Introducing Basic MPLS Concepts
|
|
|
- Martin Lindsey
- 9 years ago
- Views:
Transcription
1 Module 1-1 Introducing Basic MPLS Concepts 2004 Cisco Systems, Inc. All rights reserved. 1-1
2 Drawbacks of Traditional IP Routing Routing protocols are used to distribute Layer 3 routing information. Forwarding is based on the destination address only. Routing lookups are performed on every hop Cisco Systems, Inc. All rights reserved. 1-2
3 Drawbacks of Traditional IP Routing: Traditional IP Forwarding Every router may need full Internet routing information (more than 100,000 routes). Destination-based routing lookup is needed on every hop Cisco Systems, Inc. All rights reserved. 1-3
4 Drawbacks of Traditional IP Routing: IP over ATM Layer 2 devices have no knowledge of Layer 3 routing information virtual circuits must be manually established. Layer 2 topology may be different from Layer 3 topology, resulting in suboptimal paths and link use. Even if the two topologies overlap, the hub-and-spoke topology is usually used because of easier management Cisco Systems, Inc. All rights reserved. 1-4
5 Drawbacks of Traditional IP Routing: Traffic Engineering Most traffic goes between large sites A and B, and uses only the primary link. Destination-based routing does not provide any mechanism for load balancing across unequal paths. Policy-based routing can be used to forward packets based on other parameters, but this is not a scalable solution Cisco Systems, Inc. All rights reserved. 1-5
6 Basic MPLS Concepts MPLS is a new forwarding mechanism in which packets are forwarded based on labels. Labels usually correspond to IP destination networks (equal to traditional IP forwarding). Labels can also correspond to other parameters, such as QoS or source address. MPLS was designed to support forwarding of other protocols as well Cisco Systems, Inc. All rights reserved. 1-6
7 Basic MPLS Concepts Example Only edge routers must perform a routing lookup. Core routers switch packets based on simple label lookups and swap labels Cisco Systems, Inc. All rights reserved. 1-7
8 MPLS vs. IP over ATM Layer 2 devices are IP-aware and run a routing protocol. There is no need to manually establish virtual circuits. MPLS provides a virtual full mesh topology Cisco Systems, Inc. All rights reserved. 1-8
9 Traffic Engineering with MPLS Traffic can be forwarded based on other parameters (QoS, source, and so on). Load sharing across unequal paths can be achieved Cisco Systems, Inc. All rights reserved. 1-9
10 MPLS Architecture MPLS has two major components: Control plane: Exchanges Layer 3 routing information and labels; contains complex mechanisms to exchange routing information, such as OSPF, EIGRP, IS-IS, and BGP, and to exchange labels; such as LDP, and RSVP Data plane: Forwards packets based on labels; has a simple forwarding engine 2004 Cisco Systems, Inc. All rights reserved. 1-10
11 MPLS Architecture (Cont.) Router functionality is divided into two major parts: the control plane and the data plane 2004 Cisco Systems, Inc. All rights reserved. 1-11
12 MPLS Labels MPLS technology is intended to be used anywhere regardless of Layer 1 media and Layer 2 protocol. MPLS uses a 32-bit label field that is inserted between Layer 2 and Layer 3 headers (frame-mode MPLS). MPLS over ATM uses the ATM header as the label (cell-mode MPLS) Cisco Systems, Inc. All rights reserved. 1-12
13 MPLS Labels: Label Format MPLS uses a 32-bit label field that contains the following information: 20-bit label 3-bit experimental field 1-bit bottom-of-stack indicator 8-bit TTL field 2004 Cisco Systems, Inc. All rights reserved. 1-13
14 MPLS Labels: Frame-Mode MPLS 2004 Cisco Systems, Inc. All rights reserved. 1-14
15 Label Switch Routers LSR primarily forwards labeled packets (label swapping). Edge LSR primarily labels IP packets and forwards them into the MPLS domain, or removes labels and forwards IP packets out of the MPLS domain Cisco Systems, Inc. All rights reserved. 1-15
16 Label Switch Routers: Architecture of LSRs LSRs, regardless of the type, perform these functions: Exchange routing information Exchange labels Forward packets (LSRs and edge LSRs) or cells (ATM LSRs and ATM edge LSRs) The first two functions are part of the control plane. The last function is part of the data plane Cisco Systems, Inc. All rights reserved. 1-16
17 Label Switch Routers: Architecture of Edge LSRs 2004 Cisco Systems, Inc. All rights reserved. 1-17
18 Module 1-2 Identifying MPLS Applications 2004 Cisco Systems, Inc. All rights reserved. 1-18
19 MPLS Applications MPLS is already used in many different applications: Unicast IP routing Multicast IP routing MPLS TE QoS MPLS L2/L3 VPNs (course focus) EoMPLS VPLS Regardless of the application, the functionality is always split into the control plane and the data (forwarding) plane: The applications differ only in the control plane. The applications all use a common label-switching data (forwarding) plane. Edge LSR Layer 3 data planes may differ Cisco Systems, Inc. All rights reserved. 1-19
20 Unicast IP Routing Two mechanisms are needed on the control plane: IP routing protocol (OSPF, IS-IS, EIGRP, and so on) Label distribution protocol (LDP) A routing protocol carries the information about the reachability of networks. The label distribution protocol binds labels to networks learned via a routing protocol Cisco Systems, Inc. All rights reserved. 1-20
21 MPLS TE MPLS TE requires OSPF or IS-IS with extensions for MPLS TE as the IGP. OSPF and IS-IS with extensions hold the entire topology in their databases. OSPF and IS-IS should also have some additional information about network resources and constraints. RSVP is used to establish TE tunnels and to propagate labels Cisco Systems, Inc. All rights reserved. 1-21
22 Quality of Service Differentiated QoS is an extension to unicast IP routing that provides differentiated services. Extensions to LDP are used to propagate different labels for different classes Cisco Systems, Inc. All rights reserved. 1-22
23 Virtual Private Networks Networks are learned via an IGP (OSPF, EBGP, EIGRP, Routing Information Protocol version 2, or static) from a customer or via BGP from other internal routers. Labels are propagated via MP-BGP. Two labels are used: The top label points to the egress router (assigned through LDP). The second label identifies the outgoing interface on the egress router or a routing table where a routing lookup is performed. FEC is equal to a VPN site descriptor or VPN routing table Cisco Systems, Inc. All rights reserved. 1-23
24 Interactions Between MPLS Applications 2004 Cisco Systems, Inc. All rights reserved. 1-24
25 Module 1-3 Introducing MPLS Labels and Label Stack 2004 Cisco Systems, Inc. All rights reserved. 1-25
26 MPLS Labels Labels are inserted between the Layer 2 (frame) header and the Layer 3 (packet) header. There can be more than one label (label stack). The bottom-of-stack bit indicates if the label is the last label in the label stack. The TTL field is used to prevent the indefinite looping of packets. Experimental bits are usually used to carry the IP precedence value Cisco Systems, Inc. All rights reserved. 1-26
27 MPLS Label Format MPLS uses a 32-bit label field that contains the following information: 20-bit label (a number) 3-bit experimental field (usually used to carry IP precedence value) 1-bit bottom-of-stack indicator (indicates whether this is the last label before the IP header) 8-bit TTL (equal to the TTL in the IP header) 2004 Cisco Systems, Inc. All rights reserved. 1-27
28 MPLS Label Stack The protocol identifier in a Layer 2 header specifies that the payload starts with a label (labels) and is followed by an IP header. The bottom-of-stack bit indicates whether the next header is another label or a Layer 3 header. The receiving router uses the top label only Cisco Systems, Inc. All rights reserved. 1-28
29 MPLS Forwarding An LSR can perform the following functions: Insert (impose) a label or a stack of labels on ingress Swap a label with a next-hop label or a stack of labels in the core Remove (pop) a label on egress 2004 Cisco Systems, Inc. All rights reserved. 1-29
30 MPLS Forwarding: Frame Mode On ingress, a label is assigned and imposed by the IP routing process. LSRs in the core swap labels based on the contents of the label forwarding table. On egress, the label is removed and a routing lookup is used to forward the packet Cisco Systems, Inc. All rights reserved. 1-30
31 Module 1-4 Introducing MPLS VPN Routing Model 2004 Cisco Systems, Inc. All rights reserved. 1-31
32 MPLS VPN Routing Requirements CE routers have to run standard IP routing software. PE routers have to support MPLS VPN services and Internet routing. P routers have no VPN routes Cisco Systems, Inc. All rights reserved. 1-32
33 MPLS VPN Routing: CE Router Perspective The CE routers run standard IP routing software and exchange routing updates with the PE router. EBGP, OSPF, RIPv2, EIGRP, and static routes are supported Cisco Systems, Inc. All rights reserved. 1-33
34 MPLS VPN Routing: Overall Customer Perspective To the customer, the PE routers appear as core routers connected via a BGP backbone. The usual BGP and IGP design rules apply. The P routers are hidden from the customer Cisco Systems, Inc. All rights reserved. 1-34
35 MPLS VPN Routing: P Router Perspective P routers do not participate in MPLS VPN routing and do not carry VPN routes. P routers run backbone IGP with the PE routers and exchange information about global subnetworks (core links and loopbacks) Cisco Systems, Inc. All rights reserved. 1-35
36 MPLS VPN Routing: PE Router Perspective PE routers: Exchange VPN routes with CE routers via per-vpn routing protocols Exchange core routes with P routers and PE routers via core IGP Exchange VPNv4 routes with other PE routers via MP-IBGP sessions 2004 Cisco Systems, Inc. All rights reserved. 1-36
37 Support for Existing Internet Routing PE routers can run standard IPv4 BGP in the global routing table: PE routers exchange Internet routes with other PE routers. CE routers do not participate in Internet routing. P routers do not need to participate in Internet routing Cisco Systems, Inc. All rights reserved. 1-37
38 Routing Tables on PE Routers PE routers contain a number of routing tables: The global routing table contains core routes (filled with core IGP) and Internet routes (filled with IPv4 BGP). The VRF tables contains routes for sites of identical routing requirements from local (IPv4 VPN) and remote (VPNv4 via MP-BGP) CE routers Cisco Systems, Inc. All rights reserved. 1-38
39 Module 1-5 Forwarding MPLS VPN Packets 2004 Cisco Systems, Inc. All rights reserved. 1-39
40 VPN Label Propagation Labels are propagated in MP-BGP VPNv4 routing updates Cisco Systems, Inc. All rights reserved. 1-40
41 VPN Label Propagation (Cont.) Step 1: Step 2: Step 3: A VPN label is assigned to every VPN route by the egress PE router. The VPN label is advertised to all other PE routers in an MP-BGP update. A label stack is built in the VFR table Cisco Systems, Inc. All rights reserved. 1-41
42 MPLS VPNs and Packet Forwarding The VPN label is understood only by the egress PE router. An end-to-end LSP tunnel is required between the ingress and egress PE routers Cisco Systems, Inc. All rights reserved. 1-42
43 Summary PE routers forward packets across the MPLS VPN backbone using label stacking. The last P router in the LSP tunnel pops the LDP label, and the PE router receives a labeled packet that contains only the VPN label. Labels are propagated between PE routers using MP-BGP Cisco Systems, Inc. All rights reserved. 1-43
MPLS Concepts. Overview. Objectives
MPLS Concepts Overview This module explains the features of Multi-protocol Label Switching (MPLS) compared to traditional ATM and hop-by-hop IP routing. MPLS concepts and terminology as well as MPLS label
For internal circulation of BSNLonly
E3-E4 E4 E&WS Overview of MPLS-VPN Overview Traditional Router-Based Networks Virtual Private Networks VPN Terminology MPLS VPN Architecture MPLS VPN Routing MPLS VPN Label Propagation Traditional Router-Based
WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved.
MPLS WAN Topologies 1 Multiprotocol Label Switching (MPLS) IETF standard, RFC3031 Basic idea was to combine IP routing protocols with a forwarding algoritm based on a header with fixed length label instead
- Multiprotocol Label Switching -
1 - Multiprotocol Label Switching - Multiprotocol Label Switching Multiprotocol Label Switching (MPLS) is a Layer-2 switching technology. MPLS-enabled routers apply numerical labels to packets, and can
How Routers Forward Packets
Autumn 2010 [email protected] MULTIPROTOCOL LABEL SWITCHING (MPLS) AND MPLS VPNS How Routers Forward Packets Process switching Hardly ever used today Router lookinginside the packet, at the ipaddress,
MPLS Implementation MPLS VPN
MPLS Implementation MPLS VPN Describing MPLS VPN Technology Objectives Describe VPN implementation models. Compare and contrast VPN overlay VPN models. Describe the benefits and disadvantages of the overlay
MikroTik RouterOS Introduction to MPLS. Prague MUM Czech Republic 2009
MikroTik RouterOS Introduction to MPLS Prague MUM Czech Republic 2009 Q : W h y h a v e n 't y o u h e a r d a b o u t M P LS b e fo re? A: Probably because of the availability and/or price range Q : W
AMPLS - Advanced Implementing and Troubleshooting MPLS VPN Networks v4.0
Course Outline AMPLS - Advanced Implementing and Troubleshooting MPLS VPN Networks v4.0 Module 1: MPLS Features Lesson 1: Describing Basic MPLS Concepts Provide an overview of MPLS forwarding, features,
IMPLEMENTING CISCO MPLS V3.0 (MPLS)
IMPLEMENTING CISCO MPLS V3.0 (MPLS) COURSE OVERVIEW: Multiprotocol Label Switching integrates the performance and traffic-management capabilities of data link Layer 2 with the scalability and flexibility
Investigation of different VPN Solutions And Comparison of MPLS, IPSec and SSL based VPN Solutions (Study Thesis)
MEE09:44 BLEKINGE INSTITUTE OF TECHNOLOGY School of Engineering Department of Telecommunication Systems Investigation of different VPN Solutions And Comparison of MPLS, IPSec and SSL based VPN Solutions
IPv6 over IPv4/MPLS Networks: The 6PE approach
IPv6 over IPv4/MPLS Networks: The 6PE approach Athanassios Liakopoulos Network Operation & Support Manager ([email protected]) Greek Research & Technology Network (GRNET) III Global IPv6 Summit Moscow, 25
Implementing Cisco MPLS
Implementing Cisco MPLS Course MPLS v2.3; 5 Days, Instructor-led Course Description This design document is for the refresh of the Implementing Cisco MPLS (MPLS) v2.3 instructor-led training (ILT) course,
Enterprise Network Simulation Using MPLS- BGP
Enterprise Network Simulation Using MPLS- BGP Tina Satra 1 and Smita Jangale 2 1 Department of Computer Engineering, SAKEC, Chembur, Mumbai-88, India [email protected] 2 Department of Information Technolgy,
IMPLEMENTING CISCO MPLS V2.3 (MPLS)
IMPLEMENTING CISCO MPLS V2.3 (MPLS) COURSE OVERVIEW: The course will enable learners to gather information from the technology basics to advanced VPN configuration. The focus of the course is on VPN technology
MPLS-based Virtual Private Network (MPLS VPN) The VPN usually belongs to one company and has several sites interconnected across the common service
Nowdays, most network engineers/specialists consider MPLS (MultiProtocol Label Switching) one of the most promising transport technologies. Then, what is MPLS? Multi Protocol Label Switching (MPLS) is
Expert Reference Series of White Papers. An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire
Expert Reference Series of White Papers An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire 1-800-COURSES www.globalknowledge.com An Overview of MPLS VPNs: Overlay; Layer 3; and PseudoWire Al Friebe,
Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang [email protected] AT&T
Implementing MPLS VPN in Provider's IP Backbone Luyuan Fang [email protected] AT&T 1 Outline! BGP/MPLS VPN (RFC 2547bis)! Setting up LSP for VPN - Design Alternative Studies! Interworking of LDP / RSVP
Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS
Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,
PRASAD ATHUKURI Sreekavitha engineering info technology,kammam
Multiprotocol Label Switching Layer 3 Virtual Private Networks with Open ShortestPath First protocol PRASAD ATHUKURI Sreekavitha engineering info technology,kammam Abstract This paper aims at implementing
Implementing Cisco Service Provider Next-Generation Edge Network Services **Part of the CCNP Service Provider track**
Course: Duration: Price: $ 3,695.00 Learning Credits: 37 Certification: Implementing Cisco Service Provider Next-Generation Edge Network Services Implementing Cisco Service Provider Next-Generation Edge
RFC 2547bis: BGP/MPLS VPN Fundamentals
White Paper RFC 2547bis: BGP/MPLS VPN Fundamentals Chuck Semeria Marketing Engineer Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408 745 2001 or 888 JUNIPER www.juniper.net
How To Make A Network Secure
1 2 3 4 -Lower yellow line is graduate student enrollment -Red line is undergradate enrollment -Green line is total enrollment -2008 numbers are projected to be near 20,000 (on-campus) not including distance
MPLS VPN Services. PW, VPLS and BGP MPLS/IP VPNs
A Silicon Valley Insider MPLS VPN Services PW, VPLS and BGP MPLS/IP VPNs Technology White Paper Serge-Paul Carrasco Abstract Organizations have been demanding virtual private networks (VPNs) instead of
MP PLS VPN MPLS VPN. Prepared by Eng. Hussein M. Harb
MP PLS VPN MPLS VPN Prepared by Eng. Hussein M. Harb Agenda MP PLS VPN Why VPN VPN Definition VPN Categories VPN Implementations VPN Models MPLS VPN Types L3 MPLS VPN L2 MPLS VPN Why VPN? VPNs were developed
APNIC elearning: Introduction to MPLS
2/5/5 ANIC elearning: Introduction to MLS 3 MAY 25 3: M AEST Brisbane (UTC+) Issue Date: Revision: Introduction resenter Sheryl Hermoso Training Officer [email protected] Specialties: Network Security DNS/DNSSEC
MPLS/BGP Network Simulation Techniques for Business Enterprise Networks
MPLS/BGP Network Simulation Techniques for Business Enterprise Networks Nagaselvam M Computer Science and Engineering, Nehru Institute of Technology, Coimbatore, Abstract Business Enterprises used VSAT
Cisco Configuring Basic MPLS Using OSPF
Table of Contents Configuring Basic MPLS Using OSPF...1 Introduction...1 Mechanism...1 Hardware and Software Versions...2 Network Diagram...2 Configurations...2 Quick Configuration Guide...2 Configuration
Network Virtualization with the Cisco Catalyst 6500/6800 Supervisor Engine 2T
White Paper Network Virtualization with the Cisco Catalyst 6500/6800 Supervisor Engine 2T Introduction Network virtualization is a cost-efficient way to provide traffic separation. A virtualized network
MPLS Basics. For details about MPLS architecture, refer to RFC 3031 Multiprotocol Label Switching Architecture.
Multiprotocol Label Switching (), originating in IPv4, was initially proposed to improve forwarding speed. Its core technology can be extended to multiple network protocols, such as IPv6, Internet Packet
Kingston University London
Kingston University London Thesis Title Implementation and performance evaluation of WAN services over MPLS Layer-3 VPN Dissertation submitted for the Degree of Master of Science in Networking and Data
MPLS Concepts. MPLS Concepts
MPLS Concepts MPLS: Multi Protocol Label Switching MPLS is a layer 2+ switching MPLS forwarding is done in the same way as in VC (Virtual Circuit) switches Packet forwarding is done based on Labels MPLS
MPLS-based Layer 3 VPNs
MPLS-based Layer 3 VPNs Overall objective The purpose of this lab is to study Layer 3 Virtual Private Networks (L3VPNs) created using MPLS and BGP. A VPN is an extension of a private network that uses
Multi Protocol Label Switching (MPLS) is a core networking technology that
MPLS and MPLS VPNs: Basics for Beginners Christopher Brandon Johnson Abstract Multi Protocol Label Switching (MPLS) is a core networking technology that operates essentially in between Layers 2 and 3 of
MPLS Environment. To allow more complex routing capabilities, MPLS permits attaching a
MPLS Environment Introduction to MPLS Multi-Protocol Label Switching (MPLS) is a highly efficient and flexible routing approach for forwarding packets over packet-switched networks, irrespective of the
MPLS VPNs with DiffServ A QoS Performance study
Technical report, IDE1104, February 2011 MPLS VPNs with DiffServ A QoS Performance study Master s Thesis in Computer Network Engineering Azhar Shabbir Khan Bilal Afzal School of Information Science, Computer
Introduction to MPLS-based VPNs
Introduction to MPLS-based VPNs Ferit Yegenoglu, Ph.D. ISOCORE [email protected] Outline Introduction BGP/MPLS VPNs Network Architecture Overview Main Features of BGP/MPLS VPNs Required Protocol Extensions
Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone
International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 9 ISSN 2047-3338 Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone Mushtaq
l.cittadini, m.cola, g.di battista
MPLS VPN l.cittadini, m.cola, g.di battista motivations customer s problem a customer (e.g., private company, public administration, etc.) has several geographically distributed sites and would like to
How To Understand The Benefits Of An Mpls Network
NETWORKS NetIron XMR 16000 NETWORKS NetIron XMR 16000 NETWORKS NetIron XMR 16000 Introduction MPLS in the Enterprise Multi-Protocol Label Switching (MPLS) as a technology has been around for over a decade
Fundamentals Multiprotocol Label Switching MPLS III
Fundamentals Multiprotocol Label Switching MPLS III Design of Telecommunication Infrastructures 2008-2009 Rafael Sebastian Departament de tecnologies de la Informació i les Comunicaciones Universitat Pompeu
MPLS VPN. Agenda. MP-BGP VPN Overview MPLS VPN Architecture MPLS VPN Basic VPNs MPLS VPN Complex VPNs MPLS VPN Configuration (Cisco) L86 - MPLS VPN
MPLS VPN Peer to Peer VPN s Agenda MP-BGP VPN Overview MPLS VPN Architecture MPLS VPN Basic VPNs MPLS VPN Complex VPNs MPLS VPN Configuration (Cisco) CE-PE OSPF Routing CE-PE Static Routing CE-PE RIP Routing
Layer 3 Multiprotocol Label Switching Virtual Private Network
i Zelalem Temesgen Weldeselasie Layer 3 Multiprotocol Label Switching Virtual Private Network Technology and Communication 2014 1 VAASAN AMMATTIKORKEAKOULU UNIVERSITY OF APPLIED SCIENCES Information Technology
DD2491 p2 2011. MPLS/BGP VPNs. Olof Hagsand KTH CSC
DD2491 p2 2011 MPLS/BGP VPNs Olof Hagsand KTH CSC 1 Literature Practical BGP: Chapter 10 MPLS repetition, see for example http://www.csc.kth.se/utbildning/kth/kurser/dd2490/ipro1-11/lectures/mpls.pdf Reference:
MPLS Applications. Karel Pouzar CCIE#20198, CCSI#31414 [email protected]
MPLS Applications Karel Pouzar CCIE#20198, CCSI#31414 [email protected] Agenda MPLS Introduction MPLS VPN Architecture MPLS L2 Services AToM, EoMPLS VPLS, H-VPLS Copyright Alef Nula, a.s. www.alef0.cz
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling
ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling Release: 1 ICTTEN6172A Design and configure an IP-MPLS network with virtual private network tunnelling Modification
ISTANBUL. 1.1 MPLS overview. Alcatel Certified Business Network Specialist Part 2
1 ISTANBUL 1.1 MPLS overview 1 1.1.1 Principle Use of a ATM core network 2 Overlay Network One Virtual Circuit per communication No routing protocol Scalability problem 2 1.1.1 Principle Weakness of overlay
Content CHAPTER 1 MPLS OVERVIEW... 1-1
Content Content CHAPTER 1 MPLS OVERVIEW... 1-1 1.1 MPLS OVERVIEW... 1-1 1.1.1 MPLS Introduction... 1-1 1.1.2 MPLS Network Introduction... 1-5 1.1.3 Introduction to MPLS and Routing Protocols... 1-6 1.1.4
Building VPNs. Nam-Kee Tan. With IPSec and MPLS. McGraw-Hill CCIE #4307 S&
Building VPNs With IPSec and MPLS Nam-Kee Tan CCIE #4307 S& -.jr."..- i McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto
Design of MPLS networks VPN and TE with testing its resiliency and reliability
MASARYK UNIVERSITY FACULTY OF INFORMATICS Design of MPLS networks VPN and TE with testing its resiliency and reliability Diploma thesis Michal Aron Brno, spring 2014 ZADANIE DP Declaration I declare
AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0
AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0 Introduction...2 Overview...2 1. Technology Background...2 2. MPLS PNT Offer Models...3
MPLS VPN Implementation
MPLS VPN Implementation Overview Virtual Routing and Forwarding Table VPN-Aware Routing Protocols VRF Configuration Tasks Configuring BGP Address families Configuring BGP Neighbors Configuring MP-BGP Monitoring
MPLS Virtual Private Networks
MPLS Virtual Private Networks Luca Cittadini Giuseppe Di Battista Maurizio Patrignani Summary This chapter is devoted to Virtual Private Networks (VPNs) designed with Multi Protocol Label Switching (MPLS)
RA-MPLS VPN Services. Kapil Kumar Network Planning & Engineering Data. E-mail: [email protected]
RA-MPLS VPN Services Kapil Kumar Network Planning & Engineering Data E-mail: [email protected] Agenda Introduction Why RA MPLS VPNs? Overview of RA MPLS VPNs Architecture for RA MPLS VPNs Typical
NAVAL POSTGRADUATE SCHOOL THESIS
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS A PERFORMANCE ANALYSIS OF BGP/MPLS VPN FAILOVER FUNCTIONALITY by Guan Chye Tan December 2006 Thesis Advisor: Second Reader: Geoffrey Xie John Gibson
Introduction to MPLS and Traffic Engineering
troduction to MPLS and Traffic Engineering Session 2 Topics Motivations for MPLS MPLS Overview Applications Roadmap 3 Why MPLS? tegrate best of Layer 2 and Layer 3 Keep up with growth Reduce operations
Using OSPF in an MPLS VPN Environment
Using OSPF in an MPLS VPN Environment Overview This module introduces the interaction between multi-protocol Border Gateway Protocol (MP-BGP) running between Provider Edge routers (s) and Open Shortest
Lesson 13: MPLS Networks
Slide supporting material Lesson 13: MPLS Networks Giovanni Giambene Queuing Theor and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved IP Over ATM Once defined IP
MPLS is the enabling technology for the New Broadband (IP) Public Network
From the MPLS Forum Multi-Protocol Switching (MPLS) An Overview Mario BALI Turin Polytechnic [email protected] www.polito.it/~baldi MPLS is the enabling technology for the New Broadband (IP) Public
Design of Virtual Private Networks with MPLS
Design of Virtual Private Networks with MPLS Luca Cittadini Giuseppe Di Battista Maurizio Patrignani Summary This chapter is devoted to Virtual Private Networks(VPNs) designed with Multi Protocol Label
APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing
MPLS BASICS AND TESTING NEEDS By Thierno Diallo, Product Specialist Protocol Business Unit The continuing expansion and popularity of the Internet is forcing routers in the core network to support the
Multi-Protocol Label Switching To Support Quality of Service Needs
Technical Report, IDE1008, February 2010 Multi-Protocol Label Switching To Support Quality of Service Needs Master s Thesis in Computer Network Engineering - 15hp AMJAD IFTIKHAR AOON MUHAMMAD SHAH & FOWAD
Comparative Analysis of Mpls and Non -Mpls Network
Comparative Analysis of Mpls and Non -Mpls Network Madhulika Bhandure 1, Gaurang Deshmukh 2, Prof. Varshapriya J N 3 1, 2, 3 (Department of Computer Science and IT, VJTI, Mumbai-19 ABSTRACT A new standard
Multiprotocol Label Switching (MPLS)
Multiprotocol Label Switching (MPLS) Petr Grygárek rek 1 Technology Basics Integrates label-based forwarding paradigm with network layer routing label forwarding + label swapping similar to ATM/FR switching
MPLS over IP-Tunnels. Mark Townsley Distinguished Engineer. 21 February 2005
MPLS over IP-Tunnels Mark Townsley Distinguished Engineer 21 February 2005 1 MPLS over IP The Basic Idea MPLS Tunnel Label Exp S TTL MPLS VPN Label Exp S TTL MPLS Payload (L3VPN, PWE3, etc) MPLS Tunnel
Introduction Inter-AS L3VPN
Introduction Inter-AS L3VPN 1 Extending VPN services over Inter-AS networks VPN Sites attached to different MPLS VPN Service Providers How do you distribute and share VPN routes between ASs Back- to- Back
Exam Name: BGP + MPLS Exam Exam Type Cisco Case Studies: 3 Exam Code: 642-691 Total Questions: 401
Question: 1 Every time a flap occurs on a route, the route receives A. 750 per-flap penalty points which are user configurable B. 1500 per-flap penalty points which are user configurable C. 200 per-flap
Project Report on Traffic Engineering and QoS with MPLS and its applications
Project Report on Traffic Engineering and QoS with MPLS and its applications Brief Overview Multiprotocol Label Switching (MPLS) is an Internet based technology that uses short, fixed-length labels to
MPLS VPN over mgre. Finding Feature Information. Prerequisites for MPLS VPN over mgre
The feature overcomes the requirement that a carrier support multiprotocol label switching (MPLS) by allowing you to provide MPLS connectivity between networks that are connected by IP-only networks. This
Protection Methods in Traffic Engineering MPLS Networks
Peter Njogu Kimani Protection Methods in Traffic Engineering MPLS Networks Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Information technology Thesis 16 th May 2013 Abstract
SBSCET, Firozpur (Punjab), India
Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based
Tackling the Challenges of MPLS VPN Testing. Todd Law Product Manager Advanced Networks Division
Tackling the Challenges of MPLS VPN ing Todd Law Product Manager Advanced Networks Division Agenda Background Why test MPLS VPNs anyway? ing Issues Technical Complexity and Service Provider challenges
Notice the router names, as these are often used in MPLS terminology. The Customer Edge router a router that directly connects to a customer network.
Where MPLS part I explains the basics of labeling packets, it s not giving any advantage over normal routing, apart from faster table lookups. But extensions to MPLS allow for more. In this article I ll
IP/MPLS-Based VPNs Layer-3 vs. Layer-2
Table of Contents 1. Objective... 3 2. Target Audience... 3 3. Pre-Requisites... 3 4. Introduction...3 5. MPLS Layer-3 VPNs... 4 6. MPLS Layer-2 VPNs... 7 6.1. Point-to-Point Connectivity... 8 6.2. Multi-Point
Migrating to MPLS Technology and Applications
Migrating to MPLS Technology and Applications Serge-Paul Carrasco June 2003 asiliconvalleyinsider.com Table Of Content Why to migrate to MPLS? Congestion on the Internet Traffic Engineering MPLS Fundamentals
MPLS L2VPN (VLL) Technology White Paper
MPLS L2VPN (VLL) Technology White Paper Issue 1.0 Date 2012-10-30 HUAWEI TECHNOLOGIES CO., LTD. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any
Table of Contents. Cisco Configuring a Basic MPLS VPN
Table of Contents Configuring a Basic MPLS VPN...1 Introduction...1 Prerequisites...1 Requirements...1 Components Used...2 Related Products...2 Conventions...2 Configure...3 Network Diagram...3 Configuration
Department of Communications and Networking. S-38.2131/3133 Networking Technology, Laboratory course A/B
Department of Communications and Networking S-38.2131/3133 Networking Technology, Laboratory course A/B Work Number 38: MPLS-VPN Basics Student Edition Preliminary Exercises and Laboratory Assignments
Junos MPLS and VPNs (JMV)
Junos MPLS and VPNs (JMV) Course No: EDU-JUN-JMV Length: Five days Onsite Price: $32500 for up to 12 students Public Enrollment Price: $3500/student Course Level JMV is an advanced-level course. Prerequisites
Testing Edge Services: VPLS over MPLS
Testing Edge Services: VPLS over MPLS White Paper Introduction Virtual Private LAN Services (VPLS) is an emerging technology for transparently connecting corporate LANs over the Internet so they appear
DD2490 p4 2011. Routing and MPLS/IP. Olof Hagsand KTH CSC
DD2490 p4 2011 Routing and MPLS/IP Olof Hagsand KTH CSC 1 Literature Lecture slides and lecture notes (on web) Reference JunOS Cookbook: Chapter 14 2 Background MPLS - Multiprotocol Label Switching Originally
An Introduction to MPLS
Research An Introduction to MPLS Timothy G. Griffin [email protected] http://www.research.att.com/~griffin November 21, 2002 1 What s all this talk about MPLS? MPLS is going to solve all of our
Implementing VPN over MPLS
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 3, Ver. I (May - Jun.2015), PP 48-53 www.iosrjournals.org Implementing VPN over
Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks
Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Faiz Ahmed Electronic Engineering Institute of Communication Technologies, PTCL
MPLS - A Choice of Signaling Protocol
www.ijcsi.org 289 MPLS - A Choice of Signaling Protocol Muhammad Asif 1, Zahid Farid 2, Muhammad Lal 3, Junaid Qayyum 4 1 Department of Information Technology and Media (ITM), Mid Sweden University Sundsvall
Master Course Computer Networks IN2097
Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for
Multiprotocol Label Switching (MPLS)
Multiprotocol Label Switching (MPLS) รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D. [email protected] http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand
MPLS Based Recovery Mechanisms
MPLS Based Recovery Mechanisms Master Thesis Johan Martin Olof Petersson UNIVERSITY OF OSLO May 2005 2 Foreword This thesis is part of my Candidatus Scientiarum studies in communication systems at the
MPLS Architecture for evaluating end-to-end delivery
International Journal of Scientific and Research Publications, Volume 2, Issue 11, November 2012 1 MPLS Architecture for evaluating end-to-end delivery Nikita Wadhera Lovely Professional University Abstract-
Boosting Capacity Utilization in MPLS Networks using Load-Sharing MPLS JAPAN 2007. Sanjay Khanna Foundry Networks skhanna@foundrynet.
Boosting Capacity Utilization in MPLS Networks using Load-Sharing MPLS JAPAN 2007 Sanjay Khanna Foundry Networks [email protected] Agenda Why we need Load-Sharing Methods to boost capacity Trunks/Link
HP Networking BGP and MPLS technology training
Course overview HP Networking BGP and MPLS technology training (HL046_00429577) The HP Networking BGP and MPLS technology training provides networking professionals the knowledge necessary for designing,
Frame Mode MPLS Implementation
CHAPTER 4 Frame Mode MPLS Implementation Lab 4-1: Configuring Frame Mode MPLS (4.5.1) In this lab, you learn how to do the following: Configure EIGRP on a router. Configure LDP on a router. Change the
DD2491 p2 2009. BGP-MPLS VPNs. Olof Hagsand KTH/CSC
DD2491 p2 2009 BGP-MPLS VPNs Olof Hagsand KTH/CSC Literature Practical BGP: Chapter 10 JunOS Cookbook: Chapter 14 and 15 MPLS Advantages Originally, the motivation was speed and cost. But routers does
IPv6 over MPLS VPN. Contents. Prerequisites. Document ID: 112085. Requirements
IPv6 over MPLS VPN Document ID: 112085 Contents Introduction Prerequisites Requirements Components Used Conventions Configure Network Diagram VRF Configuration Multiprotocol BGP (MP BGP) Configuration
Implementing MPLS VPNs over IP Tunnels
Implementing MPLS VPNs over IP Tunnels The MPLS VPNs over IP Tunnels feature lets you deploy Layer 3 Virtual Private Netwk (L3VPN) services, over an IP ce netwk, using L2TPv3 multipoint tunneling instead
Virtual Leased Lines - Martini
Virtual Lease Lines - Martini Virtual Leased Lines - Martini Martini Drafts draft -martini-l2circuit-encap-mpls -04.txt defines the handling and encapsulation of layer two packets. draft -martini-l2circuit-trans-mpls
A Simulation Analysis of Latency and Packet Loss on Virtual Private Network through Multi Virtual Routing and Forwarding
A Simulation Analysis of Latency and Packet Loss on Virtual Private Network through Multi Virtual Routing and Forwarding Rissal Efendi STMIK PROVISI Semarang, Indonesia ABSTRACT MPLS is a network management
Campus Network Virtualization using Multiprotocol Label Switching Virtual Private Networks (MPLS-VPNs)
Campus Network Virtualization using Multiprotocol Label Switching Virtual Private Networks (MPLS-VPNs) Frank Ibikunle Electrical and Information Engineering Dept, Covenant University Ota, Nigeria Segun
Cisco 642-889. Implementing Cisco Service Provider Next-Generation Egde Network Services. Version: 4.1
Cisco 642-889 Implementing Cisco Service Provider Next-Generation Egde Network Services Version: 4.1 QUESTION NO: 1 Cisco 642-889 Exam Which type of VPN requires a full mesh of virtual circuits to provide
MPLS. A Tutorial. Paresh Khatri. [email protected]
MPLS A Tutorial Paresh Khatri [email protected] Agenda 1. MPLS overview and LSP types 2. Distribution Protocol (LDP) 3. Questions Introduction Paresh Khatri ([email protected])
