching is achieved by forwarding IP packets along virtual connections called label switched paths (LSPs). LSPs are set up by a label distribution protocol which uses the information contained in layer 3 routing tables. The LSPs form a logical network that is layered on top of the physical network to provide connection oriented processing above the connectionless This work is supported by grants from the Australian Research Council, the South African National Research Foundation, Siemens Telecommunications and Telkom SA Limited. IP network. In a previous paper [2] we developed a method for finding an optimal set of LSPs. We formulated the problem of finding an optimal set of LSPs and optimally allocating bandwidths to these LSPs as a constrained non-linear programming problem (NLP) which minimizes an objective function that affords an appropriate representation of the quality of the network. We adapted the flow deviation method [3], [4], [5] to solve the NLP. In this paper we investigate some aspects of MPLSbased recovery [6] which is intended to effect rapid and complete restoration of traffic affected by a fault in an MPLS network. Two recovery models have been proposed for MPLS networks: IP re-routing which establishes recovery paths on demand, and protection switching which works with pre-established recovery paths. This paper presents a model of protection switching in MPLS networks. A more detailed study of MPLS recovery including analytic and simulation models can be found in [7]. The NLP solver is used to design and capacitate an optimal set of LSPs which defines the working (active, primary) LSPs: the traffic is routed over the working LSPs. We next present a method for finding one or more alternate (recovery, back-up, protection) paths for each working path: the recovery path is used when its working counterpart fails. Global repair is implemented by reserving a set of LSPs for use as pre-established recovery paths. The rest of the paper is organized as follows. Sect. II presents an overview of MPLS recovery. The objectives of MPLS recovery are presented and various recovery models are compared. Sect. III presents a model of an MPLS network, definitions of feasible and optimal LSP bandwidth assignments and a description of the LSP design problem whose solution yields an optimal set of LSPs and optimal LSP bandwidth assignments. Sect. IV presents an efficient method for computing an optimal set of recovery paths. Sect. V presents a simulation model which is used to evaluate

2 the dynamics of protection recovery in a models of 2- and 5-node networks. Our conclusions are presented in Sect. VII. II. AN OVERVIEW OF MPLS BASED RECOVERY A. The Objectives of MPLS Based Recovery MPLS based recovery mechanisms and techniques should: (1) be subject to the traffic engineering (TE) goal of optimal use of resources, (2) facilitate restoration times that are sufficiently fast for the end-user applications, (3) maximize network reliability and availability and minimize the number of single points of failure in the MPLS protected domain, (4) enhance the reliability of the protected traffic while minimally or predictably degrading the traffic carried by the diverted resources, (5) protect the traffic at various granularities 1 (6) be applicable to an entire end-to-end path or to segments of an end-to-end path, (7) take into consideration the recovery actions of the lower layers and should not trigger lower layer protection switching, (8) minimize the loss of data and packet reordering during recovery operations, (9) minimize the state overhead incurred for each recovery path maintained and, (1) preserve the constraints on traffic after switchover, if desired, so that the recovery path meets the resource requirements of the working path and achieves the same performance characteristics as the working path. Some of the above goals are in conflict with each other and real deployment will involve compromises based on a variety of factors such as cost, end-user application requirements, network efficiency, and revenue considerations. B. Recovery Models for MPLS Networks Two recovery models have been proposed for MPLS networks: IP re-routing which establishes recovery paths on demand, and protection switching which works with pre-established recovery paths. IP re-routing is robust and frugal since no resources are pre-committed but is inherently slower than protection switching which is intended to offer high reliability to premium services where fault recovery takes place at the 1 ms time scale. This paper does not address IP re-routing. Protection switching works with pre-established recovery paths. A recovery path may support the same traffic contract as the working path, or it may not. An equivalent recovery path can replace a working path without degrading service. A limited recovery path lacks the resources (or the resource reservations) to replace the working path without degrading service. 1 Three levels of traffic granularity are proposed: part of the recovery traffic can be allocated to an individual path, all of the recovery traffic can be allocated to an individual path, or all of the recovery traffic can be allocated to a group of paths. There are two options for the initiation of resource allocation: pre-reserved allocation which only applies to protection switching and reserved-on-demand allocation which may apply either to IP re-routing or to protection switching. A pre-reserved recovery path reserves required resources on all hops along its route during its establishment before any failure has occurred. A reserved-on-demand recovery path reserves required resources after a failure on the working paths has been detected and before the traffic on the working path is switched over to the recovery path(s). C. Comparison Criteria Several criteria have been suggested for comparing various MPLS-based recovery schemes. The recovery time is the time between a failure of a node or link and the time before a recovery path is installed and the traffic starts flowing on it. The full restoration time is the time required for traffic to be routed onto links which are capable of (or have been engineered to) handle traffic in recovery scenarios. The setup vulnerability time is the time that a working path or a set of working paths is left unprotected during such tasks as recovery path computation. Recovery schemes may require differing amounts of back-up capacity in the event of a fault. This capacity will depend on the traffic characteristics of the network. However, it may also depend on the protection plan selection algorithms as well as the signaling and re-routing methods. Recovery schemes may introduce additive latency to traffic. For example, a recovery path may take many more hops than the working path. This may be dependent on the recovery path selection algorithms. The quality of protection: recovery schemes can offer a spectrum of packet survivability options which may range from relative to absolute. Relative survivability may mean that the packet is on an equal footing with other traffic for the surviving network resources. Absolute survivability may mean that the survivability of the protected traffic has explicit guarantees. Recovery schemes may introduce re-ordering of packets. Also the action of putting traffic back on preferred paths might cause packet reordering. As the number of recovery paths in a protection plan grows, the state overhead required to maintain them also grows. Recovery schemes may require differing numbers of paths to maintain certain levels of coverage. The state overhead may depend on the recovery scheme. In many cases the state overhead will be in proportion to the number of recovery paths. Recovery schemes may introduce a certain amount of packet loss during switchover to a recovery path. In the case of link or node failure a certain packet loss is inevitable. Recovery schemes may offer various types of failure coverage. A recovery scheme may account for only certain types of faults such as link faults or both node and link faults. The recovery scheme may also respond

3 to service degradation. For example, a scheme may require more recovery paths to take node faults into account. A recovery scheme may be able to handle concurrent faults : depending on the layout of the recovery paths in the protection plan, multiple-fault scenarios may be able to be restored. A recovery scheme can offer multiple recovery paths : for a given fault, there may be one or more recovery paths. A recovery scheme may offer a varying degree of coverage : depending on the recovery scheme and its implementation, a certain percentage of link and node faults may be covered. Finally, a recovery scheme has a reaction time: the number of protected paths may effect how fast the total set of paths affected by a fault can be recovered. III. THE MODEL Consider a communications network with N nodes and L links. The nodes represent the routers in the MPLS-capable core of a network. Some nodes are connected by a link. The links are directed: each link has a starting node and an ending node. Let b i denote the capacity (bandwidth) of link i. Let d (m,n) denote the offered traffic load that wants to enter the MPLS network at node m and exit at node n. We consider only a single class of service. A. Feasibility and Optimality A path P is a sequence of links L 1, L 2,..., L HP where H P 1 is the hop count of the path P. In our terminology a route and a path and an LSP (label switched path) are synonymous. No path traverses the same link or the same node more than once. The flow deviation algorithm ensures that no paths contain cycles. Let P denote the set of all such non-cycling paths. Let P (i) denote the set of paths that utilize link i. Let P (m,n) denote the set of paths from node m to node n with m n. Each path P will be assigned a bandwidth B P. The goal is to select these bandwidths in an optimal way. Let B = (B P ) P P denote a set of bandwidths. B is said to be feasible if the following two constraints hold: 1. For each pair of nodes (m, n): P P (m,n) B P = d (m,n) so that all of the offered traffic is carried. 2. For each link i: P P B (i) P b i so that no link has an offered load greater than its capacity. We next choose a definition of optimality. Let f i = P P B (i) P denote the flow on link i. Let f i /b i denote the utilization of link i and let s i = b i f i denote the slack on link i. Let F i (f i ) denote a penalty function for link i when the link carries a flow f i. The LSP design problem is specified in terms of the following constrained nonlinear optimization problem: Find a set of feasible bandwidths B opt that minimizes the objective function F (B) = i F i (f i ) (1) subject to the two constraints above where the sum in equation (1) is over links i with b i >. B opt is said to provide an optimal solution to Eq. (1). Note that the optimal link flows f i are almost certainly unique although the optimal bandwidths B are usually not [2]. B. The Penalty Function Previous studies of the flow deviation algorithm [3], [4], [5] modelled each link as an M/M/1 queue with F i (x) = m x b i x (2) where m is the average length of a packet and b i is the bandwidth of link i. The link penalty function (2) is the product of the link flow x and the average link delay (waiting and service both included, but propagation delay excluded). However, in the modern Internet with TCP, and RED and all its variations, it is possible to have very highly utilized links (utilization practically one) and still low delay and low loss in the buffer: all delay is moved to the edge of the network. Equation (2) is probably no longer a suitable penalty function. Given these concerns, we use a link penalty function [2] with properties which make it suitable for use in an objective function whose minimization will yield routes and bandwidths that correspond closely to the optimal operation of a modern internet. Our choice of penalty function is ( ) ν σi F i (x) = c i x + ησ i (3) b i x where link i has a bandwidth b i, a weight factor σ i > with η >, ν > 1 and c i = τ i ην (σ i /b i ) ν+1 where τ i denotes the propagation delay on link i. We choose η positive but small so that if a feasible solution exists for which all flows f i are small and all link utilizations f i /b i are low in which case the system is said to be uniformly lightly loaded then the penalty function (3) will yield routes that are in agreement with OSPF routing where the propagation delays are the OSPF metrics of the links. If the system is not uniformly lightly loaded then the penalty function (3) enforces a distance from the barrier b i. We showed [2] that a suitable choice of parameter values enables the penalty function (3) to perform a lexicographic maximization of all weighted slacks: first it maximizes the smallest weighted slack, then the next smallest, and so on. C. The Flow Deviation Algorithm The operation of the flow deviation algorithm [3], [4], [5] is simple. The algorithm executes in a loop where each iteration of the loop implements one step

4 of the algorithm. During each step the algorithm computes the current set of shortest (least cost) paths from all sources to all destinations. An optimal amount of flow is diverted from the current set of LSPs to the shortest paths. Those shortest paths that are not already in the LSP set are added to the LSP set, the link costs are updated (the link costs have changed because the link flows have changed) and the next step of the algorithm is executed. The loop continues until flow re-distribution achieves no further reduction in the objective function. IV. A MODEL OF PROTECTION RECOVERY Our protection model is subject to the TE goal of optimal use of resources (see goal (1) of section II) in the sense that when the link loads are low, the flow deviation solution yields the OSPF routes, but when the link loads are high, the flow deviation solution selects relatively short routes so that the slack on each link is maximized. This means that goal (3) is also satisfied, since the network reliability and availability are maximized by not overloading any one specific link. Our protection recovery model aims to facilitate restoration times that are sufficiently fast (2) and may be applicable for an entire end-to-end path or for segments of an end-to-end path (6). The protection model does not trigger lower layer protection switching (7) and aims to minimize the loss of data (8). Our protection recovery model works with pre-established reserved-on-demand recovery paths. Some of these paths are limited recovery paths only when the network is not well designed and capacitated, otherwise all of the recovery paths are equivalent recovery paths. If the network is sufficiently capacitated then the recovery paths can meet the resource requirements of, and achieve the same performance characteristics as the working paths (1). Our recovery model also makes use of split path protection where multiple recovery paths are allowed to carry the traffic of a working counterpart. This is useful and sometimes necessary when no single recovery path can be found that can carry the entire traffic of the working path in case of a fault although this may be detrimental to the performance of the restored traffic. A. Computing a Set of Recovery Paths The following method was used to compute a set of traffic engineered recovery paths. Let F denote a set of network failure scenarios. The flow deviation method was first used to find a set A of optimal LSPs for the network in the absence of failures. For each failure scenario i F the flow deviation method was then used to find a set A i of optimal LSPs for the network with failure i. The set B i = A i \ A defines the set of optimal recovery paths for failure i, and the set B = i F B i defines the optimal set of recovery paths for all the failure scenarios. V. THE SIMULATION MODEL This section presents a simulation model which recognizes both connection-level and packet-level events. Unlike for example the NS simulator [1] which presents a faithful simulation of the network protocols, our simulator accounts for only those protocol features which influence MPLS based recovery. A. Connection-Level Arrivals and Departures Let L denote the set of O-D pairs in the network. Let P i denote pathset i L which is the set of LSPs that connect the O-D pair i. Let P = i L P i denote the set of LSPs in the network. Connections arrive to pathset i L individually at the instants of a Poisson stream with rate ν i. The connection holding times are exponentially distributed with parameter 1/τ i. This is not essential the simulation can be modified to relax this assumption. There are two connection-level network state descriptors: n = (n 1,..., n L ) where n i denotes the number of connections on pathset i and m = (m 1,..., m P ) where m i denotes the number of connections on LSP i. Clearly m = n. Since no confusion can arise we use the notation n i and m i in the place of n i (t) and m i (t) where t is the current simulation time. Connection arrivals and departures are generated as follows. Let t denote the current simulation time. Generate an exponentially distributed random time T conn with parameter Γ = i L (ν i + n i τ i ). A single connection-level event with due time T = t + T conn is inserted into the event scheduler which is used at the packet level (see below). When the simulation gets to time T a random variable U is chosen uniformly distributed on [, 1]. If there exists an I such that I 1 ν i < ΓU < I then a connection arrives to pathset I. The arrival is modelled as follows. Set n I := n I + 1 so that the number of connections on pathset I is increased by one. Any type of connection admission control can be employed at this stage. Let J P I be the LSP in pathset I with the least delay. Then m J := m J + 1 so that the number of connections on LSP J is increased by one. Clearly j P I m j = n I. Alternatively, if there exists an I such that i L I 1 ν i + n i τ i < ΓU < i L ν i ν i + I n i τ i

5 then a connection completes on pathset I. The completion is modelled as follows. Set n I := n I 1 so that the number of connections on pathset I is decreased by one. Assume that all connections on pathset I have the same average holding time so that, with an abuse of notation, τ i = τ I for all i P I. Let Ω = i P I m i τ i. Choose a random variable U uniformly distributed on [, 1]. If there exists a J such that J 1 J m i τ i < ΩU < m i τ i then a connection completes on LSP J. Set m J := m J 1 so that the number of connections on LSP J is decreased by one. Clearly j P I m j = n I. B. Packet-Level Arrivals Packets for any connection on LSP i arrive at rate λ i = L/τ i where L is the average number of packets that each connection offers to the network. Consider a time instant t when a packet arrival has just occurred, or when a connection arrival or departure has occurred. The next packet arrival is generated as follows. Generate an exponentially distributed random time T pack with parameter Λ = i P m i λ i. When the simulation gets to time t a random variable U is chosen uniformly distributed on [, 1]. If there exists an I such that I 1 I m i λ i < ΛU < m i λ i then a packet is generated on LSP I and assigned a label j. Let J denote the set of packet labels in the network at time t. The arrival time a j for packet j is a j = t + T pack and packet j is placed in the queue at the first link k j of LSP I. If packet j is the only packet in this queue then a completion time for packet j is generated as follows. Generate an exponentially distributed random time T serv with parameter b kj where b kj is the bandwidth (packets/sec) of link k j. Packet j is scheduled to complete at time a j + T serv and the packet is inserted into the scheduler. C. Progression of Packets At any time t there is a schedule of times with at most L + 1 entries: one entry for the next connection event and one entry for each packet completion event. The schedule is organized in chronological order. The simulator also knows (at least) the order of packets in the queues at each of the links, the delay on each of the LSPs, the initial arrival time a j and the current link k j of every packet j J. Suppose the first event in the schedule is a packet completion event with due time T prog. Thus at time T prog say packet j at link k j completes: the departure time for the next packet (if any) in the queue k j is generated and this packet is inserted into the scheduler. If the packet j was at the final link of its route, the endto-end delay T prog a j is recorded together with other relevant statistics and the label j is released. If packet j was not at the final link of its route, the packet selects the next link of its route (either deterministically or according to some routing probabilities) and packet j is inserted at the end of the queue at the next link. If packet j is the only packet at this queue, a new departure time is generated and packet j is inserted into the scheduler. D. Link Failure The failure of a uni-directional link i is modelled by disabling all LSPs that use the failed link and by activating the recovery LSPs. Currently the simulator does not represent the delay in communicating the fault indication signal to the path-switch and path-merge LSRs. Packets which complete service on the failed link, and packets which are forwarded to the failed link are destroyed and all packets queued for service at the failed link are destroyed. For each j L let P j (i) = {P P j i P } (4) denote set of paths in pathset j which use the failed link i. The number of connections on pathset j is decreased n j := n j m P. P P j (i) The number of connections on each failed path is set to zero so that m P = for all paths P P j (i) and all j L. VI. EXPERIMENTAL RESULTS This section presents the results of MPLS recovery in a model of a 2-node network. The results were produced using an extended version [7] of the simulator presented in Sect. V. The computation was performed on a 1.8GHz AMD6 processor. The set of recovery paths was designed to provide protection against all uni-directional single link failures. We examine single link failure scenarios which are the most probable failure events since (see [8] and the references therein) a complete fibre cut is the most common and frequently reported failure event. The 2-node network [9] has 12 bi-directional links and carries 1 traffic class. The links are capacitated with 5,289,78 units of bandwidth. A total of 1,344,75 units of flow are offered to the 38 origindestination pairs. The flow deviation method finds an

6 2e+6 network failed pathset affected pathsets 1 3 failed LSP failed pathset network 3 1.5e+6 8 packet throughput 1e delay e+7 2e+7 3e+7 packets sent 1e+7 2e+7 3e+7 packets sent Fig. 1. The 2-node network: (a) packet throughput (b) packet delay. optimal LSP set containing 54 paths. The worst-case uni-directional single link failure will disable 4 LSPs which carry 8% of the network flow: 144 recovery paths are deployed. The simulator requires some 1 minutes to process 1 million events which include 32 million packet transfers. An average of 45,75 connections are simultaneously active and 47,62 packets are on average in the network, either in transmission or queued in link queues awaiting transmission. The link failure caused 3,643 connections to fail and 6,496 packets were lost. From equation (4) pathset j is affected by the failure of link i if P j (i) in which case pathset j contains an LSP that used the failed link i. Fig. 1(a) shows the packet throughput in packets per second for the entire network (top curve, left hand scale), for the failed pathset (middle curve, right hand scale) and for the affected pathsets (bottom curve, left hand scale). The throughput is a moving average computed over the most recent 4 connection completions. A bezier curve is fitted to the throughput of the failed pathset (middle curve) to smooth the fluctuations. The impact of the link failure on the throughputs can clearly be seen. The recovery LSPs quickly restore the throughputs to their pre-failure values. The failed link connects an O-D pair that prior to the link failure was served by a single LSP a direct path. After the link failed, the O-D pair is served by 4 recovery LSPs each of which is 4 links long. Fig. 1(b) shows the average end-to-end packet delay on the failed LSP (top curve, left hand scale), the average end-to-end packet delay of the failed pathset (middle curve, right hand scale) and the average end-to-end packet delay for the entire network (bottom curve, left hand scale). The moving averages are computed over the most recent 4 completing packets. The link failure has a negligible impact on the network average delay. However the failure gives rise to a 25-fold increase in the average packet delay on the four recovery LSPs. In this case the recovery paths do not have the same delay performance characteristics as the working path. VII. CONCLUSION This paper considers the problem of protection switching in MPLS networks. A variant of the flow deviation method was used to find and capacitate a set of optimal working LSPs. Global repair is implemented by reserving a set of pre-established recovery LSPs. A simulation model was used to evaluate the dynamics of the MPLS recovery cycle in terms of the time needed to effect the restoration of the traffic affected by a fault. The model was applied to evaluate the effectiveness of protection switching in a 2-node network. REFERENCES [1] Consult for MPLS RFC and Draft Documents such as RFC 331 (MPLS Architecture), RFC 336 (LDP Specifications), RFC 272 (Requirements for Traffic Engineering over MPLS). [2] J.E. Burns, J.M. de Kock, A.E. Krzesinski and T.J. Ott, Path selection and bandwidth allocation in MPLS networks: a nonlinear programming approach, ITCom-21 Conference on Internet Performance and Control of Network Systems, pp , 21. [3] D. Bertsekas and R. Gallager, Data Networks Second Edition, Prentice-Hall International Inc., [4] A. Kershenbaum, Telecommunication Design Algorithms, McGraw-Hill, [5] L. Kleinrock, Queueing System Vol. 2: Computer Applications, John Wiley & Sons, New York, [6] V. Sharma et al., Framework for MPLS-based Recovery, Internet Draft, draft-ietf-mpls-recovery-frmwrk-3.txt, Work in Progress, July 21. Obtainable from [7] A.E. Krzesinski and K.E. Müller, Traffic protection in MPLS networks using an off-line flow optimization model, to appear in ITCom-22 Conference on Internet Performance and Control of Network Systems, Boston, USA, July 22. [8] K. Murakami and H.S. Kim, Virtual Path Routing for Survivable ATM Networks, IEEE/ACM Transactions on Networking, Vol.4, No.1, pp , February [9] C. Villamizar, [1] S. McCanne and S. Floyd, The LBNL network simulator, (17) Lawrence Berkeley Laboratory.

PATH SELECTION AND BANDWIDTH ALLOCATION IN MPLS NETWORKS

PATH SELECTION AND BANDWIDTH ALLOCATION IN MPLS NETWORKS PATH SELECTION AND BANDWIDTH ALLOCATION IN MPLS NETWORKS James E Burns and Teunis J Ott Telcordia Technologies Inc, 445 South Street, Morristown NJ 07960-6438, USA Anthony E Krzesinski and Karen E Müller

More information

Recovery Modeling in MPLS Networks

Recovery Modeling in MPLS Networks Proceedings of the Int. Conf. on Computer and Communication Engineering, ICCCE 06 Vol. I, 9-11 May 2006, Kuala Lumpur, Malaysia Recovery Modeling in MPLS Networks Wajdi Al-Khateeb 1, Sufyan Al-Irhayim

More information

A Fast Path Recovery Mechanism for MPLS Networks

A Fast Path Recovery Mechanism for MPLS Networks A Fast Path Recovery Mechanism for MPLS Networks Jenhui Chen, Chung-Ching Chiou, and Shih-Lin Wu Department of Computer Science and Information Engineering Chang Gung University, Taoyuan, Taiwan, R.O.C.

More information

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Faiz Ahmed Electronic Engineering Institute of Communication Technologies, PTCL

More information

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran hyaghmae@ferdowsi.um.ac.ir

More information

MPLS Part II - Recovery

MPLS Part II - Recovery MPLS Part II - Recovery Outline Introduction MPLS Recovery Framework MPLS Mechanism for Protection/Restoration Shared Backup LSP Restoration Fast reroute RSVP-TE Recovery A Heuristic Restoration Approach

More information

An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks

An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks Arunkumar C K M.Tech student, Dept. of ECE, Dayananda Sagar College of Engineering, VTU, Banglore, India ABSTRACT: Increasing demand

More information

VoIP versus VoMPLS Performance Evaluation

VoIP versus VoMPLS Performance Evaluation www.ijcsi.org 194 VoIP versus VoMPLS Performance Evaluation M. Abdel-Azim 1, M.M.Awad 2 and H.A.Sakr 3 1 ' ECE Department, Mansoura University, Mansoura, Egypt 2 ' SCADA and Telecom General Manager, GASCO,

More information

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow International Journal of Soft Computing and Engineering (IJSCE) Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow Abdullah Al Masud, Hossain Md. Shamim, Amina Akhter

More information

Path Selection Analysis in MPLS Network Based on QoS

Path Selection Analysis in MPLS Network Based on QoS Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt:36, No: 6 Özel Sayı (2015) ISSN: 1300-1949 Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 36, No: 6 Special

More information

MPLS - A Choice of Signaling Protocol

MPLS - A Choice of Signaling Protocol www.ijcsi.org 289 MPLS - A Choice of Signaling Protocol Muhammad Asif 1, Zahid Farid 2, Muhammad Lal 3, Junaid Qayyum 4 1 Department of Information Technology and Media (ITM), Mid Sweden University Sundsvall

More information

Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain

Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

Distributed Explicit Partial Rerouting (DEPR) Scheme for Load Balancing in MPLS Networks

Distributed Explicit Partial Rerouting (DEPR) Scheme for Load Balancing in MPLS Networks Distributed Eplicit Partial Rerouting (DEPR) Scheme for Load Balancing in MPLS Networks Sherif Ibrahim Mohamed shf_ibrahim@yahoo.com Khaled M. F. Elsayed, senior member IEEE khaled@ieee.org Department

More information

IP Traffic Engineering over OMP technique

IP Traffic Engineering over OMP technique IP Traffic Engineering over OMP technique 1 Károly Farkas, 1 Zoltán Balogh, 2 Henrik Villför 1 High Speed Networks Laboratory Department of Telecommunications and Telematics Technical University of Budapest,

More information

Disjoint Path Algorithm for Load Balancing in MPLS network

Disjoint Path Algorithm for Load Balancing in MPLS network International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 13 No. 1 Jan. 2015, pp. 193-199 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Internet Routing and MPLS

Internet Routing and MPLS Internet Routing and MPLS N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 27 Roadmap for Multimedia Networking 2 1. Introduction why QoS? what are the problems? 2.

More information

Influence of Load Balancing on Quality of Real Time Data Transmission*

Influence of Load Balancing on Quality of Real Time Data Transmission* SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 6, No. 3, December 2009, 515-524 UDK: 004.738.2 Influence of Load Balancing on Quality of Real Time Data Transmission* Nataša Maksić 1,a, Petar Knežević 2,

More information

MPLS Traffic Engineering in ISP Network

MPLS Traffic Engineering in ISP Network MPLS Traffic Engineering in ISP Network Mohsin Khan Birmingham City University, England ABSTRACT Multi Protocol Label Switching (MPLS) is an innovative and vibrant technology. The most famous applications

More information

MPLS: Key Factors to Consider When Selecting Your MPLS Provider Whitepaper

MPLS: Key Factors to Consider When Selecting Your MPLS Provider Whitepaper MPLS: Key Factors to Consider When Selecting Your MPLS Provider Whitepaper 2006-20011 EarthLink Business Page 1 EXECUTIVE SUMMARY Multiprotocol Label Switching (MPLS), once the sole domain of major corporations

More information

Multi Protocol Label Switching (MPLS) is a core networking technology that

Multi Protocol Label Switching (MPLS) is a core networking technology that MPLS and MPLS VPNs: Basics for Beginners Christopher Brandon Johnson Abstract Multi Protocol Label Switching (MPLS) is a core networking technology that operates essentially in between Layers 2 and 3 of

More information

Multiple Fault Tolerance in MPLS Network using Open Source Network Simulator

Multiple Fault Tolerance in MPLS Network using Open Source Network Simulator Multiple Fault Tolerance in MPLS Network using Open Source Network Simulator Muhammad Kamran 1 and Adnan Noor Mian 2 Department of Computer Sciences, FAST- National University of Computer & Emerging Sciences,

More information

Project Report on Traffic Engineering and QoS with MPLS and its applications

Project Report on Traffic Engineering and QoS with MPLS and its applications Project Report on Traffic Engineering and QoS with MPLS and its applications Brief Overview Multiprotocol Label Switching (MPLS) is an Internet based technology that uses short, fixed-length labels to

More information

WHITEPAPER MPLS: Key Factors to Consider When Selecting Your MPLS Provider

WHITEPAPER MPLS: Key Factors to Consider When Selecting Your MPLS Provider WHITEPAPER MPLS: Key Factors to Consider When Selecting Your MPLS Provider INTRODUCTION Multiprotocol Label Switching (MPLS), once the sole domain of major corporations and telecom carriers, has gone mainstream

More information

Performance of networks containing both MaxNet and SumNet links

Performance of networks containing both MaxNet and SumNet links Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for

More information

4 Internet QoS Management

4 Internet QoS Management 4 Internet QoS Management Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology stadler@ee.kth.se September 2008 Overview Network Management Performance Mgt QoS Mgt Resource Control

More information

RSVP- A Fault Tolerant Mechanism in MPLS Networks

RSVP- A Fault Tolerant Mechanism in MPLS Networks RSVP- A Fault Tolerant Mechanism in MPLS Networks S.Ravi Kumar, M.Tech(NN) Assistant Professor Gokul Institute of Technology And Sciences Piridi, Bobbili, Vizianagaram, Andhrapradesh. Abstract: The data

More information

A Scalable Network Monitoring and Bandwidth Throttling System for Cloud Computing

A Scalable Network Monitoring and Bandwidth Throttling System for Cloud Computing A Scalable Network Monitoring and Bandwidth Throttling System for Cloud Computing N.F. Huysamen and A.E. Krzesinski Department of Mathematical Sciences University of Stellenbosch 7600 Stellenbosch, South

More information

A Hybrid Fault-Tolerant Algorithm for MPLS Networks. Maria Hadjiona, Chryssis Georgiou, Maria Papa, Vasos Vassiliou. University of Cyprus

A Hybrid Fault-Tolerant Algorithm for MPLS Networks. Maria Hadjiona, Chryssis Georgiou, Maria Papa, Vasos Vassiliou. University of Cyprus Technical Report A Hybrid Fault-Tolerant Algorithm for MPLS Networks Maria Hadjiona, Chryssis Georgiou, Maria Papa, Vasos Vassiliou University of Cyprus Computer Science Department TR 07 06 December 2007

More information

Enhanced Variable Splitting Ratio Algorithm for Effective Load Balancing in MPLS Networks

Enhanced Variable Splitting Ratio Algorithm for Effective Load Balancing in MPLS Networks Journal of Computer Science 4 (3): 232-238, 2008 ISSN 1549-3636 2008 Science Publications Enhanced Variable Splitting Ratio Algorithm for Effective Load Balancing in MPLS Networks 1 G. Murugesan, 2 A.M.

More information

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network

Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network Zuo-Po Huang, *Ji-Feng Chiu, Wen-Shyang Hwang and *Ce-Kuen Shieh adrian@wshlab2.ee.kuas.edu.tw, gary@hpds.ee.ncku.edu.tw,

More information

HPSR 2002 Kobe, Japan. Towards Next Generation Internet. Bijan Jabbari, PhD Professor, George Mason University

HPSR 2002 Kobe, Japan. Towards Next Generation Internet. Bijan Jabbari, PhD Professor, George Mason University HPSR 2002 Kobe, Japan Towards Next Generation Internet Bijan Jabbari, PhD Professor, George Mason University May 28, 2002 Overview! Scalability and Interoperability in Internet! Impediments in Deployment

More information

Guaranteed QoS Routing Scheme in MPLS -Wireless Access Networks

Guaranteed QoS Routing Scheme in MPLS -Wireless Access Networks JKAU: Comp. IT, Vol. 2, pp: 45-56 (2013 A.D./ 1435 A.H.) DOI: 10.4197 / Comp. 2-3 Guaranteed QoS Routing Scheme in MPLS -Wireless Access Networks Jeddah University, Alkamil Branch, Alkamil, Saudi Arabia

More information

Load Balancing by MPLS in Differentiated Services Networks

Load Balancing by MPLS in Differentiated Services Networks Load Balancing by MPLS in Differentiated Services Networks Riikka Susitaival, Jorma Virtamo, and Samuli Aalto Networking Laboratory, Helsinki University of Technology P.O.Box 3000, FIN-02015 HUT, Finland

More information

PART III. OPS-based wide area networks

PART III. OPS-based wide area networks PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity

More information

MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport

MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport MPLS-TP Future Ready. Today Introduction As data traffic started dominating telecom networks, there was a need for transport data networks, as opposed to transport TDM networks. Traditional transport technologies

More information

Disaster-Resilient Backbone and Access Networks

Disaster-Resilient Backbone and Access Networks The Workshop on Establishing Resilient Life-Space in the Cyber-Physical Integrated Society, March. 17, 2015, Sendai, Japan Disaster-Resilient Backbone and Access Networks Shigeki Yamada (shigeki@nii.ac.jp)

More information

2004 Networks UK Publishers. Reprinted with permission.

2004 Networks UK Publishers. Reprinted with permission. Riikka Susitaival and Samuli Aalto. Adaptive load balancing with OSPF. In Proceedings of the Second International Working Conference on Performance Modelling and Evaluation of Heterogeneous Networks (HET

More information

QoS Strategy in DiffServ aware MPLS environment

QoS Strategy in DiffServ aware MPLS environment QoS Strategy in DiffServ aware MPLS environment Teerapat Sanguankotchakorn, D.Eng. Telecommunications Program, School of Advanced Technologies Asian Institute of Technology P.O.Box 4, Klong Luang, Pathumthani,

More information

Course Description. Students Will Learn

Course Description. Students Will Learn Course Description The next generation of telecommunications networks will deliver broadband data and multimedia services to users. The Ethernet interface is becoming the interface of preference for user

More information

OPNET simulation of voice over MPLS With Considering Traffic Engineering

OPNET simulation of voice over MPLS With Considering Traffic Engineering Master Thesis Electrical Engineering Thesis no: MEE 10:51 June 2010 OPNET simulation of voice over MPLS With Considering Traffic Engineering KeerthiPramukh Jannu Radhakrishna Deekonda School of Computing

More information

MENTER Overview. Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001

MENTER Overview. Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001 MENTER Overview Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001 MENTER Goal MPLS Event Notification Traffic Engineering and Restoration Develop an

More information

TRAFFIC ENGINEERING AND PATH PROTECTION IN MPLS VIRTUAL PRIVATE NETWORKS

TRAFFIC ENGINEERING AND PATH PROTECTION IN MPLS VIRTUAL PRIVATE NETWORKS TRAFFIC ENGINEERING AND PATH PROTECTION IN MPLS VIRTUAL PRIVATE NETWORKS AThesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment

More information

PROTECTION ALGORITHMS FOR BANDWIDTH GUARANTEED CONNECTIONS IN MPLS NETWORKS WONG SHEK YOON

PROTECTION ALGORITHMS FOR BANDWIDTH GUARANTEED CONNECTIONS IN MPLS NETWORKS WONG SHEK YOON PROTECTION ALGORITHMS FOR BANDWIDTH GUARANTEED CONNECTIONS IN MPLS NETWORKS WONG SHEK YOON (B.Eng.(Hons), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER

More information

Analysis of Link Utilization in MPLS Enabled Network using OPNET IT Guru

Analysis of Link Utilization in MPLS Enabled Network using OPNET IT Guru Analysis of Link Utilization in MPLS Enabled Network using OPNET IT Guru Anupkumar M Bongale Assistant Professor Department of CSE MIT, Manipal Nithin N Assistant Professor Department of CSE MIT, Manipal

More information

Maximizing Restorable Throughput in MPLS Networks Reuven Cohen, Senior Member, IEEE, and Gabi Nakibly, Member, IEEE

Maximizing Restorable Throughput in MPLS Networks Reuven Cohen, Senior Member, IEEE, and Gabi Nakibly, Member, IEEE 568 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 2, APRIL 2010 Maximizing Restorable Throughput in MPLS Networks Reuven Cohen, Senior Member, IEEE, and Gabi Nakibly, Member, IEEE Abstract MPLS recovery

More information

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications Veselin Rakocevic School of Engineering and Mathematical Sciences City University, London, UK V.Rakocevic@city.ac.uk

More information

MAXIMIZING RESTORABLE THROUGHPUT IN MPLS NETWORKS

MAXIMIZING RESTORABLE THROUGHPUT IN MPLS NETWORKS MAXIMIZING RESTORABLE THROUGHPUT IN MPLS NETWORKS 1 M.LAKSHMI, 2 N.LAKSHMI 1 Assitant Professor, Dept.of.Computer science, MCC college.pattukottai. 2 Research Scholar, Dept.of.Computer science, MCC college.pattukottai.

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

An Emulation Study on PCE with Survivability: Protocol Extensions and Implementation

An Emulation Study on PCE with Survivability: Protocol Extensions and Implementation 1 An Emulation Study on PCE with Survivability: Protocol Extensions and Implementation Xiaomin Chen, Yuesheng Zhong, Admela Jukan Technische Universität Carolo-Wilhelmina zu Braunschweig Email: chen@ida.ing.tu-bs.de,y.zhong@tu-bs.de,

More information

Bandwidth Sharing Scheme in DiffServ-aware MPLS Networks

Bandwidth Sharing Scheme in DiffServ-aware MPLS Networks Proceedings of the 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, 14-17 May 2007, Penang, Malaysia Bandwidth Sharing Scheme in DiffServ-aware

More information

A New Forwarding Policy for Load Balancing in Communication Networks

A New Forwarding Policy for Load Balancing in Communication Networks A New Forwarding Policy for Load Balancing in Communication Networks Martin Heusse Yvon Kermarrec ENST de Bretagne BP 83, 985 Brest Cedex, France Martin.Heusse@enst-bretagne.fr Abstract We present in this

More information

An efficient and flexible MPLS signaling framework for mobile networks

An efficient and flexible MPLS signaling framework for mobile networks DOI 1.17/s11276-7-29-6 An efficient and flexible MPLS signaling framework for mobile networks Ramprasad Nagarajan Eylem Ekici C Science + Business Media, LLC 27 Abstract Multiprotocol Label Switching (MPLS)

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker

Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker INGRID 2007 Instrumenting the GRID Second International Workshop on Distributed Cooperative Laboratories Session 2: Networking for the GRID Dynamic Network Resources Allocation in Grids through a Grid

More information

An Efficient Primary-Segmented Backup Scheme for Dependable Real-Time Communication in Multihop Networks

An Efficient Primary-Segmented Backup Scheme for Dependable Real-Time Communication in Multihop Networks IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003 81 An Efficient Primary-Segmented Backup Scheme for Dependable Real-Time Communication in Multihop Networks Krishna Phani Gummadi, Madhavarapu

More information

5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. stadler@ee.kth.

5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. stadler@ee.kth. 5 Performance Management for Web Services Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology stadler@ee.kth.se April 2008 Overview Service Management Performance Mgt QoS Mgt

More information

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Pietro Belotti, Antonio Capone, Giuliana Carello, Federico Malucelli Tepper School of Business, Carnegie Mellon University, Pittsburgh

More information

Online Traffic Engineering using Least Interference Optimization

Online Traffic Engineering using Least Interference Optimization Online Traffic Engineering using Least Interference Optimization A.B Bagula, M. Botha, and A.E Krzesinski Department of Computer Science University of Stellenbosch, 7 Stellenbosch, South Africa Tel: +27

More information

MPLS: Key Factors to Consider When Selecting Your MPLS Provider

MPLS: Key Factors to Consider When Selecting Your MPLS Provider White paper MPLS: Key Factors to Consider When Selecting Your MPLS Provider New Edge Networks June 2008 New Edge Networks 3000 Columbia House Blvd. Vancouver, WA 98661 360-693-9009 1-866-636-EDGE www.newedgenetworks.com

More information

New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints

New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints Santosh Kulkarni 1, Reema Sharma 2,Ishani Mishra 3 1 Department of ECE, KSSEM Bangalore,MIEEE, MIETE & ISTE 2 Department

More information

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation Fu-Min Chang #1, I-Ping Hsieh 2, Shang-Juh Kao 3 # Department of Finance, Chaoyang University of Technology

More information

QoS Aware Path Protection Schemes for MPLS Networks

QoS Aware Path Protection Schemes for MPLS Networks QoS Aware Path Protection Schemes for MPLS Networks Ashish Gupta, Ashish Gupta, B.N. Jain Department of Computer Science and Engg. Indian Institute of Technology New Delhi, India ag, ashish, bnj @cse.iitd.ac.in

More information

Analyzing Mission Critical Voice over IP Networks. Michael Todd Gardner

Analyzing Mission Critical Voice over IP Networks. Michael Todd Gardner Analyzing Mission Critical Voice over IP Networks Michael Todd Gardner Organization What is Mission Critical Voice? Why Study Mission Critical Voice over IP? Approach to Analyze Mission Critical Voice

More information

A Scalable Monitoring Approach Based on Aggregation and Refinement

A Scalable Monitoring Approach Based on Aggregation and Refinement IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL 20, NO 4, MAY 2002 677 A Scalable Monitoring Approach Based on Aggregation and Refinement Yow-Jian Lin, Member, IEEE and Mun Choon Chan, Member, IEEE

More information

Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang luyuanfang@att.com AT&T

Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang luyuanfang@att.com AT&T Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang luyuanfang@att.com AT&T 1 Outline! BGP/MPLS VPN (RFC 2547bis)! Setting up LSP for VPN - Design Alternative Studies! Interworking of LDP / RSVP

More information

Internet Quality of Service

Internet Quality of Service Internet Quality of Service Weibin Zhao zwb@cs.columbia.edu 1 Outline 1. Background 2. Basic concepts 3. Supporting mechanisms 4. Frameworks 5. Policy & resource management 6. Conclusion 2 Background:

More information

Experiences with Class of Service (CoS) Translations in IP/MPLS Networks

Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Rameshbabu Prabagaran & Joseph B. Evans Information and Telecommunications Technology Center Department of Electrical Engineering

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

MPLS Environment. To allow more complex routing capabilities, MPLS permits attaching a

MPLS Environment. To allow more complex routing capabilities, MPLS permits attaching a MPLS Environment Introduction to MPLS Multi-Protocol Label Switching (MPLS) is a highly efficient and flexible routing approach for forwarding packets over packet-switched networks, irrespective of the

More information

A Resilient Path Management for BGP/MPLS VPN

A Resilient Path Management for BGP/MPLS VPN A Resilient Path Management for BGP/MPLS VPN APNOMS2003 1 Introduction APNOMS2003 2 APNOMS2003 3 BGP/MPLS VPN Configuration MPLS/MP-iBGP VPN 1 VPN 1 VPN 2 VPN 2 BGP/MPLS VPN Overview BGP/MPLS Virtual Private

More information

Supporting End-to-End QoS in DiffServ/MPLS Networks

Supporting End-to-End QoS in DiffServ/MPLS Networks Supporting End-to-End QoS in DiffServ/MPLS Networks Ji-Feng Chiu, *Zuo-Po Huang, *Chi-Wen Lo, *Wen-Shyang Hwang and Ce-Kuen Shieh Department of Electrical Engineering, National Cheng Kung University, Taiwan

More information

WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved.

WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved. MPLS WAN Topologies 1 Multiprotocol Label Switching (MPLS) IETF standard, RFC3031 Basic idea was to combine IP routing protocols with a forwarding algoritm based on a header with fixed length label instead

More information

Multi-layer traffic engineering in photonic-gmpls-router networks

Multi-layer traffic engineering in photonic-gmpls-router networks Multi-layer traffic engineering in photonic-gmpls-router networks Naoaki Yamanaka, Masaru Katayama, Kohei Shiomoto, Eiji Oki and Nobuaki Matsuura * NTT Network Innovation Laboratories * NTT Network Service

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1. Motivation Network performance analysis, and the underlying queueing theory, was born at the beginning of the 20th Century when two Scandinavian engineers, Erlang 1 and Engset

More information

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg Management of Telecommunication Networks Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg Part 1 Quality of Services I QoS Definition ISO 9000 defines quality as the degree to which a set of inherent characteristics

More information

DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL

DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL IJVD: 3(1), 2012, pp. 15-20 DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL Suvarna A. Jadhav 1 and U.L. Bombale 2 1,2 Department of Technology Shivaji university, Kolhapur, 1 E-mail: suvarna_jadhav@rediffmail.com

More information

A ROUTING ALGORITHM FOR MPLS TRAFFIC ENGINEERING IN LEO SATELLITE CONSTELLATION NETWORK. Received September 2012; revised January 2013

A ROUTING ALGORITHM FOR MPLS TRAFFIC ENGINEERING IN LEO SATELLITE CONSTELLATION NETWORK. Received September 2012; revised January 2013 International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 10, October 2013 pp. 4139 4149 A ROUTING ALGORITHM FOR MPLS TRAFFIC ENGINEERING

More information

Evaluation of Performance for Optimized Routing in MPLS Network

Evaluation of Performance for Optimized Routing in MPLS Network Evaluation of Performance for Optimized Routing in MPLS Network Neethu T U Student,Dept. of Electronics and Communication The Oxford College of Engineering Bangalore, India Reema Sharma Assistant Professor,Dept.of

More information

APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing

APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing MPLS BASICS AND TESTING NEEDS By Thierno Diallo, Product Specialist Protocol Business Unit The continuing expansion and popularity of the Internet is forcing routers in the core network to support the

More information

Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints

Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashad, Mashhad, Iran hyaghmae@ferdowsi.um.ac.ir

More information

Performance Evaluation for VOIP over IP and MPLS

Performance Evaluation for VOIP over IP and MPLS World of Computer Science and Information Technology Journal (WCSIT) ISSN: 2221-0741 Vol. 2, No. 3, 110-114, 2012 Performance Evaluation for VOIP over IP and MPLS Dr. Reyadh Shaker Naoum Computer Information

More information

Best Effort gets Better with MPLS. Superior network flexibility and resiliency at a lower cost with support for voice, video and future applications

Best Effort gets Better with MPLS. Superior network flexibility and resiliency at a lower cost with support for voice, video and future applications Best Effort gets Better with MPLS Superior network flexibility and resiliency at a lower cost with support for voice, video and future applications A White Paper on Multiprotocol Label Switching October,

More information

Providing Differentiated Services by Load Balancing and Scheduling in MPLS Networks

Providing Differentiated Services by Load Balancing and Scheduling in MPLS Networks COST279TD(03)03 Providing Differentiated Services by Load Balancing and Scheduling in MPLS Networks Riikka Susitaival and Samuli Aalto 1 Networking Laboratory, Helsinki University of Technology Abstract

More information

Research Article Average Bandwidth Allocation Model of WFQ

Research Article Average Bandwidth Allocation Model of WFQ Modelling and Simulation in Engineering Volume 2012, Article ID 301012, 7 pages doi:10.1155/2012/301012 Research Article Average Bandwidth Allocation Model of WFQ TomášBaloghandMartinMedvecký Institute

More information

AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK

AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK Abstract AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK Mrs. Amandeep Kaur, Assistant Professor, Department of Computer Application, Apeejay Institute of Management, Ramamandi, Jalandhar-144001, Punjab,

More information

MPLS/BGP Network Simulation Techniques for Business Enterprise Networks

MPLS/BGP Network Simulation Techniques for Business Enterprise Networks MPLS/BGP Network Simulation Techniques for Business Enterprise Networks Nagaselvam M Computer Science and Engineering, Nehru Institute of Technology, Coimbatore, Abstract Business Enterprises used VSAT

More information

Analysis of IP Network for different Quality of Service

Analysis of IP Network for different Quality of Service 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Analysis of IP Network for different Quality of Service Ajith

More information

APPLICATION NOTE 209 QUALITY OF SERVICE: KEY CONCEPTS AND TESTING NEEDS. Quality of Service Drivers. Why Test Quality of Service?

APPLICATION NOTE 209 QUALITY OF SERVICE: KEY CONCEPTS AND TESTING NEEDS. Quality of Service Drivers. Why Test Quality of Service? QUALITY OF SERVICE: KEY CONCEPTS AND TESTING NEEDS By Thierno Diallo, Product Specialist With the increasing demand for advanced voice and video services, the traditional best-effort delivery model is

More information

TCP PERFORMANCE IN MOBILE-IP

TCP PERFORMANCE IN MOBILE-IP TCP PERFORMANCE IN MOBILE-IP Foo Chun Choong Department of Electrical Engineering, National University of Singapore ABSTRACT The throughput performance of TCP in Mobile-IP [1] was investigated. Compared

More information

Analysis of QoS Routing Approach and the starvation`s evaluation in LAN

Analysis of QoS Routing Approach and the starvation`s evaluation in LAN www.ijcsi.org 360 Analysis of QoS Routing Approach and the starvation`s evaluation in LAN 1 st Ariana Bejleri Polytechnic University of Tirana, Faculty of Information Technology, Computer Engineering Department,

More information

Testing VoIP on MPLS Networks

Testing VoIP on MPLS Networks Application Note Testing VoIP on MPLS Networks Why does MPLS matter for VoIP? Multi-protocol label switching (MPLS) enables a common IP-based network to be used for all network services and for multiple

More information

Introducing Basic MPLS Concepts

Introducing Basic MPLS Concepts Module 1-1 Introducing Basic MPLS Concepts 2004 Cisco Systems, Inc. All rights reserved. 1-1 Drawbacks of Traditional IP Routing Routing protocols are used to distribute Layer 3 routing information. Forwarding

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Comparative Analysis of Congestion Control Algorithms Using ns-2

Comparative Analysis of Congestion Control Algorithms Using ns-2 www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,

More information

CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE

CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE CS/ECE 438: Communication Networks Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE Introduction The Internet only provides a best effort service

More information