TCP/IP Over Satellite Yi Zhang G Throughput Limitation of Satellite Communications

Size: px
Start display at page:

Download "TCP/IP Over Satellite Yi Zhang G Throughput Limitation of Satellite Communications"

Transcription

1 TCP/IP Over Satellite Yi Zhang G Introduction Satellite communications have numerous advantages over terrestrial data connections including mobility, network topology, and the anywhere and everywhere benefit of global coverage. These advantages come at the price of increased data transit times and low security level. There are two problems in particular handicap satellite links for data applications [1]: Throughput limitation. TCP senders cannot exceed the rate at which the receiver can acknowledge receipt of packets--satellite latency effectively caps standard TCP throughput per session (RFC-793). Security. Transmissions from satellites are available to anyone with a suitable receiver. Separate solutions for each problem have been available for years. Manipulation of TCP header fields with a Performance Enhancing Proxy (PEP) server can fool the end points into increasing the throughput on a satellite connection. Encryption of the data defeats interceptions off the air. However, standard IPsec encryption of the IP packet hides the fields in the TCP header and so prevents an acceleration proxy from changing them. Therefore, an end user had to make a choice and compromise on what is more important, throughput or security. This paper will discuss these two problems in details and give solutions for each problem. 2. Throughput Limitation of Satellite Communications Throughput is not a problem with one-way transmissions, such as media broadcasting, for which the only limit is the capacity of the transponder or relay equipment in the satellite. The sender can transmit at the maximum circuit capacity 100% of the time because: The circuit is dedicated and fully available, There is no need to acknowledge data or correct errors, and The receiver applies no "back pressure" to limit throughput. Transmission Control Protocol (TCP), was designed for entirely different conditions: Low network latency, Maximize bandwidth utilization, Error detection and correction and Congestion avoidance and recovery via flow control mechanism.

2 2.1. Latency[2] The large latency associated with satellite communications originates in the 125 ms required for data packets to travel at the speed of light from the earth s surface to any one of the communication satellites positioned over the equator. This implies a minimum round trip time (RTT) (up and down and back again) between the source and destination of a data session of at least 500 ms, as shown in Figure 1.[2] Unfortunately, as mentioned above, neither client server applications nor the TCP protocols are designed to accommodate these high latencies. Most applications are written without regard for network latency, i.e. as though the client and the server are connected over a high speed Local Area Network (LAN). The TCP protocol was designed for use on terrestrial networks where latencies seldom exceed 250 ms to travel around the world over copper or fiber circuits Slow Start[3] Figure 1Total Round Trip Time using Broadband satellite [2] Note in Figure 2 the TCP header fields called Sequence Number, Acknowledgment Number, and Window. These fields control data flow between two TCP devices, A and B. Also, they are used to implement sliding window scheme that ensures an effective flow control between the end points. Figure 2 TCP header portion

3 TCP senders may transmit all the bytes in the window value. This allows packets to be burst onto the satellite channel in groups. When the window is exausted, the sender must stop until it receives another Acknowledgment Number (with a Window size). In this way, each side of a TCP connection controls the rate at which it receives data; it applies backpressure by reducing its window. A complicating issue with TCP is its flow control mechanism, which misinterprets the long delay from long trips through the atmosphere as evidence of a congested network or packet loss and will not increase the rate at which it sends packets, even though there is no actual congestion or packet loss across the satellite link. More specifically, TCP assumes that all loss and delay are caused by network congestion. As a result, it cuts back the transmission rate by reducing the Window size, and then slowly ramps the send rate back up. Based on following formula [5] the throughput will keep low since the small window size. max window size throughput = RTT 3. TCP Acceleration for Satellite Links: Since TCP is the standard for data communications worldwide over the Internet, satellite operators have developed technologies to make TCP sessions perform better by minimizing the effects of high latency intrinsic to satellite links, which often termed as TCP Acceleration. There are a number of different forms of TCP acceleration. One of most widely used is Performance Enhancing Proxies (PEPs), which all have one important common feature. All PEPs involve techniques that change the TCP header data before and after the satellite link to hide the high latency of the satellite link from the TCP session. One of the techniques using PEP is called TCP spoofing. It will be discussed in details in following section TCP spoofing.[2] TCP spoofing is one PEP technique that imitates a terrestrial TCP session by sending false TCP packet acknowledgements, which broke the TCP session into segments [4] (see Figure 3). The satellite modem can contain the spoofing software or an additional device can be deployed at the remote site and at the satellite carrier s Network Operations Center (NOC) (see Figure 1). The spoofing device acknowledges receipt of the data packet locally (from the sender) as if it were the receiver and the TCP session proceeds as though it was occurring just across the LAN, i.e. the TCP flow control mechanism sends packets at the maximum rate supported by the LAN connection. On the other side of the satellite link, the spoofing device/software suppresses the real acknowledgments from the actual receiver. The spoofing devices/software contain storage buffers to allow the transmission of data across the satellite links and deal with lost packets/re-transmissions between the two spoofing points, since the actual sender and receiver think the session is always fine. Other PEP techniques include adjusting packet size, data rates and other TCP parameters

4 to more closely match the characteristics of the satellite carrier protocols. In all cases, values are changed in each TCP packet header in both TCP-PEP devices.[2] Figure 3 TCP Spoofing [4] 4. Security Issue with Satellite Communications Data security concerns have imposed certain criteria for enterprise Wide Area Networks. Virtual Private Networks (VPNs) have become standard requirement for companies using the public Internet to connect their remote sites to the headquarters. [2] 4.1. VPNs VPNs encrypt a company s data traffic when traveling over the public Internet so that the data streams cannot be easily intercepted and viewed. VPNs also authenticate the data to ensure it has not been altered while in transit across the Internet. A VPN between two sites constitutes a private connection (across a public network) through which data can securely pass between hosts at the two sites. VPNs operate in two modes [2], as shown in Figure 4, tunnel and transport. When a data packet enters into a tunnel mode VPN connection, the whole data packet (TCP header and payload) is encrypted and given a new header, thereby the original packet becomes the encrypted payload of a new VPN tunnel packet. In transport mode, only the payload of the original data packet is encrypted; the original TCP packet header becomes the new header and remains unencrypted. Transport mode is fundamentally less secure than tunnel mode because the data header of the original packet is still used, i.e. the source and destination IP addresses of the two hosts are still used, and all the TCP session data remains in clear text in the header when traveling over the Internet.

5 Figure 4 VPN Tunnel Mode vs. VPN Transport Mode Tunnel mode VPNs have become the corporate security standard because of the superior security features [2]. By completely concealing (through encryption) the original data packet header and payload, the packet is impervious to the man in the middle attacks used to intercept, record and retransmit TCP sessions as the packets traverse the public Internet. With the header of the original data packet fully encrypted, no information can be obtained about the original TCP session running between the client and server. In transport mode, only the original payload is encrypted and the header is left unencrypted and subject to the prying eyes of a would be attacker. As such, transport mode VPNs are seldom used because they do not meet companies security criteria for modern wide area networks Problems with VPNs and TCP Acceleration Although these TCP acceleration methods all sound good to improve TCP data rates over satellite, there are problems when you trying to use VPNs and TCP acceleration together [1]. Recall how all the TCP acceleration technologies rely on altering the TCP header of each data packet. Herein lies the problem when combining TCP acceleration and VPNs to deliver secure, high performance data communications over satellite. The conflict arises in the TCP session data in the original packet header. If the data packet enters a VPN in tunnel mode before the TCP acceleration takes place, then two problems arise [2]. First, the original TCP packet is completely encrypted (header and payload) and so the session header data is unavailable to be altered by acceleration. Second, applying TCP acceleration methods to VPN packets would alter the VPN header and/or spoof the VPN acknowledgements and violate the authentication safeguards which require the VPN packet (and headers) remain unchanged in transit between VPN endpoints. The only alternative is to reduce the level of VPN security by utilizing transport mode and leaving the packet headers unencrypted. Even then, some forms of TCP acceleration and VPN transport mode both attempt to alter certain values in the TCP packet header and may not function together at all [2] (Figure 5).

6 In this paper, two methods are given to solve this conflict. One is TCP optimization and another alternative way is that simply accelerate TCP packet before encrypting. Figure 5 Conflicts Between VPNs and TCP Acceleration in the Satellite Modem 4.3. TCP Optimization: TCP Optimization changes the parameters of transmission to match the operating system of the processor and the type of network connection. These parameters include: window size and path MTU etc. The following sections will discuss these parameters in details Window Size [5] Even if the network has a high bandwidth and the receiver has a large buffer, the throughput achieved by TCP is limited by: throughput = max window size RTT This follows since a TCP source cannot send more than the window size of packets in an RTT time. Using the standard maximum TCP window of 64Kbytes (coded on 16 bits) and a satellite link of RTT 560ms, this limits the throughput to 117 Kbytes/s. To send at higher rates, a window scale option has been added to TCP. It consists in multiplying the old window field by a scale factor coded on 14 bits. This lets TCP use larger windows, up to 2 30 Bytes Path MTU measurement. [6] To reduce the overhead due to the packet header, a large number of data bytes must be sent in a TCP segment. However, large packets will be fragmented if they encounter a network with small MTU (Maximum Transfer Unit) which increases considerably the overhead. This method lets TCP detect the largest packet that can cross the Internet without incurring the cost of fragmentation and reassembly. Also, because

7 the TCP sender increases its window by segments, using large packets yields a faster growth of the throughput. There are also other parameters like initial window size and buffer size [7]. However, one thing need to mention is that there is no single definitive source of this information as any changes that can be made will depend upon the users local environment. Some information is provided by Microsoft[8], Speedguide[9], IETF[10] Accelerating before encrypting[11] Another alternative for improving VPN performance over satellite requires the full encryption of the TCP data stream so that both data and protocol headers are secure. This is particularly important in cases where an enterprise has a predefined technology choice (such as IPSec), vendor procurement or security policy that requires the highest level of VPN security possible. The method used here is to accelerate the TCP before passing the data stream on into the IP layer for encryption. See Figure 6. Figure 6 Accelerating before Encrypting This solution comprises an acceleration or PEP that is operated by the user, rather than embedded within the hub. Again, There are many providers of this technology, some implement a client/server pair as software and hardware, others implement a hardware gateway pair; the solution chosen depends upon the configuration required at the remote site (single PC or LAN). 5. Conclusions: Due to the nature of TCP transmissions, any performance increases achieved by the various acceleration methods are offset by serious compromises in data security. Fundamental incompatibilities arise when one attempts to operate conventional VPN devices over satellite links, due to the nature of TCP acceleration techniques commonly used for broadband satellite connections. VPNs may not function at all, security is compromised through the use of transport mode VPNs, and/or the lack of TCP acceleration can degrade application performance over satellite links so as to be unusable.

8 6. Reference [1] High Performance VPN Solutions Over Satellite Networks, [2] TCP/IP over Satellite: Optimization vs. Acceleration, Todd J. Anderson, PhD, End II End Communications, Inc.-White Paper [3] TCP/IP Performance over Satellite Links, Craig Partridge and Timothy J. Shepard. [4] Cisco Accelerated Internet over Satellite Solution, [5] V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High Performance, May 1992, RFC [6] M. Allman and D. Glover, Enhancing TCP over satellite channels using standard mechanisms, Technical report, NASA Lewis, 1998 [7] TCP/IP Over Satellite, Marc Emmelmann, [8] Speedguide, [9] Microsoft, [10] IETF, [11] Using VPN (Virtual Private Networks) over Satellite,

High Performance VPN Solutions Over Satellite Networks

High Performance VPN Solutions Over Satellite Networks High Performance VPN Solutions Over Satellite Networks Enhanced Packet Handling Both Accelerates And Encrypts High-Delay Satellite Circuits Characteristics of Satellite Networks? Satellite Networks have

More information

VPN over Satellite A comparison of approaches by Richard McKinney and Russell Lambert

VPN over Satellite A comparison of approaches by Richard McKinney and Russell Lambert Sales & Engineering 3500 Virginia Beach Blvd Virginia Beach, VA 23452 800.853.0434 Ground Operations 1520 S. Arlington Road Akron, OH 44306 800.268.8653 VPN over Satellite A comparison of approaches by

More information

Application Note. Windows 2000/XP TCP Tuning for High Bandwidth Networks. mguard smart mguard PCI mguard blade

Application Note. Windows 2000/XP TCP Tuning for High Bandwidth Networks. mguard smart mguard PCI mguard blade Application Note Windows 2000/XP TCP Tuning for High Bandwidth Networks mguard smart mguard PCI mguard blade mguard industrial mguard delta Innominate Security Technologies AG Albert-Einstein-Str. 14 12489

More information

Using Application Layer Technology to Overcome the Impact of Satellite Circuit Latency on VPN Performance

Using Application Layer Technology to Overcome the Impact of Satellite Circuit Latency on VPN Performance Using Application Layer Technology to Overcome the Impact of Satellite Circuit Latency on VPN Performance Ground Control February 2003 Abstract This paper explains the source of severe throughput degradation

More information

VPN. Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu

VPN. Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu VPN Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu What is VPN? A VPN (virtual private network) is a private data network that uses public telecommunicating infrastructure (Internet), maintaining

More information

Technical papers Virtual private networks

Technical papers Virtual private networks Technical papers Virtual private networks This document has now been archived Virtual private networks Contents Introduction What is a VPN? What does the term virtual private network really mean? What

More information

High Speed Internet Access Using Satellite-Based DVB Networks

High Speed Internet Access Using Satellite-Based DVB Networks High Speed Internet Access Using Satellite-Based DVB Networks Nihal K. G. Samaraweera and Godred Fairhurst Electronics Research Group, Department of Engineering University of Aberdeen, Aberdeen, AB24 3UE,

More information

Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008

Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 When you buy a broadband Wide Area Network (WAN) you want to put the entire bandwidth capacity to

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions 1. Q: What is the Network Data Tunnel? A: Network Data Tunnel (NDT) is a software-based solution that accelerates data transfer in point-to-point or point-to-multipoint network

More information

The BANDIT Products in Virtual Private Networks

The BANDIT Products in Virtual Private Networks encor! enetworks TM Version A.1, March 2010 2010 Encore Networks, Inc. All rights reserved. The BANDIT Products in Virtual Private Networks One of the principal features of the BANDIT products is their

More information

Implementing VoIP support in a VSAT network based on SoftSwitch integration

Implementing VoIP support in a VSAT network based on SoftSwitch integration Implementing VoIP support in a VSAT network based on SoftSwitch integration Abstract Satellite communications based on geo-synchronous satellites are characterized by a large delay, and high cost of resources.

More information

WAN Data Link Protocols

WAN Data Link Protocols WAN Data Link Protocols In addition to Physical layer devices, WANs require Data Link layer protocols to establish the link across the communication line from the sending to the receiving device. 1 Data

More information

MLPPP Deployment Using the PA-MC-T3-EC and PA-MC-2T3-EC

MLPPP Deployment Using the PA-MC-T3-EC and PA-MC-2T3-EC MLPPP Deployment Using the PA-MC-T3-EC and PA-MC-2T3-EC Overview Summary The new enhanced-capability port adapters are targeted to replace the following Cisco port adapters: 1-port T3 Serial Port Adapter

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Bandwidth Aggregation, Teaming and Bonding

Bandwidth Aggregation, Teaming and Bonding Bandwidth Aggregation, Teaming and Bonding The increased use of Internet sharing combined with graphically rich web sites and multimedia applications have created a virtually insatiable demand for Internet

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Protocols and Architecture. Protocol Architecture.

Protocols and Architecture. Protocol Architecture. Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

ReadyNAS Remote White Paper. NETGEAR May 2010

ReadyNAS Remote White Paper. NETGEAR May 2010 ReadyNAS Remote White Paper NETGEAR May 2010 Table of Contents Overview... 3 Architecture... 3 Security... 4 Remote Firewall... 5 Performance... 5 Overview ReadyNAS Remote is a software application that

More information

Key Components of WAN Optimization Controller Functionality

Key Components of WAN Optimization Controller Functionality Key Components of WAN Optimization Controller Functionality Introduction and Goals One of the key challenges facing IT organizations relative to application and service delivery is ensuring that the applications

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

13 Virtual Private Networks 13.1 Point-to-Point Protocol (PPP) 13.2 Layer 2/3/4 VPNs 13.3 Multi-Protocol Label Switching 13.4 IPsec Transport Mode

13 Virtual Private Networks 13.1 Point-to-Point Protocol (PPP) 13.2 Layer 2/3/4 VPNs 13.3 Multi-Protocol Label Switching 13.4 IPsec Transport Mode 13 Virtual Private Networks 13.1 Point-to-Point Protocol (PPP) PPP-based remote access using dial-in PPP encryption control protocol (ECP) PPP extensible authentication protocol (EAP) 13.2 Layer 2/3/4

More information

NETWORK SECURITY AND PERFORMANCE EVALUATION OF ML- IPsec OVER SATELLITE NETWORKS

NETWORK SECURITY AND PERFORMANCE EVALUATION OF ML- IPsec OVER SATELLITE NETWORKS NETWORK SECURITY AND PERFORMANCE EVALUATION OF ML- IPsec OVER SATELLITE NETWORKS Abstract Michele Luglio University of Rome Tor Vergata ph: +39 06 7259 7449 email: luglio@uniroma2.it Cesare Roseti University

More information

Accurate End-to-End Performance Management Using CA Application Delivery Analysis and Cisco Wide Area Application Services

Accurate End-to-End Performance Management Using CA Application Delivery Analysis and Cisco Wide Area Application Services White Paper Accurate End-to-End Performance Management Using CA Application Delivery Analysis and Cisco Wide Area Application Services What You Will Learn IT departments are increasingly relying on best-in-class

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

Data Communication and Computer Network

Data Communication and Computer Network 1 Data communication principles, types and working principles of modems, Network principles, OSI model, functions of data link layer and network layer, networking components, communication protocols- X

More information

Frame Relay and Frame-Based ATM: A Comparison of Technologies

Frame Relay and Frame-Based ATM: A Comparison of Technologies White Paper and -Based : A Comparison of Technologies Larry Greenstein Nuera Communications VP, Technology, Forum June 1995 June 27, 1995 i TABLE OF CONTENTS 1. PREFACE...1 2. INTRODUCTION...1 3. INTERWORKING

More information

Communication Networks. MAP-TELE 2011/12 José Ruela

Communication Networks. MAP-TELE 2011/12 José Ruela Communication Networks MAP-TELE 2011/12 José Ruela Network basic mechanisms Introduction to Communications Networks Communications networks Communications networks are used to transport information (data)

More information

HyperIP : VERITAS Replication Application Note

HyperIP : VERITAS Replication Application Note QuickTime and a Graphics decompressor are needed to see this picture. HyperIP : VERITAS Replication Application Note Introduction HyperIP is a Linux software application that quantifiably and measurably

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

How Virtual Private Networks Work

How Virtual Private Networks Work How Virtual Private Networks Work Document ID: 14106 Contents Introduction Prerequisites Requirements Components Used Conventions Background Information What Makes a VPN? Analogy: Each LAN Is an IsLANd

More information

HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL

HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL White Paper HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL EXPLORING THE CHALLENGES AND OPPORTUNITIES OF DELIVERING MORE CONTENT AT LESS COST Today s broadcasters are faced with an ever- present

More information

Clearing the Way for VoIP

Clearing the Way for VoIP Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.

More information

Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking

Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking Quantifying the Performance Degradation of IPv6 for TCP in Windows and Linux Networking Burjiz Soorty School of Computing and Mathematical Sciences Auckland University of Technology Auckland, New Zealand

More information

Security. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1

Security. Contents. S-72.3240 Wireless Personal, Local, Metropolitan, and Wide Area Networks 1 Contents Security requirements Public key cryptography Key agreement/transport schemes Man-in-the-middle attack vulnerability Encryption. digital signature, hash, certification Complete security solutions

More information

Securing IP Networks with Implementation of IPv6

Securing IP Networks with Implementation of IPv6 Securing IP Networks with Implementation of IPv6 R.M.Agarwal DDG(SA), TEC Security Threats in IP Networks Packet sniffing IP Spoofing Connection Hijacking Denial of Service (DoS) Attacks Man in the Middle

More information

Remote Access VPNs Performance Comparison between Windows Server 2003 and Fedora Core 6

Remote Access VPNs Performance Comparison between Windows Server 2003 and Fedora Core 6 Remote Access VPNs Performance Comparison between Windows Server 2003 and Fedora Core 6 Ahmed A. Joha, Fathi Ben Shatwan, Majdi Ashibani The Higher Institute of Industry Misurata, Libya goha_99@yahoo.com

More information

WAN Performance Analysis A Study on the Impact of Windows 7

WAN Performance Analysis A Study on the Impact of Windows 7 A Talari Networks White Paper WAN Performance Analysis A Study on the Impact of Windows 7 Test results demonstrating WAN performance changes due to upgrading to Windows 7 and the network architecture and

More information

What is a Firewall? Computer Security. Firewalls. What is a Firewall? What is a Firewall?

What is a Firewall? Computer Security. Firewalls. What is a Firewall? What is a Firewall? What is a Firewall? Computer Security Firewalls fire wall 1 : a wall constructed to prevent the spread of fire 2 usually firewall : a computer or computer software that prevents unauthorized access to

More information

Performance Analysis of IPv4 v/s IPv6 in Virtual Environment Using UBUNTU

Performance Analysis of IPv4 v/s IPv6 in Virtual Environment Using UBUNTU Performance Analysis of IPv4 v/s IPv6 in Virtual Environment Using UBUNTU Savita Shiwani Computer Science,Gyan Vihar University, Rajasthan, India G.N. Purohit AIM & ACT, Banasthali University, Banasthali,

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

Steelcape Product Overview and Functional Description

Steelcape Product Overview and Functional Description Steelcape Product Overview and Functional Description TABLE OF CONTENTS 1. General Overview 2. Applications/Uses 3. Key Features 4. Steelcape Components 5. Operations Overview: Typical Communications Session

More information

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall Chapter 10 Firewall Firewalls are devices used to protect a local network from network based security threats while at the same time affording access to the wide area network and the internet. Basically,

More information

ENTERPRISE CONNECTIVITY

ENTERPRISE CONNECTIVITY ENTERPRISE CONNECTIVITY IP Services for Business, Governmental & Non-Governmental Organizations The success of today s organizations and enterprises highly depends on reliable and secure connectivity.

More information

21.4 Network Address Translation (NAT) 21.4.1 NAT concept

21.4 Network Address Translation (NAT) 21.4.1 NAT concept 21.4 Network Address Translation (NAT) This section explains Network Address Translation (NAT). NAT is also known as IP masquerading. It provides a mapping between internal IP addresses and officially

More information

Chapter 2 - The TCP/IP and OSI Networking Models

Chapter 2 - The TCP/IP and OSI Networking Models Chapter 2 - The TCP/IP and OSI Networking Models TCP/IP : Transmission Control Protocol/Internet Protocol OSI : Open System Interconnection RFC Request for Comments TCP/IP Architecture Layers Application

More information

SAFE-T RSACCESS REPLACEMENT FOR MICROSOFT FOREFRONT UNIFIED ACCESS GATEWAY (UAG)

SAFE-T RSACCESS REPLACEMENT FOR MICROSOFT FOREFRONT UNIFIED ACCESS GATEWAY (UAG) SAFE-T RSACCESS REPLACEMENT FOR MICROSOFT FOREFRONT UNIFIED ACCESS GATEWAY (UAG) A RSACCESS WHITE PAPER 1 Microsoft Forefront Unified Access Gateway Overview 2 Safe-T RSAccess Secure Front-end Overview

More information

Protocol Security Where?

Protocol Security Where? IPsec: AH and ESP 1 Protocol Security Where? Application layer: (+) easy access to user credentials, extend without waiting for OS vendor, understand data; (-) design again and again; e.g., PGP, ssh, Kerberos

More information

Transmission Security (TRANSEC) in an IP-based VSAT Architecture. February 2011

Transmission Security (TRANSEC) in an IP-based VSAT Architecture. February 2011 Transmission Security (TRANSEC) in an IP-based VSAT Architecture February 2011 As the ability to monitor satellite transmissions grows more sophisticated, the need to implement increased levels of security

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.

More information

Overcoming the Performance Limitations of Conventional SSL VPN April 26, 2006

Overcoming the Performance Limitations of Conventional SSL VPN April 26, 2006 Overcoming the Performance Limitations of Conventional SSL VPN April 26, 2006 NeoAccel, Inc. 2055 Gateway Place, Suite 240 San Jose, CA 95110 Tel: +1 (408) 274 8000 Fax: +1 (408) 274 8044 Web: www.neoaccel.com

More information

Guideline for setting up a functional VPN

Guideline for setting up a functional VPN Guideline for setting up a functional VPN Why do I want a VPN? VPN by definition creates a private, trusted network across an untrusted medium. It allows you to connect offices and people from around the

More information

Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL)

Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL) Asynchrous Transfer Mode: architecture 1980s/1990 s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport

More information

Integrating F5 Application Delivery Solutions with VMware View 4.5

Integrating F5 Application Delivery Solutions with VMware View 4.5 APPLICATION READY SOLUTION GUIDE What s inside: 2 Improving user experience 2 Enhancing security and access control 3 Application Performance and Availability 4 F5 and global configuration diagram 5 More

More information

THE IMPORTANCE OF TESTING TCP PERFORMANCE IN CARRIER ETHERNET NETWORKS

THE IMPORTANCE OF TESTING TCP PERFORMANCE IN CARRIER ETHERNET NETWORKS THE IMPORTANCE OF TESTING TCP PERFORMANCE IN CARRIER ETHERNET NETWORKS 159 APPLICATION NOTE Bruno Giguère, Member of Technical Staff, Transport & Datacom Business Unit, EXFO As end-users are migrating

More information

SCADA System Security. ECE 478 Network Security Oregon State University March 7, 2005

SCADA System Security. ECE 478 Network Security Oregon State University March 7, 2005 SCADA System Security ECE 478 Network Security Oregon State University March 7, 2005 David Goeke Hai Nguyen Abstract Modern public infrastructure systems

More information

Protocol Data Units and Encapsulation

Protocol Data Units and Encapsulation Chapter 2: Communicating over the 51 Protocol Units and Encapsulation For application data to travel uncorrupted from one host to another, header (or control data), which contains control and addressing

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7

20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7 20-CS-6053-00X Network Security Spring, 2014 An Introduction To Network Security Week 1 January 7 Attacks Criminal: fraud, scams, destruction; IP, ID, brand theft Privacy: surveillance, databases, traffic

More information

2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above

2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above 1. How many bits are in an IP address? A. 16 B. 32 C. 64 2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 3. The network number plays what part in an IP address? A. It

More information

Chapter 9. IP Secure

Chapter 9. IP Secure Chapter 9 IP Secure 1 Network architecture is usually explained as a stack of different layers. Figure 1 explains the OSI (Open System Interconnect) model stack and IP (Internet Protocol) model stack.

More information

MOBILITY AND MOBILE NETWORK OPTIMIZATION

MOBILITY AND MOBILE NETWORK OPTIMIZATION MOBILITY AND MOBILE NETWORK OPTIMIZATION netmotionwireless.com Executive Summary Wireless networks exhibit uneven and unpredictable performance characteristics which, if not correctly managed, can turn

More information

The Impact of QoS Changes towards Network Performance

The Impact of QoS Changes towards Network Performance International Journal of Computer Networks and Communications Security VOL. 3, NO. 2, FEBRUARY 2015, 48 53 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) The Impact

More information

NETWORK LAYER/INTERNET PROTOCOLS

NETWORK LAYER/INTERNET PROTOCOLS CHAPTER 3 NETWORK LAYER/INTERNET PROTOCOLS You will learn about the following in this chapter: IP operation, fields and functions ICMP messages and meanings Fragmentation and reassembly of datagrams IP

More information

Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004

Internet Working 5 th lecture. Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 5 th lecture Chair of Communication Systems Department of Applied Sciences University of Freiburg 2004 1 43 Last lecture Lecture room hopefully all got the message lecture on tuesday and thursday same

More information

VPN Technologies: Definitions and Requirements

VPN Technologies: Definitions and Requirements VPN Technologies: Definitions and Requirements 1. Introduction VPN Consortium, January 2003 This white paper describes the major technologies for virtual private networks (VPNs) used today on the Internet.

More information

Comparing Mobile VPN Technologies WHITE PAPER

Comparing Mobile VPN Technologies WHITE PAPER Comparing Mobile VPN Technologies WHITE PAPER Executive Summary Traditional approaches for encrypting data in transit such as IPSec and SSL are intended for wired networks with high speed, highly reliable

More information

What is Network Latency and Why Does It Matter?

What is Network Latency and Why Does It Matter? What is Network Latency and Why Does It Matter? by O3b Networks This paper is presented by O3b Networks to provide clarity and understanding of a commonly misunderstood facet of data communications known

More information

1.264 Lecture 37. Telecom: Enterprise networks, VPN

1.264 Lecture 37. Telecom: Enterprise networks, VPN 1.264 Lecture 37 Telecom: Enterprise networks, VPN 1 Enterprise networks Connections within enterprise External connections Remote offices Employees Customers Business partners, supply chain partners Patients

More information

Case Study for Layer 3 Authentication and Encryption

Case Study for Layer 3 Authentication and Encryption CHAPTER 2 Case Study for Layer 3 Authentication and Encryption This chapter explains the basic tasks for configuring a multi-service, extranet Virtual Private Network (VPN) between a Cisco Secure VPN Client

More information

Other VPNs TLS/SSL, PPTP, L2TP. Advanced Computer Networks SS2005 Jürgen Häuselhofer

Other VPNs TLS/SSL, PPTP, L2TP. Advanced Computer Networks SS2005 Jürgen Häuselhofer Other VPNs TLS/SSL, PPTP, L2TP Advanced Computer Networks SS2005 Jürgen Häuselhofer Overview Introduction to VPNs Why using VPNs What are VPNs VPN technologies... TLS/SSL Layer 2 VPNs (PPTP, L2TP, L2TP/IPSec)

More information

An Introduction to VoIP Protocols

An Introduction to VoIP Protocols An Introduction to VoIP Protocols www.netqos.com Voice over IP (VoIP) offers the vision of a converged network carrying multiple types of traffic (voice, video, and data, to name a few). To carry out this

More information

Computer Networks CS321

Computer Networks CS321 Computer Networks CS321 Dr. Ramana I.I.T Jodhpur Dr. Ramana ( I.I.T Jodhpur ) Computer Networks CS321 1 / 22 Outline of the Lectures 1 Introduction OSI Reference Model Internet Protocol Performance Metrics

More information

ICS 153 Introduction to Computer Networks. Inst: Chris Davison cbdaviso@uci.edu

ICS 153 Introduction to Computer Networks. Inst: Chris Davison cbdaviso@uci.edu ICS 153 Introduction to Computer Networks Inst: Chris Davison cbdaviso@uci.edu 1 ICS 153 Introduction to Computer Networks Course Goals Understand the basic principles of computer networks Design Architecture

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Network Considerations for IP Video

Network Considerations for IP Video Network Considerations for IP Video H.323 is an ITU standard for transmitting voice and video using Internet Protocol (IP). It differs from many other typical IP based applications in that it is a real-time

More information

SIP Forum Fax Over IP Task Group Problem Statement Version 1.0

SIP Forum Fax Over IP Task Group Problem Statement Version 1.0 SIP Forum Fax Over IP Task Group Problem Statement Version 1.0 T.38: Problems with the Transition While the T.38 protocol, approved by the ITU T in 1998, was designed to allow fax machines and computer

More information

Virtual Private Networks: IPSec vs. SSL

Virtual Private Networks: IPSec vs. SSL Virtual Private Networks: IPSec vs. SSL IPSec SSL Michael Daye Jr. Instructor: Dr. Lunsford ICTN 4040-001 April 16 th 2007 Virtual Private Networks: IPSec vs. SSL In today s society organizations and companies

More information

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,

More information

Cisco Application Networking for Citrix Presentation Server

Cisco Application Networking for Citrix Presentation Server Cisco Application Networking for Citrix Presentation Server Faster Site Navigation, Less Bandwidth and Server Processing, and Greater Availability for Global Deployments What You Will Learn To address

More information

CSE 3461 / 5461: Computer Networking & Internet Technologies

CSE 3461 / 5461: Computer Networking & Internet Technologies Autumn Semester 2014 CSE 3461 / 5461: Computer Networking & Internet Technologies Instructor: Prof. Kannan Srinivasan 08/28/2014 Announcement Drop before Friday evening! k. srinivasan Presentation A 2

More information

Component 4: Introduction to Information and Computer Science

Component 4: Introduction to Information and Computer Science Component 4: Introduction to Information and Computer Science Unit 7: Networks & Networking Lecture 1 This material was developed by Oregon Health & Science University, funded by the Department of Health

More information

TCP Offload Engines. As network interconnect speeds advance to Gigabit. Introduction to

TCP Offload Engines. As network interconnect speeds advance to Gigabit. Introduction to Introduction to TCP Offload Engines By implementing a TCP Offload Engine (TOE) in high-speed computing environments, administrators can help relieve network bottlenecks and improve application performance.

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

Session Hijacking Exploiting TCP, UDP and HTTP Sessions

Session Hijacking Exploiting TCP, UDP and HTTP Sessions Session Hijacking Exploiting TCP, UDP and HTTP Sessions Shray Kapoor shray.kapoor@gmail.com Preface With the emerging fields in e-commerce, financial and identity information are at a higher risk of being

More information

Virtual Private Networks

Virtual Private Networks Virtual Private Networks ECE 4886 Internetwork Security Dr. Henry Owen Definition Virtual Private Network VPN! Virtual separation in protocol provides a virtual network using no new hardware! Private communication

More information

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address Objectives University of Jordan Faculty of Engineering & Technology Computer Engineering Department Computer Networks Laboratory 907528 Lab.4 Basic Network Operation and Troubleshooting 1. To become familiar

More information

AKAMAI WHITE PAPER. Delivering Dynamic Web Content in Cloud Computing Applications: HTTP resource download performance modelling

AKAMAI WHITE PAPER. Delivering Dynamic Web Content in Cloud Computing Applications: HTTP resource download performance modelling AKAMAI WHITE PAPER Delivering Dynamic Web Content in Cloud Computing Applications: HTTP resource download performance modelling Delivering Dynamic Web Content in Cloud Computing Applications 1 Overview

More information

The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN

The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN By Jim Metzler, Cofounder, Webtorials Editorial/Analyst Division Background and Goal Many papers have been written

More information

Analysis of TCP Performance Over Asymmetric Wireless Links

Analysis of TCP Performance Over Asymmetric Wireless Links Virginia Tech ECPE 6504: Wireless Networks and Mobile Computing Analysis of TCP Performance Over Asymmetric Kaustubh S. Phanse (kphanse@vt.edu) Outline Project Goal Notions of Asymmetry in Wireless Networks

More information

For the purpose of setting up a home network, all you need to worry about are two major categories of components:

For the purpose of setting up a home network, all you need to worry about are two major categories of components: Access Points, Routers, and Hubs In the first lesson, you learned about the world of wireless standards -- what frequencies are used, distances involved, and other general topics. In this lesson, you learn

More information

Encrypting Network Traffic

Encrypting Network Traffic Encrypting Network Traffic Mark Lomas Computer Security Group University of Cambridge Computer Laboratory Encryption may be used to maintain the secrecy of information, to help detect when messages have

More information

VMWARE WHITE PAPER 1

VMWARE WHITE PAPER 1 1 VMWARE WHITE PAPER Introduction This paper outlines the considerations that affect network throughput. The paper examines the applications deployed on top of a virtual infrastructure and discusses the

More information