Artificial Neural Networks

Size: px
Start display at page:

Download "Artificial Neural Networks"

Transcription

1 Artificial Neural Networks Oliver Schulte School of Computing Science Simon Fraser University

2 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will focus on multi-layer perceptrons Mathematical properties rather than biological plausibility

3 Uses of Neural Networks Pros Good for continuous input variables. General continuous function approximators. Highly non-linear. Learn features. Good to use in continuous domains with little knowledge: When you don t know good features. You don t know the form of a good functional model. Cons Not interpretable, black box. Learning is slow. Good generalization can require many datapoints.

4 Applications There are many, many applications. World-Champion Backgammon Player. No Hands Across America Tour. www/nhaa/nhaa_home_page.html Digit Recognition with 99.26% accuracy. Speech Recognition features/speechrecognition aspx

5 Outline Feed-forward Networks Network Training Error Backpropagation Correctness Proof for Backpropagation Applications

6 Outline Feed-forward Networks Network Training Error Backpropagation Correctness Proof for Backpropagation Applications

7 Neurons Starting with input x = (x 1,..., x D ), construct linear combinations: D a j = w (1) ji x i + w (1) j0 i=1 These a j are known as activations Pass through an activation function h( ) to get output z j = h(a j ) Model of an individual neuron from Russell and Norvig, AIMA2e

8 Neurons Starting with input x = (x 1,..., x D ), construct linear combinations: D a j = w (1) ji x i + w (1) j0 i=1 These a j are known as activations Pass through an activation function h( ) to get output z j = h(a j ) Model of an individual neuron from Russell and Norvig, AIMA2e

9 Neurons Starting with input x = (x 1,..., x D ), construct linear combinations: D a j = w (1) ji x i + w (1) j0 i=1 These a j are known as activations Pass through an activation function h( ) to get output z j = h(a j ) Model of an individual neuron from Russell and Norvig, AIMA2e

10 Activation Functions Can use a variety of activation functions Sigmoidal (S-shaped) Logistic sigmoid 1/(1 + exp( a)) (useful for binary classification) Hyperbolic tangent tanh Radial basis function z j = i (x i w ji ) 2 Softmax Useful for multi-class classification Hard Threshold Rectified Linear Unit (deep learning)... Should be differentiable for gradient-based learning (later) Can use different activation functions in each unit

11 Activation Functions Visualized x x Left Threshold Middle Logistic sigmoid Logistic(x) = 1 1+exp( x) (useful for binary classification) Right Logistic regression Logistic(w x)

12 Feed-forward Networks Connect together a number of these units into a feed-forward network (DAG) Above shows a network with one layer of hidden units Implements function: M y k (x, w) = h w (2) kj h j=1 ( D i=1 w (1) ji x i + w (1) j0 See ) + w (2) k0

13 No Hands Across America Sharp Left Straight Ahead Sharp Right 30 Output Units 4 Hidden Units 30x32 Sensor Input Retina

14 target t output z z 1 A general network t 1 t 2 t k t c z 2 z k z c output w kj y 1 y 2 y j y nh hidden input x w ji x 1 x 2 x i x d x 1 x 2 x i x d input FIGURE 6.4. A d-n H -c fully connected three-layer network and the notation we shall

15 Function Composition Think logic circuits h W (x 1, x 2 ) x x 2 h W (x 1, x 2 ) x Two opposite-facing sigmoids = ridge. Two ridges = bump. 2 4 x 2

16 x 1 x 2 The XOR Problem x 2 1 z=-1 R 2 z= R 2 z=-1 R 1 x 1-1

17 The XOR Problem Solved 1 z x z k 0-1 x 1 1 output k y 1 y 2 x x 1 bias y 1 y 2 1 w kj hidden j w ji x 1 1 x 2 input i x 1 x 2

18 Hidden Units Compute Basis Functions red dots = network function 3 dashed lines = 3 hidden unit activation functions. blue dots = data points + target values Network function is roughly the sum of activation functions.

19 Hidden Units As Feature Extractors sample training patterns learned input-to-hidden weights FIGURE The top images represent patterns from a large training set used to train a 64 input nodes sigmoidal network for classifying three characters. The bottom figures show the input-to-hidden 2 hidden weights, unitsrepresented as patterns, at the two hidden units after training. Note that 2xthese learned learned weights vector indeedat describe hidden feature unitgroupings useful for the classification task. In large networks, such patterns of learned weights may be difficult to

20 Representational Power of Neural Nets For fixed input size n. Boolean Functions Every Boolean function can be represented by some network with 1 hidden layer. May need exponentially many hidden units (motivates deep networks). Continuous Functions Every bounded continuous function can be approximated by a network with 1 hidden layer. Hidden units can use sigmoid activations, output units linear. Arbitrary Functions Any function can be approximated with a network with 2 hidden layers (motivates deep networks). Hidden units can be sigmoids, output units linear.

21 Outline Feed-forward Networks Network Training Error Backpropagation Correctness Proof for Backpropagation Applications

22 Network Training Given a specified network structure, how do we set its parameters (weights)? As usual, we define a criterion to measure how well our network performs, optimize against it For regression, training data are (x n, t), t n R Squared error naturally arises: 1 N 2 E(w) = {y(x n, w) t n } 2 n=1

23 Network Training Given a specified network structure, how do we set its parameters (weights)? As usual, we define a criterion to measure how well our network performs, optimize against it For regression, training data are (x n, t), t n R Squared error naturally arises: 1 N 2 E(w) = {y(x n, w) t n } 2 n=1

24 Parameter Optimization E(w) w A w B wc w 1 w 2 E For either of these problems, the error function E(w) is nasty Nasty = non-convex Non-convex = has local minima

25 Descent Methods The typical strategy for optimization problems of this sort is a descent method: w (τ+1) = w (τ) + ηw (τ) These come in many flavours Gradient descent E(w (τ) ) Stochastic gradient descent E n (w (τ) ) Newton-Raphson (second order) 2 All of these can be used here, stochastic gradient descent is particularly effective Redundancy in training data, escaping local minima

26 Descent Methods The typical strategy for optimization problems of this sort is a descent method: w (τ+1) = w (τ) + ηw (τ) These come in many flavours Gradient descent E(w (τ) ) Stochastic gradient descent E n (w (τ) ) Newton-Raphson (second order) 2 All of these can be used here, stochastic gradient descent is particularly effective Redundancy in training data, escaping local minima

27 Descent Methods The typical strategy for optimization problems of this sort is a descent method: w (τ+1) = w (τ) + ηw (τ) These come in many flavours Gradient descent E(w (τ) ) Stochastic gradient descent E n (w (τ) ) Newton-Raphson (second order) 2 All of these can be used here, stochastic gradient descent is particularly effective Redundancy in training data, escaping local minima

28 Computing Gradients The function y(x n, w) implemented by a network is complicated It isn t obvious how to compute error function derivatives with respect to hidden weights. The credit assignment problem.

29 Outline Feed-forward Networks Network Training Error Backpropagation Correctness Proof for Backpropagation Applications

30 Error Backpropagation Backprop is an efficient method for computing error derivatives En w ji for all nodes in the network. Intuition: 1. Calculating derivatives for weights connected to output nodes is easy. 2. Treat the derivatives as virtual error, compute derivative of error for nodes in previous layer. 3. Repeat until you reach input nodes. Propagates backwards the output error signal through the network.

31 Functional Picture for NN a j # z j =#g(a j )# w kj# a k# Keep in mind this picture.

32 Error at the output nodes First, feed training example x n forward through the network, storing all activations a j Calculating derivatives for weights connected to output nodes is easy For output node with activation y k = g(a k ) and target t n, define δ k (t n y k )g (a k ). Gradient Descent Update: w kj w kj + ηδ k z j. 0 if no error or if input z j from node j is 0.

33 Error at the output nodes First, feed training example x n forward through the network, storing all activations a j Calculating derivatives for weights connected to output nodes is easy For output node with activation y k = g(a k ) and target t n, define δ k (t n y k )g (a k ). Gradient Descent Update: w kj w kj + ηδ k z j. 0 if no error or if input z j from node j is 0.

34 Error at the hidden nodes Consider a hidden node j connected to output nodes. Intuition: δ k is node activation derivative, times output error. The error signal δ j is node activation derivative, times the weighted sum of contributions to the output errors. In symbols, δ j = g (a j ) k w kj δ k. Gradient Descent Update: w ji w ji + ηδ j z i.

35 Backpropagation Picture output ω 1 ω 2 ω 3 ω k ω c δ 1 δ 2 δ 3 δ k δ c w kj hidden δ j w ij input FIGURE The error 6.5. The signal sensitivity at a at hidden a unit unit is is to the weighted sum of the sensitivities the output units: δ j = f (net j ) proportional to the error c signals at the units influences: k=1 w kjδ k.theoutputunitsensitivitiesare thus propagated back to the hidden units. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c 2001 by John Wiley & Sons, Inc. δ j = g (a j ) w kj δ k k

36 The Backpropagation Algorithm 1. Apply input vector x n and forward propagate to find all activation levels a i and output levels z i. 2. Evaluate the error signals δ k for all output nodes. 3. Backpropagate the δ k to obtain error signals δ j for each hidden node. 4. Perform the gradient descent updates for each weight vector w ji. Demo AIspace

37 Outline Feed-forward Networks Network Training Error Backpropagation Correctness Proof for Backpropagation Applications

38 Multi-variate Chain Rule u" x" y" f " For f (x, y), with f differentiable wrt x and y, and x and y differentiable wrt u and v: f u = and f x x u + f y y u f v = f x x v + f y y v

39 Chain Rule Exercise a j # z j =#g(a j )# w kj# a k# Exercise: From this functional diagram find expressions for the following quantities: a k w kj. a k a j.

40 Backpropagation = Gradient Descent a j # z j =#g(a j )# w kj# a k# We need to show that En w kj = δ k z j. This follows easily given the following result Theorem For each node i, we have δ i = En a i. Proof given theorem: En w kj = En a k Next we prove the theorem. a k w kj = δ k z j.

41 Proof of Theorem, I We want to show that δ j = En a j. Think of the error as a function of the activation levels of the nodes after node j. Formally, we can write En a j = a j E n (a j1, a j2,..., a jm ) where {j i } are the indices of the nodes that receive input from j. Now using the multi-variate chain rule, we have E n a j = m k=1 E n a k a k a j We have seen that a k a j = w kj g (a j ). a j # z j =#g(a j )# w kj# a k#

42 Proof of Theorem, I We want to show that δ j = En a j. Think of the error as a function of the activation levels of the nodes after node j. Formally, we can write En a j = a j E n (a j1, a j2,..., a jm ) where {j i } are the indices of the nodes that receive input from j. Now using the multi-variate chain rule, we have E n a j = m k=1 E n a k a k a j We have seen that a k a j = w kj g (a j ). a j # z j =#g(a j )# w kj# a k#

43 Proof of Theorem, II We want to show that δ j = En a j. Proof by backward induction. Easy to see that the claim is true for output nodes. (Exercise). Inductive step: Consider node j and suppose that δ k = En a k for all nodes k that receive input from j. Using the multivariate chain rule, we have E n a j = = m k=1 m k=1 E n a k a k a j δ k a k a j = m δ k w kj g (a j ) = δ j. k=1 where step 1 applies the inductive hypothesis, step 2 the result from the previous slide, and step 3 the definition of δ j.

44 Other Learning Topics Regularization: L2-regularizer (weight decay). Experimenting with Network Architectures is often key. Learn Architecture Prune Weights: the Optimal Brain Damage Method. Grow Network: Tiling, Cascade-Correlation Algorithm.

45 Outline Feed-forward Networks Network Training Error Backpropagation Correctness Proof for Backpropagation Applications

46 Applications of Neural Networks Many success stories for neural networks Credit card fraud detection Hand-written digit recognition Face detection Autonomous driving (CMU ALVINN)

47 Hand-written Digit Recognition MNIST - standard dataset for hand-written digit recognition training, test images

48 LeNet-5 INPUT 32x32 C1: feature maps C3: f. maps S4: f. maps S2: f. maps C5: layer 120 F6: layer 84 OUTPUT 10 Convolutions Subsampling Convolutions Full connection Gaussian connections Subsampling Full connection LeNet developed by Yann LeCun et al. Convolutional neural network Local receptive fields (5x5 connectivity) Subsampling (2x2) Shared weights (reuse same 5x5 filter ) Breaking symmetry See Also deep learning tutorial.

49 4!>6 3!>5 8!>2 2!>1 5!>3 4!>8 2!>8 3!>5 6!>5 7!>3 9!>4 8!>0 7!>8 5!>3 8!>7 0!>6 3!>7 2!>7 8!>3 9!>4 8!>2 5!>3 4!>8 3!>9 6!>0 9!>8 4!>9 6!>1 9!>4 9!>1 9!>4 2!>0 6!>1 3!>5 3!>2 9!>5 6!>0 6!>0 6!>0 6!>8 4!>6 7!>3 9!>4 4!>6 2!>7 9!>7 4!>3 9!>4 9!>4 9!>4 8!>7 4!>2 8!>4 3!>5 8!>4 6!>5 8!>5 3!>8 3!>8 9!>8 1!>5 9!>8 6!>3 0!>2 6!>5 9!>5 0!>7 1!>6 4!>9 2!>1 2!>8 8!>5 4!>9 7!>2 7!>2 6!>5 9!>7 6!>1 5!>6 5!>0 4!>9 2!>8 The 82 errors made by LeNet5 (0.82% test error rate)

50 Conclusion Feed-forward networks can be used for predicting discrete or continuous target variables Very expressive, can approximate arbitrary continuous functions. Different activation functions possible. Learning is more difficult, error function not convex Use stochastic gradient descent, obtain (good?) local minimum Backpropagation for efficient gradient computation.

Lecture 8 February 4

Lecture 8 February 4 ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt

More information

Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승

Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption

More information

Lecture 6. Artificial Neural Networks

Lecture 6. Artificial Neural Networks Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm

More information

An Introduction to Neural Networks

An Introduction to Neural Networks An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,

More information

Chapter 4: Artificial Neural Networks

Chapter 4: Artificial Neural Networks Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/

More information

Neural Networks and Support Vector Machines

Neural Networks and Support Vector Machines INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines

More information

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

More information

Neural Networks in Quantitative Finance

Neural Networks in Quantitative Finance Neural Networks in Quantitative Finance Master Thesis submitted to Prof. Dr. Wolfgang Härdle Institute for Statistics and Econometrics CASE - Center for Applied Statistics and Economics Humboldt-Universität

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

Assessing Data Mining: The State of the Practice

Assessing Data Mining: The State of the Practice Assessing Data Mining: The State of the Practice 2003 Herbert A. Edelstein Two Crows Corporation 10500 Falls Road Potomac, Maryland 20854 www.twocrows.com (301) 983-3555 Objectives Separate myth from reality

More information

Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python. Vikram Kamath Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

More information

Analecta Vol. 8, No. 2 ISSN 2064-7964

Analecta Vol. 8, No. 2 ISSN 2064-7964 EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,

More information

Advanced analytics at your hands

Advanced analytics at your hands 2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously

More information

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

More information

Stock Prediction using Artificial Neural Networks

Stock Prediction using Artificial Neural Networks Stock Prediction using Artificial Neural Networks Abhishek Kar (Y8021), Dept. of Computer Science and Engineering, IIT Kanpur Abstract In this work we present an Artificial Neural Network approach to predict

More information

Machine Learning: Multi Layer Perceptrons

Machine Learning: Multi Layer Perceptrons Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61 Outline multi layer perceptrons

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time

More information

Role of Neural network in data mining

Role of Neural network in data mining Role of Neural network in data mining Chitranjanjit kaur Associate Prof Guru Nanak College, Sukhchainana Phagwara,(GNDU) Punjab, India Pooja kapoor Associate Prof Swami Sarvanand Group Of Institutes Dinanagar(PTU)

More information

Lecture 9: Introduction to Pattern Analysis

Lecture 9: Introduction to Pattern Analysis Lecture 9: Introduction to Pattern Analysis g Features, patterns and classifiers g Components of a PR system g An example g Probability definitions g Bayes Theorem g Gaussian densities Features, patterns

More information

NEURAL NETWORKS A Comprehensive Foundation

NEURAL NETWORKS A Comprehensive Foundation NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments

More information

Feedforward Neural Networks and Backpropagation

Feedforward Neural Networks and Backpropagation Feedforward Neural Networks and Backpropagation Feedforward neural networks Architectural issues, computational capabilities Sigmoidal and radial basis functions Gradient-based learning and Backprogation

More information

Machine Learning. 01 - Introduction

Machine Learning. 01 - Introduction Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge

More information

Neural Networks algorithms and applications

Neural Networks algorithms and applications Neural Networks algorithms and applications By Fiona Nielsen 4i 12/12-2001 Supervisor: Geert Rasmussen Niels Brock Business College 1 Introduction Neural Networks is a field of Artificial Intelligence

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence

More information

Learning is a very general term denoting the way in which agents:

Learning is a very general term denoting the way in which agents: What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons University of Cambridge Engineering Part IIB Module 4F0: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons x y (x) Inputs x 2 y (x) 2 Outputs x d First layer Second Output layer layer y

More information

Data Mining Techniques Chapter 7: Artificial Neural Networks

Data Mining Techniques Chapter 7: Artificial Neural Networks Data Mining Techniques Chapter 7: Artificial Neural Networks Artificial Neural Networks.................................................. 2 Neural network example...................................................

More information

degrees of freedom and are able to adapt to the task they are supposed to do [Gupta].

degrees of freedom and are able to adapt to the task they are supposed to do [Gupta]. 1.3 Neural Networks 19 Neural Networks are large structured systems of equations. These systems have many degrees of freedom and are able to adapt to the task they are supposed to do [Gupta]. Two very

More information

Neural Networks and Back Propagation Algorithm

Neural Networks and Back Propagation Algorithm Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland mirzac@gmail.com Abstract Neural Networks (NN) are important

More information

Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis

Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149-163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al al-bayt

More information

Learning to Process Natural Language in Big Data Environment

Learning to Process Natural Language in Big Data Environment CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview

More information

Follow links Class Use and other Permissions. For more information, send email to: permissions@pupress.princeton.edu

Follow links Class Use and other Permissions. For more information, send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: David A. Kendrick, P. Ruben Mercado, and Hans M. Amman: Computational Economics is published by Princeton University Press and copyrighted, 2006, by Princeton University Press. All rights

More information

Chapter 12 Discovering New Knowledge Data Mining

Chapter 12 Discovering New Knowledge Data Mining Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Deep Learning Barnabás Póczos & Aarti Singh Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Machine Learning and Data Mining -

Machine Learning and Data Mining - Machine Learning and Data Mining - Perceptron Neural Networks Nuno Cavalheiro Marques (nmm@di.fct.unl.pt) Spring Semester 2010/2011 MSc in Computer Science Multi Layer Perceptron Neurons and the Perceptron

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

Neural network software tool development: exploring programming language options

Neural network software tool development: exploring programming language options INEB- PSI Technical Report 2006-1 Neural network software tool development: exploring programming language options Alexandra Oliveira aao@fe.up.pt Supervisor: Professor Joaquim Marques de Sá June 2006

More information

CSC 411: Lecture 07: Multiclass Classification

CSC 411: Lecture 07: Multiclass Classification CSC 411: Lecture 07: Multiclass Classification Class based on Raquel Urtasun & Rich Zemel s lectures Sanja Fidler University of Toronto Feb 1, 2016 Urtasun, Zemel, Fidler (UofT) CSC 411: 07-Multiclass

More information

TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC

TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC 777 TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC M.R. Walker. S. Haghighi. A. Afghan. and L.A. Akers Center for Solid State Electronics Research Arizona State University Tempe. AZ 85287-6206 mwalker@enuxha.eas.asu.edu

More information

Data Mining using Artificial Neural Network Rules

Data Mining using Artificial Neural Network Rules Data Mining using Artificial Neural Network Rules Pushkar Shinde MCOERC, Nasik Abstract - Diabetes patients are increasing in number so it is necessary to predict, treat and diagnose the disease. Data

More information

Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems

Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Impact of Feature Selection on the Performance of ireless Intrusion Detection Systems

More information

Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation

Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation Neural Networks for Machine Learning Lecture 13a The ups and downs of backpropagation Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed A brief history of backpropagation

More information

Multiple Layer Perceptron Training Using Genetic Algorithms

Multiple Layer Perceptron Training Using Genetic Algorithms Multiple Layer Perceptron Training Using Genetic Algorithms Udo Seiffert University of South Australia, Adelaide Knowledge-Based Intelligent Engineering Systems Centre (KES) Mawson Lakes, 5095, Adelaide,

More information

Novelty Detection in image recognition using IRF Neural Networks properties

Novelty Detection in image recognition using IRF Neural Networks properties Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban Université de Haute-Alsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg

Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg Steven C.H. Hoi School of Information Systems Singapore Management University Email: chhoi@smu.edu.sg Introduction http://stevenhoi.org/ Finance Recommender Systems Cyber Security Machine Learning Visual

More information

SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK

SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,

More information

MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL

MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL G. Maria Priscilla 1 and C. P. Sumathi 2 1 S.N.R. Sons College (Autonomous), Coimbatore, India 2 SDNB Vaishnav College

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher

More information

Biological Neurons and Neural Networks, Artificial Neurons

Biological Neurons and Neural Networks, Artificial Neurons Biological Neurons and Neural Networks, Artificial Neurons Neural Computation : Lecture 2 John A. Bullinaria, 2015 1. Organization of the Nervous System and Brain 2. Brains versus Computers: Some Numbers

More information

Artificial neural networks

Artificial neural networks Artificial neural networks Now Neurons Neuron models Perceptron learning Multi-layer perceptrons Backpropagation 2 It all starts with a neuron 3 Some facts about human brain ~ 86 billion neurons ~ 10 15

More information

Simplified Machine Learning for CUDA. Umar Arshad @arshad_umar Arrayfire @arrayfire

Simplified Machine Learning for CUDA. Umar Arshad @arshad_umar Arrayfire @arrayfire Simplified Machine Learning for CUDA Umar Arshad @arshad_umar Arrayfire @arrayfire ArrayFire CUDA and OpenCL experts since 2007 Headquartered in Atlanta, GA In search for the best and the brightest Expert

More information

Implementation of Neural Networks with Theano. http://deeplearning.net/tutorial/

Implementation of Neural Networks with Theano. http://deeplearning.net/tutorial/ Implementation of Neural Networks with Theano http://deeplearning.net/tutorial/ Feed Forward Neural Network (MLP) Hidden Layer Object Hidden Layer Object Hidden Layer Object Logistic Regression Object

More information

IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,...

IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,... IFT3395/6390 Historical perspective: back to 1957 (Prof. Pascal Vincent) (Rosenblatt, Perceptron ) Machine Learning from linear regression to Neural Networks Computer Science Artificial Intelligence Symbolic

More information

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling 1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information

More information

Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

More information

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks POLYTECHNIC UNIVERSITY Department of Computer and Information Science Introduction to Artificial Neural Networks K. Ming Leung Abstract: A computing paradigm known as artificial neural network is introduced.

More information

Feature Engineering in Machine Learning

Feature Engineering in Machine Learning Research Fellow Faculty of Information Technology, Monash University, Melbourne VIC 3800, Australia August 21, 2015 Outline A Machine Learning Primer Machine Learning and Data Science Bias-Variance Phenomenon

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Prediction Model for Crude Oil Price Using Artificial Neural Networks

Prediction Model for Crude Oil Price Using Artificial Neural Networks Applied Mathematical Sciences, Vol. 8, 2014, no. 80, 3953-3965 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43193 Prediction Model for Crude Oil Price Using Artificial Neural Networks

More information

Application of Neural Networks to Character Recognition

Application of Neural Networks to Character Recognition Proceedings of Students/Faculty Research Day, CSIS, Pace University, May 4th, 2007 Application of Neural Networks to Character Recognition Abstract Dong Xiao Ni Seidenberg School of CSIS, Pace University,

More information

Data Mining mit der JMSL Numerical Library for Java Applications

Data Mining mit der JMSL Numerical Library for Java Applications Data Mining mit der JMSL Numerical Library for Java Applications Stefan Sineux 8. Java Forum Stuttgart 07.07.2005 Agenda Visual Numerics JMSL TM Numerical Library Neuronale Netze (Hintergrund) Demos Neuronale

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /

More information

New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction

New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.

More information

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

More information

NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS

NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS NEURAL NETWORK FUNDAMENTALS WITH GRAPHS, ALGORITHMS, AND APPLICATIONS N. K. Bose HRB-Systems Professor of Electrical Engineering The Pennsylvania State University, University Park P. Liang Associate Professor

More information

Deep Learning for Multivariate Financial Time Series. Gilberto Batres-Estrada

Deep Learning for Multivariate Financial Time Series. Gilberto Batres-Estrada Deep Learning for Multivariate Financial Time Series Gilberto Batres-Estrada June 4, 2015 Abstract Deep learning is a framework for training and modelling neural networks which recently have surpassed

More information

American International Journal of Research in Science, Technology, Engineering & Mathematics

American International Journal of Research in Science, Technology, Engineering & Mathematics American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-349, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

6.2.8 Neural networks for data mining

6.2.8 Neural networks for data mining 6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural

More information

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling

NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling 1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information

More information

INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr.

INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. Meisenbach M. Hable G. Winkler P. Meier Technology, Laboratory

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

SMORN-VII REPORT NEURAL NETWORK BENCHMARK ANALYSIS RESULTS & FOLLOW-UP 96. Özer CIFTCIOGLU Istanbul Technical University, ITU. and

SMORN-VII REPORT NEURAL NETWORK BENCHMARK ANALYSIS RESULTS & FOLLOW-UP 96. Özer CIFTCIOGLU Istanbul Technical University, ITU. and NEA/NSC-DOC (96)29 AUGUST 1996 SMORN-VII REPORT NEURAL NETWORK BENCHMARK ANALYSIS RESULTS & FOLLOW-UP 96 Özer CIFTCIOGLU Istanbul Technical University, ITU and Erdinç TÜRKCAN Netherlands Energy Research

More information

Introduction to Learning & Decision Trees

Introduction to Learning & Decision Trees Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

IBM SPSS Neural Networks 22

IBM SPSS Neural Networks 22 IBM SPSS Neural Networks 22 Note Before using this information and the product it supports, read the information in Notices on page 21. Product Information This edition applies to version 22, release 0,

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

Neural Network Design in Cloud Computing

Neural Network Design in Cloud Computing International Journal of Computer Trends and Technology- volume4issue2-2013 ABSTRACT: Neural Network Design in Cloud Computing B.Rajkumar #1,T.Gopikiran #2,S.Satyanarayana *3 #1,#2Department of Computer

More information

Neural network models: Foundations and applications to an audit decision problem

Neural network models: Foundations and applications to an audit decision problem Annals of Operations Research 75(1997)291 301 291 Neural network models: Foundations and applications to an audit decision problem Rebecca C. Wu Department of Accounting, College of Management, National

More information

AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING

AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING Abhishek Agrawal*, Vikas Kumar** 1,Ashish Pandey** 2,Imran Khan** 3 *(M. Tech Scholar, Department of Computer Science, Bhagwant University,

More information

Neural Network and Genetic Algorithm Based Trading Systems. Donn S. Fishbein, MD, PhD Neuroquant.com

Neural Network and Genetic Algorithm Based Trading Systems. Donn S. Fishbein, MD, PhD Neuroquant.com Neural Network and Genetic Algorithm Based Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com Consider the challenge of constructing a financial market trading system using commonly available technical

More information

Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network

Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)

More information

Neural Network Stock Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com

Neural Network Stock Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com Neural Network Stock Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com There are at least as many ways to trade stocks and other financial instruments as there are traders. Remarkably, most people

More information

A Time Series ANN Approach for Weather Forecasting

A Time Series ANN Approach for Weather Forecasting A Time Series ANN Approach for Weather Forecasting Neeraj Kumar 1, Govind Kumar Jha 2 1 Associate Professor and Head Deptt. Of Computer Science,Nalanda College Of Engineering Chandi(Bihar) 2 Assistant

More information

Neural Computation - Assignment

Neural Computation - Assignment Neural Computation - Assignment Analysing a Neural Network trained by Backpropagation AA SSt t aa t i iss i t i icc aa l l AA nn aa l lyy l ss i iss i oo f vv aa r i ioo i uu ss l lee l aa r nn i inn gg

More information

THE HUMAN BRAIN. observations and foundations

THE HUMAN BRAIN. observations and foundations THE HUMAN BRAIN observations and foundations brains versus computers a typical brain contains something like 100 billion miniscule cells called neurons estimates go from about 50 billion to as many as

More information

The Backpropagation Algorithm

The Backpropagation Algorithm 7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single

More information

Classification using Logistic Regression

Classification using Logistic Regression Classification using Logistic Regression Ingmar Schuster Patrick Jähnichen using slides by Andrew Ng Institut für Informatik This lecture covers Logistic regression hypothesis Decision Boundary Cost function

More information

NEURAL networks [5] are universal approximators [6]. It

NEURAL networks [5] are universal approximators [6]. It Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 183 190 An Investment Strategy for the Stock Exchange Using Neural Networks Antoni Wysocki and Maciej Ławryńczuk

More information

Image and Video Understanding

Image and Video Understanding Image and Video Understanding 2VO 710.095 WS Christoph Feichtenhofer, Axel Pinz Slide credits: Many thanks to all the great computer vision researchers on which this presentation relies on. Most material

More information

Self Organizing Maps: Fundamentals

Self Organizing Maps: Fundamentals Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen

More information

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries Copyright GENIVI Alliance

More information

Design call center management system of e-commerce based on BP neural network and multifractal

Design call center management system of e-commerce based on BP neural network and multifractal Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):951-956 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Design call center management system of e-commerce

More information

Handwritten Digit Recognition with a Back-Propagation Network

Handwritten Digit Recognition with a Back-Propagation Network 396 Le Cun, Boser, Denker, Henderson, Howard, Hubbard and Jackel Handwritten Digit Recognition with a Back-Propagation Network Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

More information

Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks

More information

Taking Inverse Graphics Seriously

Taking Inverse Graphics Seriously CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best

More information

NEURAL NETWORKS IN DATA MINING

NEURAL NETWORKS IN DATA MINING NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,

More information

Horse Racing Prediction Using Artificial Neural Networks

Horse Racing Prediction Using Artificial Neural Networks Horse Racing Prediction Using Artificial Neural Networks ELNAZ DAVOODI, ALI REZA KHANTEYMOORI Mathematics and Computer science Department Institute for Advanced Studies in Basic Sciences (IASBS) Gavazang,

More information