Building Alternate Multicasting Trees in MPLS Networks
|
|
|
- Robyn Parrish
- 10 years ago
- Views:
Transcription
1 Treasures at UT Dallas Eric Jonsson School of Engineering and Computer Science Building Alternate Multicasting Trees in MPLS Networks Limin Tang, et al. Follow this and additional works at: This document has been made available through Treasures at UT Dallas, a service of the Eugene McDermott Library. Please contact [email protected] for additional information.
2 Building Alternate Multicasting Trees in MPLS Networks Technical Report UTD/EE/3/2009 May2009 Limin Tang, Shreejith Billenahalli, Wanjun Huang, Miguel Razo, Arularasi Sivasankaran, Hars Vardhan, Marco Tacca, and Andrea Fumagalli Open Networking Advanced Research (OpNeAR) Lab Erik Jonsson School of Engineering and Computer Science The University of Texas at Dallas, Richardson, TX, USA Paolo Monti Next Generation Optical Network (NeGONet) Group School of Information and Communication Technology, ICT-FMI The Royal Institute of Technology, Kista, Sweden Abstract An algorithm for computing alternate multicast trees in packet transport networks is proposed in this paper. The algorithm efficiently computes multiple sub-optimal tree candidates for a given multicast service request. The algorithm builds on the widely used computation of K ordered loopless shortest paths and can be applied to any connected network topology. Simulation experiments obtained for a multiprotocol label switching (MPLS) network are presented to evaluate the effectiveness and performance of the algorithm. Keywords: MPLS network, multicast, alternate tree
3 the network equipment required in the network to support a given set of multicast LSPs. Section 4. contains some observations about future work on the subject. 2. Algorithm This section contains the description of the algorithm to compute multiple alternate trees for a given multicast LSP request. The algorithm first computes multiple ranking loopless shortest paths from source to each of destination in the multicast tree. Multiple alternate trees are then computed based on these paths. The following notations are used: N: number of vertices in the network; M: number of edges in the network; s: source of the request; D: set of destinations of the request; di: the ith destination of the request; n: number of destinations; P: set of ordered loopless paths from 8 to all di E D; Pi: set of ordered loopless paths from s to di; Pi]: the jth shortest path from s to di; T: set of alternate multicast trees; K: minimum number of alternate trees to be computed; m: number of maximum hops from 8 to all E D; if no such constraint, m = oo. The algorithm is split into two steps or procedures. Procedure 1 creates set. i.e., it computes a set of K loop less shortest paths for every pair (8,di), di E D. 3
4 Then, move to the next destination node di' The pseudocode for Procedure 2 is given next. Procedure 2: k+-0 T+-0 For (PiE P) For (pij E ) create a graph G(V, E), V +- 0, E +- 0 For vertex v E Pij V=VUv EndFor For edge e E Pij E=EUe EndFor For di' E D and i' =/= i e +-last edge of Pi'l While (v tf V) V=VUv E=EUe v = v's upstream vertex on Pi'l 5
5 Break Endlf EndFor 2.1 Algorithm Complexity This section evaluates the complexity of the proposed algorithm. Procedure 1 computes K shortest paths from source to all destinations of the multicast traffic. Since computing K shortest paths for a pair of vertices has complexity O(K N(M + N log N)) [6], the complexity of procedure 1 is O(nKN(M + Nlog N)). Procedure 2 has, at most, K iterations. Each iteration has three steps: 1. add vertices and edges of the lh shortest path from 8 to di to the tree; 2. add vertices and edges of the shortest path from s to di' ( i' =I i) to the tree; 3. if m < oo, count number of hops from 8 to each di in t. Since a shortest path can have at most M edges and at most M + 1 vertices, step 1 has complexity O(M); similarly step 2 has complexity O((n l)m); complexity of step 3 is 0( nm) since number of hops between any pair of vertices is at most M; so the complexity of procedure 2 is K(O((n- 1)M) + O(M) + O(n)) = O(KnM). Hence, the maximum complexity of the algorithm is 0( nk N ( M + N log N)) + 0( K nm) 0( nk ( N + 1) M +nk N log N)) = O(nK N ( M + N log N) ), which means the proposed algorithm complexity is comparable to the complexity of computing K shortest paths from a given source node to each destination, i.e., procedure 1 's complexity. 7
6 Plj' there are at least two edges e(v1, v2) E p1j and e'(v, v) E Plj' in the network that satisfy v1 =I= vi and v2 = v. Obviously, e Plj' and e' p1j; also, e and e' cannot both be in SPT, otherwise we will have two shortest paths from s to v 2, which is not possible; so either e or e' is not in SPT. Without loss of generality, we assume e is not in SPT, then e cannot appear in any path of Pil, combined with e Plj', we have e TJ'. We know e E p 1 j hence e E Tj, so Tj and Tj must be two different trees. 1. and 2. prove that a tree built based on Plj is distinct from a tree built based on Plj' when j =I= j'. Since j E {1,..., K}, at least K distinct trees can be built by the algorithm. The proof above is based on the assumption that the multicast request has no constraint on the number of hops from source to any destination. However, if the request has such constraint, then the algorithm will not guarantee that K distinct alternate trees can be found. This is quite obvious since if such constraint exists, even shortest path between source and a destination may not be found; in an extreme case when m = 1, no multicast tree can be built unless all destinations are 1 hop away from the source, which is highly unlikely in reality. 3. Experiments We designed two experiments to examine the effectiveness of the algorithm. In Experiment I, we mainly concerned the value of K's effect on the whole network optimization; in Experiment II, performance of the algorithm is evaluated when LSPs have constraint which does not allow hop count from source to destination to exceed certain number. 9
7 is large, improvement of one more alternate tree for optimization is relatively minimal and can even cause a reverse effect in some cases., 60 ] 50 '0 40 1iJ.D 30 w o w K Figure 1 Effect of K on number of used edges for multiple multicast requests. The network has 10 vertices and 60 unidirectional edges, N is number of multicast requests. 3.2 Experiment II Experiment II is similar to Experiment I, except that each request will have an extra constraint: hop count from source to each of the destinations cannot exceed certain value (m). Three cases are taken from Experiment I, which are network l(ivi = 10, lei = 60) with 25 multicast requests, network 2(IVI = 20, lei = 120) with 50 multicast requests and network 3(lVI = 50, lei = 300) with 75 multicast requests. Results of optimization are shown in Fig. 4, 5 and 6 under different maximum hop count constraints. From Experiment I we can see that K 5 usually provides fairly good optimization, so we set K = 5 11
8 300 ;., t, 240 z " N =l50 _.,... N = <-- N =loo \:-;". < ' ,,... _ _ K Figure 3 Effect of K on number of used edges for multiple multicast requests, the network has 50 vertices and 300 unidirectional edges, N is number of multicast requests. and 160 unidirectional edges and network 3 has 50 vertices and 400 unidirectional edges. For each edge in the network, it has maximum transmission capacity C. A number of multicast requests, with average number of destinations ranging from 2 to 8 and bandwidth request C /100, are randomly generated for each network. Simulated Annealing (SA) algorithm is used in the experiment to find the optimal usage of bandwidth, which is to minimize the number of required links in the network. SA keeps looking for a better solution during a certain amount of time by creating an alternate solution each time, which is generated by letting each request randomly choose one from all available trees for multicast. The purpose of these experiments is to find out degree of optimization of the whole network when alternate trees are available for multicast LSPs. 13
9 \""' <>----c Maximum hop allowed Figure 5 Effect of maximum hop count constraint on number of used edges for multiple multicast requests. The network has 20 vertices and 120 unidirectional edges, number of multicast requests is 50 and K Conclusion This paper presents an algorithm for computing alternate multicast tree candidates in a connected network topology. Both the algorithm and its complexity are based on the computation of K shortest paths - a widely used algorithm in networking. The purpose of computing multiple tree candidates for every individual multicast service request is to provide the network control plane with multiple options to choose from for every service, while optimizing some global cost function, e.g., bandwidth utilization, percentage of blocking. The effectiveness of the algorithm in computing alternate tree candidates was tested using a MPLS network example. The considered computation of both the K shortest paths and alternate tree candidates accounts for the maximum hop count constraint only. However, multicast in MPLS networks may be subject to other types of constraint, e.g., limited multicast functionality at 15
10 i ' 'S 50 I; N= N=75 -- N=50 : --- N=25 //r ""' -0'-x/' -/.._ K Figure 7 Effect of K on number of used edges for multiple multicast requests. The network has 10 vertices and 80 unidirectional edges, N is number of multicast requests. [6] E. Q. Martins and M. M. Pascoal, "A new implementation of yen's ranking loopless paths algorithm," Quarterly Journal of the Belgian, French and Italian Operations Research Societies, vol. 1, p. 121, [7] J. Hershberger, M. Maxel, and S. Suri, "Finding the k shortest simple paths: A new algorithm and its implementation," ACMTrans. Algorithms, vol. 3, no. 4, p. 45, [8] W. Wei and A. Zakhor, "Multiple tree video multicast over wireless ad hoc networks," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, no. 1, pp. 2-15, Jan
11 160 la ; 140 a ' '"'"' a:l..0 s z ;:::! L K Figure 9 Effect of K on number of used edges for multiple multicast requests, the network has 50 vertices and 400 unidirectional edges, N is number of multicast requests. 19
A ROUTING ALGORITHM FOR MPLS TRAFFIC ENGINEERING IN LEO SATELLITE CONSTELLATION NETWORK. Received September 2012; revised January 2013
International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 10, October 2013 pp. 4139 4149 A ROUTING ALGORITHM FOR MPLS TRAFFIC ENGINEERING
Analysis of Link Utilization in MPLS Enabled Network using OPNET IT Guru
Analysis of Link Utilization in MPLS Enabled Network using OPNET IT Guru Anupkumar M Bongale Assistant Professor Department of CSE MIT, Manipal Nithin N Assistant Professor Department of CSE MIT, Manipal
Load Balanced Optical-Network-Unit (ONU) Placement Algorithm in Wireless-Optical Broadband Access Networks
Load Balanced Optical-Network-Unit (ONU Placement Algorithm in Wireless-Optical Broadband Access Networks Bing Li, Yejun Liu, and Lei Guo Abstract With the broadband services increasing, such as video
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks
Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Faiz Ahmed Electronic Engineering Institute of Communication Technologies, PTCL
On the effect of forwarding table size on SDN network utilization
IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz
Enhanced Variable Splitting Ratio Algorithm for Effective Load Balancing in MPLS Networks
Journal of Computer Science 4 (3): 232-238, 2008 ISSN 1549-3636 2008 Science Publications Enhanced Variable Splitting Ratio Algorithm for Effective Load Balancing in MPLS Networks 1 G. Murugesan, 2 A.M.
Distributed Explicit Partial Rerouting (DEPR) Scheme for Load Balancing in MPLS Networks
Distributed Eplicit Partial Rerouting (DEPR) Scheme for Load Balancing in MPLS Networks Sherif Ibrahim Mohamed [email protected] Khaled M. F. Elsayed, senior member IEEE [email protected] Department
ENHANCED PROVISIONING ALGORITHM FOR VIRTUAL PRIVATE NETWORK IN HOSE MODEL WITH QUALITY OF SERVICE SUPPORT USING WAXMAN MODEL
R. RAVI: ENHANCED PROVISIONING ALGORITHM FOR VIRTUAL PRIVATE NETWORK IN HOSE MODEL WITH QUALITY OF SERVICE SUPPORT USING WAXMAN MODEL ENHANCED PROVISIONING ALGORITHM FOR VIRTUAL PRIVATE NETWORK IN HOSE
A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks
A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran [email protected]
MPLS - A Choice of Signaling Protocol
www.ijcsi.org 289 MPLS - A Choice of Signaling Protocol Muhammad Asif 1, Zahid Farid 2, Muhammad Lal 3, Junaid Qayyum 4 1 Department of Information Technology and Media (ITM), Mid Sweden University Sundsvall
An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks
An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks Arunkumar C K M.Tech student, Dept. of ECE, Dayananda Sagar College of Engineering, VTU, Banglore, India ABSTRACT: Increasing demand
Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors
2011 International Symposium on Computer Networks and Distributed Systems (CNDS), February 23-24, 2011 Hyper Node Torus: A New Interconnection Network for High Speed Packet Processors Atefeh Khosravi,
Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol
Lecture 2 : The DSDV Protocol Lecture 2.1 : The Distributed Bellman-Ford Algorithm Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol The Routing Problem S S D D The routing problem
Disjoint Path Algorithm for Load Balancing in MPLS network
International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 13 No. 1 Jan. 2015, pp. 193-199 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/
Path Selection Analysis in MPLS Network Based on QoS
Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt:36, No: 6 Özel Sayı (2015) ISSN: 1300-1949 Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 36, No: 6 Special
New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints
New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints Santosh Kulkarni 1, Reema Sharma 2,Ishani Mishra 3 1 Department of ECE, KSSEM Bangalore,MIEEE, MIETE & ISTE 2 Department
Policy-Based Fault Management for Integrating IP over Optical Networks
Policy-Based Fault Management for Integrating IP over Optical Networks Cláudio Carvalho 1, Edmundo Madeira 1, Fábio Verdi 2, and Maurício Magalhães 2 1 Institute of Computing (IC-UNICAMP) 13084-971 Campinas,
Network (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 [email protected],
Project Report on Traffic Engineering and QoS with MPLS and its applications
Project Report on Traffic Engineering and QoS with MPLS and its applications Brief Overview Multiprotocol Label Switching (MPLS) is an Internet based technology that uses short, fixed-length labels to
2004 Networks UK Publishers. Reprinted with permission.
Riikka Susitaival and Samuli Aalto. Adaptive load balancing with OSPF. In Proceedings of the Second International Working Conference on Performance Modelling and Evaluation of Heterogeneous Networks (HET
Data Center Network Structure using Hybrid Optoelectronic Routers
Data Center Network Structure using Hybrid Optoelectronic Routers Yuichi Ohsita, and Masayuki Murata Graduate School of Information Science and Technology, Osaka University Osaka, Japan {y-ohsita, murata}@ist.osaka-u.ac.jp
Comparison of RIP, EIGRP, OSPF, IGRP Routing Protocols in Wireless Local Area Network (WLAN) By Using OPNET Simulator Tool - A Practical Approach
Comparison of RIP, EIGRP, OSPF, IGRP Routing Protocols in Wireless Local Area Network (WLAN) By Using OPNET Simulator Tool - A Practical Approach U. Dillibabau 1, Akshay 2, M. Lorate Shiny 3 UG Scholars,
Router Group Monitoring: Making Traffic Trajectory Error Detection More Efficient
Router Group Monitoring: Making Traffic Trajectory Error Detection More Efficient Bo Zhang Guohui Wang Angela Yun Zhu T. S. Eugene Ng Department of Computer Science Rice University Abstract Detecting errors
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji
Dynamic Congestion-Based Load Balanced Routing in Optical Burst-Switched Networks
Dynamic Congestion-Based Load Balanced Routing in Optical Burst-Switched Networks Guru P.V. Thodime, Vinod M. Vokkarane, and Jason P. Jue The University of Texas at Dallas, Richardson, TX 75083-0688 vgt015000,
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering
RSVP- A Fault Tolerant Mechanism in MPLS Networks
RSVP- A Fault Tolerant Mechanism in MPLS Networks S.Ravi Kumar, M.Tech(NN) Assistant Professor Gokul Institute of Technology And Sciences Piridi, Bobbili, Vizianagaram, Andhrapradesh. Abstract: The data
Multiple Layer Traffic Engineering in NTT Network Service
Multi-layer traffic engineering in photonic-gmpls-router networks Naoaki Yamanaka, Masaru Katayama, Kohei Shiomoto, Eiji Oki and Nobuaki Matsuura * NTT Network Innovation Laboratories * NTT Network Service
How To Share Bandwidth On A Diffserv Network
Proceedings of the 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, 14-17 May 2007, Penang, Malaysia Bandwidth Sharing Scheme in DiffServ-aware
MAXIMIZING RESTORABLE THROUGHPUT IN MPLS NETWORKS
MAXIMIZING RESTORABLE THROUGHPUT IN MPLS NETWORKS 1 M.LAKSHMI, 2 N.LAKSHMI 1 Assitant Professor, Dept.of.Computer science, MCC college.pattukottai. 2 Research Scholar, Dept.of.Computer science, MCC college.pattukottai.
OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION
OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering
SBSCET, Firozpur (Punjab), India
Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based
A NEW APPROACH TO ENHANCE SECURITY IN MPLS NETWORK
A NEW APPROACH TO ENHANCE SECURITY IN MPLS NETWORK S.Veni 1 and Dr.G.M.Kadhar Nawaz 2 1 Research Scholar, Barathiar University, Coimbatore, India [email protected] 2 Director, Dept. of MCA, Sona College
Quality of Service Routing in Ad-Hoc Networks Using OLSR
Quality of Service Routing in Ad-Hoc Networks Using OLSR Ying Ge Communications Research Centre [email protected] Thomas Kunz Carleton University [email protected] Louise Lamont Communications Research
Performance of networks containing both MaxNet and SumNet links
Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for
A Catechistic Method for Traffic Pattern Discovery in MANET
A Catechistic Method for Traffic Pattern Discovery in MANET R. Saranya 1, R. Santhosh 2 1 PG Scholar, Computer Science and Engineering, Karpagam University, Coimbatore. 2 Assistant Professor, Computer
International Journal of Advanced Research in Computer Science and Software Engineering
Volume 2, Issue 9, September 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Experimental
Traffic protection in MPLS networks using an off-line flow optimization model
Traffic protection in MPLS networks using an off-line flow optimization model A.E. Krzesinski and K.E. Müller Department of Computer Science University of Stellenbosch, 76 Stellenbosch, South Africa Phone:
MPLS Traffic Engineering in ISP Network
MPLS Traffic Engineering in ISP Network Mohsin Khan Birmingham City University, England ABSTRACT Multi Protocol Label Switching (MPLS) is an innovative and vibrant technology. The most famous applications
Probe Station Placement for Robust Monitoring of Networks
Probe Station Placement for Robust Monitoring of Networks Maitreya Natu Dept. of Computer and Information Science University of Delaware Newark, DE, USA, 97 Email: [email protected] Adarshpal S. Sethi
Factors to Consider When Designing a Network
Quality of Service Routing for Supporting Multimedia Applications Zheng Wang and Jon Crowcroft Department of Computer Science, University College London Gower Street, London WC1E 6BT, United Kingdom ABSTRACT
Junos MPLS and VPNs (JMV)
Junos MPLS and VPNs (JMV) Course No: EDU-JUN-JMV Length: Five days Onsite Price: $32500 for up to 12 students Public Enrollment Price: $3500/student Course Level JMV is an advanced-level course. Prerequisites
Load Balancing Routing Algorithm for Data Gathering Sensor Network
Load Balancing Routing Algorithm for Data Gathering Sensor Network Evgeny Bakin, Grigory Evseev State University of Aerospace Instrumentation Saint-Petersburg, Russia {jenyb, egs}@vu.spb.ru Denis Dorum
MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport
MPLS-TP Future Ready. Today Introduction As data traffic started dominating telecom networks, there was a need for transport data networks, as opposed to transport TDM networks. Traditional transport technologies
A hierarchical multicriteria routing model with traffic splitting for MPLS networks
A hierarchical multicriteria routing model with traffic splitting for MPLS networks João Clímaco, José Craveirinha, Marta Pascoal jclimaco@inesccpt, jcrav@deecucpt, marta@matucpt University of Coimbra
Scaling 10Gb/s Clustering at Wire-Speed
Scaling 10Gb/s Clustering at Wire-Speed InfiniBand offers cost-effective wire-speed scaling with deterministic performance Mellanox Technologies Inc. 2900 Stender Way, Santa Clara, CA 95054 Tel: 408-970-3400
David Tipper Graduate Telecommunications and Networking Program. Telcom 2110 Network Design, Slides 11. WAN Network Design
WAN - VPN Network Design David Tipper Graduate Telecommunications and Networking Program University it of Pittsburgh Telcom 2110 Network Design, Slides 11 WAN Network Design WAN typically have a mesh or
Optimum Path Computation Algorithms for Multimedia and Real Time Services over IP-Networks
Optimum Path Computation Algorithms for Multimedia and Real Time Services over IP-Networks 1 Optimum Path Computation Algorithms for Multimedia and Real Time Services over IP-Networks Rajiv kumar, Yuvraj
VoIP versus VoMPLS Performance Evaluation
www.ijcsi.org 194 VoIP versus VoMPLS Performance Evaluation M. Abdel-Azim 1, M.M.Awad 2 and H.A.Sakr 3 1 ' ECE Department, Mansoura University, Mansoura, Egypt 2 ' SCADA and Telecom General Manager, GASCO,
Topology-based network security
Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the
Data Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
A Load Balancing Scheme for Congestion Control in MPLS Networks
A Load Balancing Scheme for Congestion Control in MPLS Networks Elio Salvadori, Roberto Battiti UniversitàdiTrento Dipartimento di Informatica e Telecomunicazioni via Sommarive 14, 38050 Povo (TN), Italy
Leveraging Advanced Load Sharing for Scaling Capacity to 100 Gbps and Beyond
Leveraging Advanced Load Sharing for Scaling Capacity to 100 Gbps and Beyond Ananda Rajagopal Product Line Manager Service Provider Solutions Foundry Networks [email protected] Agenda 2 Why Load
Simulation of Heuristic Usage for Load Balancing In Routing Efficiency
Simulation of Heuristic Usage for Load Balancing In Routing Efficiency Nor Musliza Mustafa Fakulti Sains dan Teknologi Maklumat, Kolej Universiti Islam Antarabangsa Selangor [email protected] Abstract.
A New Forwarding Policy for Load Balancing in Communication Networks
A New Forwarding Policy for Load Balancing in Communication Networks Martin Heusse Yvon Kermarrec ENST de Bretagne BP 83, 985 Brest Cedex, France [email protected] Abstract We present in this
Ring Protection: Wrapping vs. Steering
Ring Protection: Wrapping vs. Steering Necdet Uzun and Pinar Yilmaz March 13, 2001 Contents Objectives What are wrapping and steering Single/dual fiber cut Comparison of wrapping and steering Simulation
Introducing Basic MPLS Concepts
Module 1-1 Introducing Basic MPLS Concepts 2004 Cisco Systems, Inc. All rights reserved. 1-1 Drawbacks of Traditional IP Routing Routing protocols are used to distribute Layer 3 routing information. Forwarding
A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks
A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks T.Chandrasekhar 1, J.S.Chakravarthi 2, K.Sravya 3 Professor, Dept. of Electronics and Communication Engg., GIET Engg.
100Gigabit and Beyond: Increasing Capacity in IP/MPLS Networks Today Rahul Vir Product Line Manager Foundry Networks rvir@foundrynet.
100Gigabit and Beyond: Increasing Capacity in IP/MPLS Networks Today Rahul Vir Product Line Manager Foundry Networks [email protected] 1 Agenda 2 40GE/100GE Timeline to Standardization The Ethernet Alliance
(a) (b) (a) A network example. (b) The associated graph. Fig. 2. Three possible VPN configurations for the example in Fig. 1.
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 6, DECEMBER 2000 775 On the Cost of Virtual Private Networks Reuven Cohen, Senior Member, IEEE, and Gideon Kaempfer Abstract A virtual private network (VPN)
Enterprise Computer Network Reliability Analysis
, pp. 285-294 http://dx.doi.org/10.14257/ijmue.2015.10.1.28 Enterprise Computer Networ Reliability Analysis Yongfeng Cui, Wei Liu and Ya Li School of Science and Technology, Zhouou Normal University, Zhouou
LOAD BALANCING IN WDM NETWORKS THROUGH DYNAMIC ROUTE CHANGES
LOAD BALANCING IN WDM NETWORKS THROUGH DYNAMIC ROUTE CHANGES S.Ramanathan 1, G.Karthik 1, Ms.G.Sumathi 2 1 Dept. of computer science Sri Venkateswara College of engineering, Sriperumbudur, 602 105. 2 Asst.professor,
Three Effective Top-Down Clustering Algorithms for Location Database Systems
Three Effective Top-Down Clustering Algorithms for Location Database Systems Kwang-Jo Lee and Sung-Bong Yang Department of Computer Science, Yonsei University, Seoul, Republic of Korea {kjlee5435, yang}@cs.yonsei.ac.kr
CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS
137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring
Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring Qiang Zheng, Student Member, IEEE, and Guohong Cao, Fellow, IEEE Department of Computer Science and Engineering
PROTOTYPE TO DESIGN A LEASED LINE TELEPHONE NETWORK CONNECTING LOCATIONS TO MINIMIZE THE INSTALLATION COST
PROTOTYPE TO DESIGN A LEASED LINE TELEPHONE NETWORK CONNECTING LOCATIONS TO MINIMIZE THE INSTALLATION COST Abstract ARCHANA SHARMA Research Scholar, Computer Science and Enginering Department,, NIMS University,
MPLS L2VPN (VLL) Technology White Paper
MPLS L2VPN (VLL) Technology White Paper Issue 1.0 Date 2012-10-30 HUAWEI TECHNOLOGIES CO., LTD. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any
Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM
Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM Rose Ann Cyril Post Graduate Student, Department of Information Technology, Rajagiri School of Engineering & Technology, Kerala,
How To Provide Qos Based Routing In The Internet
CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this
Network traffic engineering
Toolbox, hybrid IP/MPLS optimisation method and fairness Research Unit in Networking EECS Department University of Liège 13 September 005 Outline 1 3 4 5 Outline MPLS principles 1 MPLS principles 3 4 5
QoS Implementation For MPLS Based Wireless Networks
QoS Implementation For MPLS Based Wireless Networks Subramanian Vijayarangam and Subramanian Ganesan Oakland University, Rochester, Michigan Abstract : Voice has been the primary application in wireless
Comparison of WCA with AODV and WCA with ACO using clustering algorithm
Comparison of WCA with AODV and WCA with ACO using clustering algorithm Deepthi Hudedagaddi, Pallavi Ravishankar, Rakesh T M, Shashikanth Dengi ABSTRACT The rapidly changing topology of Mobile Ad hoc networks
3D On-chip Data Center Networks Using Circuit Switches and Packet Switches
3D On-chip Data Center Networks Using Circuit Switches and Packet Switches Takahide Ikeda Yuichi Ohsita, and Masayuki Murata Graduate School of Information Science and Technology, Osaka University Osaka,
How To Balance Network Load In A Wireless Sensor Network
Balancing Network Traffic Load in Geographic Hash Table (GHT) R. Asha, V.Manju, Meka Sindhu & T. Subha Department of Information Technology, Sri Sai Ram Engineering College, Chennai. E-mail : [email protected],
Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain
Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1
Influences of Communication Disruptions on Decentralized Routing in Transport Logistics
Influences of Communication Disruptions on Decentralized Routing in Transport Logistics Bernd Scholz-Reiter, Christian Zabel BIBA Bremer Institut für Produktion und Logistik GmbH University of Bremen Hochschulring
Per-Packet Load Balancing
Per-Packet Load Balancing Feature History Release 12.0(19)ST 12.0(21)S 12.0(22)S Modification This feature was introduced on the Cisco 10000 series routers. This feature was introduced on the Cisco 12000
Enterprise Network Simulation Using MPLS- BGP
Enterprise Network Simulation Using MPLS- BGP Tina Satra 1 and Smita Jangale 2 1 Department of Computer Engineering, SAKEC, Chembur, Mumbai-88, India [email protected] 2 Department of Information Technolgy,
MPLS Part II - Recovery
MPLS Part II - Recovery Outline Introduction MPLS Recovery Framework MPLS Mechanism for Protection/Restoration Shared Backup LSP Restoration Fast reroute RSVP-TE Recovery A Heuristic Restoration Approach
Multiobjective Multicast Routing Algorithm
Multiobjective Multicast Routing Algorithm Jorge Crichigno, Benjamín Barán P. O. Box 9 - National University of Asunción Asunción Paraguay. Tel/Fax: (+9-) 89 {jcrichigno, bbaran}@cnc.una.py http://www.una.py
Max Flow, Min Cut, and Matchings (Solution)
Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes
Stability of QOS. Avinash Varadarajan, Subhransu Maji {avinash,smaji}@cs.berkeley.edu
Stability of QOS Avinash Varadarajan, Subhransu Maji {avinash,smaji}@cs.berkeley.edu Abstract Given a choice between two services, rest of the things being equal, it is natural to prefer the one with more
Performance advantages of resource sharing in polymorphic optical networks
R. J. Durán, I. de Miguel, N. Merayo, P. Fernández, R. M. Lorenzo, E. J. Abril, I. Tafur Monroy, Performance advantages of resource sharing in polymorphic optical networks, Proc. of the 0th European Conference
BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS. BCS Level 5 Diploma in IT SEPTEMBER 2014. Computer Networks EXAMINERS REPORT
BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT SEPTEMBER 2014 Computer Networks EXAMINERS REPORT General Comments This session is again like the April
Decentralized Utility-based Sensor Network Design
Decentralized Utility-based Sensor Network Design Narayanan Sadagopan and Bhaskar Krishnamachari University of Southern California, Los Angeles, CA 90089-0781, USA [email protected], [email protected]
Chapter 1. Introduction
Chapter 1 Introduction 1.1. Motivation Network performance analysis, and the underlying queueing theory, was born at the beginning of the 20th Century when two Scandinavian engineers, Erlang 1 and Engset
SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET
SECURE DATA TRANSMISSION USING INDISCRIMINATE DATA PATHS FOR STAGNANT DESTINATION IN MANET MR. ARVIND P. PANDE 1, PROF. UTTAM A. PATIL 2, PROF. B.S PATIL 3 Dept. Of Electronics Textile and Engineering
A Fast Path Recovery Mechanism for MPLS Networks
A Fast Path Recovery Mechanism for MPLS Networks Jenhui Chen, Chung-Ching Chiou, and Shih-Lin Wu Department of Computer Science and Information Engineering Chang Gung University, Taoyuan, Taiwan, R.O.C.
John Ragan Director of Product Management. Billy Wise Communications Specialist
John Ragan Director of Product Management Billy Wise Communications Specialist Current Substation Communications Physical Infrastructure Twisted Pair, 4 Wire, COAX, Cat5 & Cat6, 9 Pin Serial Cable, Single-mode
