Overview : Computer Networking. Loss Recovery. Multicast Issues. Implosion. Retransmission. Multicast Challenges. Content Distribution Networks

Size: px
Start display at page:

Download "Overview : Computer Networking. Loss Recovery. Multicast Issues. Implosion. Retransmission. Multicast Challenges. Content Distribution Networks"

Transcription

1 Overview Multicast Challenges 5-44: Computer Networking Lecture 25: Multicast Challenges, CDN and P2P systems Content Distribution Networks Peer-to-Peer Networks 2/3/0 2 Multicast Issues eliable transfer ACK/NACK Implosion Exposure eliable Multicast Protocols calable eliable Multicast eliable Multicast Transport Protocol Pragmatic General Multicast Lightweight Multicast ervice Congestion control Loss ecovery ender-reliable Wait for ACKs from all receivers. e-send on timeout or selective ACK Per receiver state in sender not scalable ACK implosion eceiver-reliable eceiver NACKs (resend request) lost packet Does not provide 00% reliability NACK implosion 2/3/0 3 2/3/0 4 Implosion etransmission Packet is lost 2 All 4 receivers request a resend e-transmitter Options: sender, other receivers How to retransmit Unicast, multicast, scoped multicast, retransmission group, Problem: Exposure 2/3/0 5 2/3/0 6

2 Exposure Ideal ecovery Model Packet does not reach ; eceiver requests a resend Packet resent to all 4 receivers Packet reaches but is lost before reaching other eceivers Only one receiver sends NACK to the nearest or with packet 2 esent packet 2 esent packet epair sent only to those that need packet 2/3/0 7 2/3/0 8 Aside: Using the outers Multicast Issues outer TX NACK outers do transport level processing: Buffer packets Combine ACKs end retransmissions Model solves implosion and exposure, but not scalable Violates end-to-end argument eliable transfer ACK/NACK Implosion Exposure eliable Multicast Protocols calable eliable Multicast eliable Multicast Transport Protocol Pragmatic General Multicast Lightweight Multicast ervice Congestion control 2/3/0 9 2/3/0 0 calable eliable Multicast (M) M equest uppression Originally designed for wb eceiver-reliable NACK-based Every member may multicast NACK or retransmission 2/3/0 Packet is lost; requests resend to ource and eceivers X 2 Delay varies by distance Packet is resent; and no longer have to request a resend esent packet X 2/3/0 2 X 2

3 equest Damping Deterministic uppression eceivers start timers with delay = C x d s,r tochastic uppression tart timers with delay = U[0,D2] x d s,r M tar Topology Packet is lost; All eceivers request resends X 2 Packet is resent to all eceivers esent packet Delay is same length 2/3/0 3 2/3/0 4 M (ummary) What s Missing? NACK/etransmission suppression Delay before sending Delay based on TT estimation Deterministic + tochastic components Periodic session messages Full reliability Estimation of distance matrix among members Losses at link (A,C) causes retransmission to the whole group Only retransmit to those members who lost the packet [Only request from the nearest responder] 0.99 C 0 0 A B D E F ender eceiver 2/3/0 5 2/3/0 6 Local ecovery Application-level hierarchy Fixed v.s. dynamic TTL scoped multicast outer supported eliable Multicast Transport Protocol (MTP) eliable Multicast Transport Protocol by Purdue and AT&T esearch Labs Designed for file dissemination (singlesender) Deployed in AT&T s billing network 2/3/0 7 2/3/0 8 3

4 MTP: Fixed Hierarchy MTP: Comments cvr unicasts periodic ACK to its Designated eceiver (D) D unicasts its own ACK to its parent cvr chooses closest statically configured (D) Mcast or unicast retransmission Based on percentage of requests coped mcast for local recovery D D 5 D D eceiver * outer D +: Heterogeneity Lossy link or slow receiver will only affect a local region : Position of D critical tatic hierarchy cannot adapt local recovery zone to loss points 2/3/0 9 2/3/0 20 Pragmatic General Multicast Pragmatic General Multicast Cisco s reliable multicast protocol NACK-based, with suppression epair only forwarded to the NACKers Packet reaches only ;,, request resends outers remember resend requests X 2 Packet resent to,, ; Not resent to esent packet 2/3/0 2 2/3/0 22 Light-weight Multicast ervice (LM) LM: Definitions Enhance multicast routing with selective forwarding LM extends router forwarding - what routers are meant to do in the first place No packet storing or processing at routers trictly IP: no peeking into higher layers eplier eceiver volunteered to answer requests Turning point Where requests start to move downstream Directed mcast Mcast to a subtree eplier link eplier X Turning point 5 6 2/3/0 23 2/3/0 24 4

5 LM with eplier Links LM with eplier Links Packet reaches only ; requests resend s from each receiver follow replier links equest from replier links go up towards the ource Packet is resent to all eceivers eplier link 2 eplier link eplier link esent packet eplier link Turning point X Turning point /3/0 25 2/3/0 26 Multicast Issues Multicast Congestion Control eliable transfer ACK/NACK Implosion Exposure eliable Multicast Protocols calable eliable Multicast eliable Multicast Transport Protocol Pragmatic General Multicast Lightweight Multicast ervice Congestion control What if receivers have very different bandwidths? end at max? end at min? end at avg????mb/s 00Mb/s Mb/s 00Mb/s Mb/s 56Kb/s 2/3/0 27 2/3/0 28 Video Adaptation: LM Layered Media treams eceiver-driven Layered Multicast Layered video encoding Each layer uses its own mcast group On spare capacity, receivers add a layer On congestion, receivers drop a layer Join experiments used for shared learning 0Mbps 0Mbps 52Kbps 0Mbps 28Kbps joins layer, joins layer 2 joins layer 3 join layer, join layer 2 fails at layer 3 joins layer, fails at layer 2 2/3/0 29 2/3/0 30 5

6 Drop Policies for Layered Multicast Priority Packets for low bandwidth layers are kept, drop queued packets for higher layers equires router support Uniform (e.g., drop tail, ED) Packets arriving at congested router are dropped regardless of their layer Which is better? Intuition vs. reality! LM Intuition Uniform Better incentives to well-behaved users If oversend, performance rapidly degrades Clearer congestion signal Allows shared learning Priority Can waste upstream resources Hard to deploy LM approaches optimal operating point Uniform is already deployed 2/3/0 3 2/3/0 32 LM Intuition eceiver-driven Layered Multicast Performance Uniform vs. Priority Dropping Uniform Priority Each layer a separate group eceiver subscribes to max group that will get through with minimal drops Dynamically adapt to available capacity Use packet losses as congestion signal Assume no special router support Packets dropped independently of layer 0 Offered load 2/3/0 33 2/3/0 34 LM Join Experiment Join Experiments eceivers periodically try subscribing to higher layer If enough capacity, no congestion, no drops Keep layer (& try next layer) If not enough capacity, congestion, drops Drop layer (& increase time to next retry) What about impact on other receivers? Layer Time 2/3/0 35 2/3/0 36 6

7 Overview Multicast Challenges Content Distribution Networks Peer-to-Peer Networks Motivation Problem of traditional client-server model ingle point of failure (Do Attack) Not calable olution eplication (CDN) Hosts connect to peers directly (P2P) 2/3/0 37 2/3/0 38 Content Distribution Networks eplicate content on many servers Challenges How to replicate content Where to replicate content How to find replicated content How to choose among know replicas How to direct clients towards replica Discussed in DN/server selection lecture DN, HTTP 304 response, anycast, etc. Akamai How Akamai Works How is content replicated? Akamai only replicates static content Modified name contains original file Akamai server is asked for content First checks local cache If not in cache, requests file from primary server and caches file 2/3/0 39 2/3/0 40 How Akamai Works Clients fetch html document from primary server E.g. fetch index.html from cnn.com ULs for replicated content are replaced in html E.g. <img src= > replaced with <img src= > Client is forced to resolve axyz.g.akamaitech.net hostname 2/3/0 4 How Akamai Works oot server gives N record for akamai.net Akamai.net name server returns N record for g.akamaitech.net Name server chosen to be in region of client s name server TTL is large G.akamaitech.net nameserver choses server in region hould try to chose server that has file in cache - How to choose? Uses axyz name and consistent hash TTL is small 2/3/0 42 7

8 How Akamai Works Akamai ubsequent equests cnn.com (content provider) DN root server Akamai server cnn.com (content provider) DN root server Akamai server Get index. html 2 3 End-user Get foo.jpg Get /cnn.com/foo.jpg Akamai high-level DN server Akamai low-level DN server Closest Akamai server Get index. html 2 Akamai high-level DN server End-user Get 0 /cnn.com/foo.jpg Akamai low-level DN server Closest Akamai server 2/3/0 43 2/3/0 44 Consistent Hash view = subset of all hash buckets that are visible Desired features moothness little impact on hash bucket contents when buckets are added/removed pread small set of hash buckets that may hold an object regardless of views Load across all views # of objects assigned to hash bucket is small 2/3/0 45 Consistent Hash Example Construction 0 Assign each of C hash buckets to 4 random points on mod 2 n circle, where, hash key size = n. Bucket 2 Map object to random position on unit interval Hash of object = closest bucket 8 Monotone addition of bucket does not cause movement between existing buckets pread & Load small set of buckets that lie near object Balance no bucket is responsible for large number of objects 2/3/ Overview Multicast Challenges Content Distribution Networks Peer-to-Peer Networks Peer-to-peer networks Typically each member stores content that it desires Basically a replication system for files Always the tradeoff between possible location of files and searching difficulties Peer-to-peer allows files to be anywhere searching is the challenge Other challenges: Dynamic member list cale 2/3/0 47 2/3/0 48 8

9 Example: Napster Example: Gnutella Centralized Indexing On startup, client contacts central server and reports list of files To download a file Client first contact centralized server to find the location of the file Transfer is done peer-to-peer Hybrid scheme Advantage? Disadvantage? 2/3/0 49 Distribute file location Idea: multicast the request Hot to find a file: end request to all neighbors Neighbors recursively multicast the request Eventually a machine that has the file receives the request, and it sends back the answer Advantages: Totally decentralized, highly robust Disadvantages: Not scalable; the entire network can be swamped with request (to alleviate this problem, each request has a 2/3/0 TTL) 50 Example: Freenet Addition goals to file location: Provide publisher anonymity, security esistant to attacks a third party shouldn t be able to deny the access to a particular file (data item, object), even if it compromises a large fraction of machines Architecture: Each file is identified by a unique identifier Each machine stores a set of files, and maintains a routing table to route the individual requests Freenet Query User requests key XYZ not in local cache Looks up nearest key in routing table and forwards to corresponding node If request reaches node with data, it forwards data back to upstream requestor equestor adds file to cache, adds entry in routing table Any node forwarding reply may change the source of the reply helps anonymity If data not found, failure is reported back 2/3/0 5 2/3/0 52 Freenet Features Nodes tend to specialize in searching for similar keys over time LU cache: Files are not guaranteed to live forever Files can be encrypted Messages have random 64 bit ID for loop detection andom initial TTL for strong anonymity Freenet ummary Advantages Provides publisher anonymity Totally decentralize architecture robust and scalable esistant against malicious file deletion Disadvantages Does not always guarantee that a file is found, even if the file is in the network 2/3/0 53 2/3/0 54 9

10 Conclusions The key challenge of building wide area P2P systems is a scalable and robust location service olutions covered in this lecture Naptser: centralized location service Gnutella: broadcast-based decentralized location service Freenet: intelligent-routing decentralized solution (but correctness not guaranteed; queries for existing items may fail) Other solutions: Chord, CAN 2/3/0 55 0

ICP. Cache Hierarchies. Squid. Squid Cache ICP Use. Squid. Squid

ICP. Cache Hierarchies. Squid. Squid Cache ICP Use. Squid. Squid Caching & CDN s 15-44: Computer Networking L-21: Caching and CDNs HTTP APIs Assigned reading [FCAB9] Summary Cache: A Scalable Wide- Area Cache Sharing Protocol [Cla00] Freenet: A Distributed Anonymous

More information

Communications Software. CSE 123b. CSE 123b. Spring 2003. Lecture 13: Load Balancing/Content Distribution. Networks (plus some other applications)

Communications Software. CSE 123b. CSE 123b. Spring 2003. Lecture 13: Load Balancing/Content Distribution. Networks (plus some other applications) CSE 123b CSE 123b Communications Software Spring 2003 Lecture 13: Load Balancing/Content Distribution Networks (plus some other applications) Stefan Savage Some slides courtesy Srini Seshan Today s class

More information

How To Understand The Power Of A Content Delivery Network (Cdn)

How To Understand The Power Of A Content Delivery Network (Cdn) Overview 5-44 5-44 Computer Networking 5-64 Lecture 8: Delivering Content Content Delivery Networks Peter Steenkiste Fall 04 www.cs.cmu.edu/~prs/5-44-f4 Web Consistent hashing Peer-to-peer CDN Motivation

More information

CSC2231: Akamai. http://www.cs.toronto.edu/~stefan/courses/csc2231/05au. Stefan Saroiu Department of Computer Science University of Toronto

CSC2231: Akamai. http://www.cs.toronto.edu/~stefan/courses/csc2231/05au. Stefan Saroiu Department of Computer Science University of Toronto CSC2231: Akamai http://www.cs.toronto.edu/~stefan/courses/csc2231/05au Stefan Saroiu Department of Computer Science University of Toronto Administrivia Project proposals due today!!! No lecture on Monday:

More information

Overview. Tor Circuit Setup (1) Tor Anonymity Network

Overview. Tor Circuit Setup (1) Tor Anonymity Network 8-345: Introduction to Telecommunication Networks Lectures 8: Delivering Content Web, Peer-Peer, CDNs Peter Steenkiste Spring 05 www.cs.cmu.edu/~prs/nets-ece Web Peer-to-peer Motivation Architectures TOR

More information

Data Center Content Delivery Network

Data Center Content Delivery Network BM 465E Distributed Systems Lecture 4 Networking (cont.) Mehmet Demirci Today Overlay networks Data centers Content delivery networks Overlay Network A virtual network built on top of another network Overlay

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing Department of Computer Science Institute for System Architecture, Chair for Computer Networks File Sharing What is file sharing? File sharing is the practice of making files available for other users to

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Internet Content Distribution

Internet Content Distribution Internet Content Distribution Chapter 4: Content Distribution Networks (TUD Student Use Only) Chapter Outline Basics of content distribution networks (CDN) Why CDN? How do they work? Client redirection

More information

Distributed Systems 19. Content Delivery Networks (CDN) Paul Krzyzanowski pxk@cs.rutgers.edu

Distributed Systems 19. Content Delivery Networks (CDN) Paul Krzyzanowski pxk@cs.rutgers.edu Distributed Systems 19. Content Delivery Networks (CDN) Paul Krzyzanowski pxk@cs.rutgers.edu 1 Motivation Serving web content from one location presents problems Scalability Reliability Performance Flash

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

An Introduction to Peer-to-Peer Networks

An Introduction to Peer-to-Peer Networks An Introduction to Peer-to-Peer Networks Presentation for MIE456 - Information Systems Infrastructure II Vinod Muthusamy October 30, 2003 Agenda Overview of P2P Characteristics Benefits Unstructured P2P

More information

Lecture 3: Scaling by Load Balancing 1. Comments on reviews i. 2. Topic 1: Scalability a. QUESTION: What are problems? i. These papers look at

Lecture 3: Scaling by Load Balancing 1. Comments on reviews i. 2. Topic 1: Scalability a. QUESTION: What are problems? i. These papers look at Lecture 3: Scaling by Load Balancing 1. Comments on reviews i. 2. Topic 1: Scalability a. QUESTION: What are problems? i. These papers look at distributing load b. QUESTION: What is the context? i. How

More information

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This

More information

A Loss Detection Service for Active Reliable Multicast Protocols

A Loss Detection Service for Active Reliable Multicast Protocols A Loss Detection Service for Active Reliable Multicast Protocols M. Maimour and C. D. Pham RESAM, Lyon1. ENS, 46 allee d Italie 69364 Lyon Cedex 07 - France email:{mmaimour,cpham}@ens-lyon.fr Abstract

More information

Anonymous Communication in Peer-to-Peer Networks for Providing more Privacy and Security

Anonymous Communication in Peer-to-Peer Networks for Providing more Privacy and Security Anonymous Communication in Peer-to-Peer Networks for Providing more Privacy and Security Ehsan Saboori and Shahriar Mohammadi Abstract One of the most important issues in peer-to-peer networks is anonymity.

More information

1. Comments on reviews a. Need to avoid just summarizing web page asks you for:

1. Comments on reviews a. Need to avoid just summarizing web page asks you for: 1. Comments on reviews a. Need to avoid just summarizing web page asks you for: i. A one or two sentence summary of the paper ii. A description of the problem they were trying to solve iii. A summary of

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols

Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji

More information

Overlay Networks. Slides adopted from Prof. Böszörményi, Distributed Systems, Summer 2004.

Overlay Networks. Slides adopted from Prof. Böszörményi, Distributed Systems, Summer 2004. Overlay Networks An overlay is a logical network on top of the physical network Routing Overlays The simplest kind of overlay Virtual Private Networks (VPN), supported by the routers If no router support

More information

D. SamKnows Methodology 20 Each deployed Whitebox performs the following tests: Primary measure(s)

D. SamKnows Methodology 20 Each deployed Whitebox performs the following tests: Primary measure(s) v. Test Node Selection Having a geographically diverse set of test nodes would be of little use if the Whiteboxes running the test did not have a suitable mechanism to determine which node was the best

More information

How To Create A P2P Network

How To Create A P2P Network Peer-to-peer systems INF 5040 autumn 2007 lecturer: Roman Vitenberg INF5040, Frank Eliassen & Roman Vitenberg 1 Motivation for peer-to-peer Inherent restrictions of the standard client/server model Centralised

More information

Indirection. science can be solved by adding another level of indirection" -- Butler Lampson. "Every problem in computer

Indirection. science can be solved by adding another level of indirection -- Butler Lampson. Every problem in computer Indirection Indirection: rather than reference an entity directly, reference it ( indirectly ) via another entity, which in turn can or will access the original entity A x B "Every problem in computer

More information

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining

More information

2015 Internet Traffic Analysis

2015 Internet Traffic Analysis 2015 Internet Traffic nalysis Computer Networks Sandvine s Global Internet Phenomena Report: https://www.sandvine.com/trends/global-internet-phenomena/ Lecture 8: Content Delivery Infrastructure: Peer-to-Peer

More information

Architectures and protocols in Peer-to-Peer networks

Architectures and protocols in Peer-to-Peer networks Architectures and protocols in Peer-to-Peer networks Ing. Michele Amoretti [amoretti@ce.unipr.it] II INFN SECURITY WORKSHOP Parma 24-25 February 2004 Contents - Definition of Peer-to-Peer network - P2P

More information

TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery

TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery TCP Flow Control Computer Networks The receiver side of a TCP connection maintains a receiver buffer: Lecture : Flow Control, eliable elivery application process may be slow at reading from the buffer

More information

Napster and Gnutella: a Comparison of two Popular Peer-to-Peer Protocols. Anthony J. Howe Supervisor: Dr. Mantis Cheng University of Victoria

Napster and Gnutella: a Comparison of two Popular Peer-to-Peer Protocols. Anthony J. Howe Supervisor: Dr. Mantis Cheng University of Victoria Napster and Gnutella: a Comparison of two Popular Peer-to-Peer Protocols Anthony J Howe Supervisor: Dr Mantis Cheng University of Victoria February 28, 2002 Abstract This article presents the reverse engineered

More information

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying

More information

Distributed Systems. 23. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 23. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 23. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2015 November 17, 2015 2014-2015 Paul Krzyzanowski 1 Motivation Serving web content from one location presents

More information

Measuring the Web: Part I - - Content Delivery Networks. Prof. Anja Feldmann, Ph.D. Dr. Ramin Khalili Georgios Smaragdakis, PhD

Measuring the Web: Part I - - Content Delivery Networks. Prof. Anja Feldmann, Ph.D. Dr. Ramin Khalili Georgios Smaragdakis, PhD Measuring the Web: Part I - - Content Delivery Networks Prof. Anja Feldmann, Ph.D. Dr. Ramin Khalili Georgios Smaragdakis, PhD Acknowledgement Material presented in these slides is borrowed from presentajons

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Peer-to-Peer Networks. Chapter 6: P2P Content Distribution

Peer-to-Peer Networks. Chapter 6: P2P Content Distribution Peer-to-Peer Networks Chapter 6: P2P Content Distribution Chapter Outline Content distribution overview Why P2P content distribution? Network coding Peer-to-peer multicast Kangasharju: Peer-to-Peer Networks

More information

Data Center Network Topologies: VL2 (Virtual Layer 2)

Data Center Network Topologies: VL2 (Virtual Layer 2) Data Center Network Topologies: VL2 (Virtual Layer 2) Hakim Weatherspoon Assistant Professor, Dept of Computer cience C 5413: High Performance ystems and Networking eptember 26, 2014 lides used and adapted

More information

Distributed Systems. 25. Content Delivery Networks (CDN) 2014 Paul Krzyzanowski. Rutgers University. Fall 2014

Distributed Systems. 25. Content Delivery Networks (CDN) 2014 Paul Krzyzanowski. Rutgers University. Fall 2014 Distributed Systems 25. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2014 November 16, 2014 2014 Paul Krzyzanowski 1 Motivation Serving web content from one location presents

More information

Web Email DNS Peer-to-peer systems (file sharing, CDNs, cycle sharing)

Web Email DNS Peer-to-peer systems (file sharing, CDNs, cycle sharing) 1 1 Distributed Systems What are distributed systems? How would you characterize them? Components of the system are located at networked computers Cooperate to provide some service No shared memory Communication

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book: Computer Networking, A Top-Down Approach, Kurose, Ross Slides: - Course book Slides - Slides from Princeton University COS461

More information

Overview. Lecture 16: IP variations: IPv6, multicast, anycast. I think we have a problem. IPv6. IPv6 Key Features

Overview. Lecture 16: IP variations: IPv6, multicast, anycast. I think we have a problem. IPv6. IPv6 Key Features Overview Lecture 16: IP variations: IPv6, multicast, anycast Next generation IP: IPv6 6lowpan and the Internet of Things IP multicast IP anycast Practical considerations throughout I think we have a problem

More information

RELIABLE multicast has received significant attention recently

RELIABLE multicast has received significant attention recently IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004 469 A Comparison of Application-Level and Router-Assisted Hierarchical Schemes for Reliable Multicast Pavlin Radoslavov, Christos Papadopoulos,

More information

Application Layer. CMPT371 12-1 Application Layer 1. Required Reading: Chapter 2 of the text book. Outline of Chapter 2

Application Layer. CMPT371 12-1 Application Layer 1. Required Reading: Chapter 2 of the text book. Outline of Chapter 2 CMPT371 12-1 Application Layer 1 Application Layer Required Reading: Chapter 2 of the text book. Outline of Chapter 2 Network applications HTTP, protocol for web application FTP, file transfer protocol

More information

Distributed Systems. 24. Content Delivery Networks (CDN) 2013 Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 24. Content Delivery Networks (CDN) 2013 Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 24. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2013 November 27, 2013 2013 Paul Krzyzanowski 1 Motivation Serving web content from one location presents

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

Decentralized Peer-to-Peer Network Architecture: Gnutella and Freenet

Decentralized Peer-to-Peer Network Architecture: Gnutella and Freenet Decentralized Peer-to-Peer Network Architecture: Gnutella and Freenet AUTHOR: Jem E. Berkes umberkes@cc.umanitoba.ca University of Manitoba Winnipeg, Manitoba Canada April 9, 2003 Introduction Although

More information

Multicast vs. P2P for content distribution

Multicast vs. P2P for content distribution Multicast vs. P2P for content distribution Abstract Many different service architectures, ranging from centralized client-server to fully distributed are available in today s world for Content Distribution

More information

HOST AUTO CONFIGURATION (BOOTP, DHCP)

HOST AUTO CONFIGURATION (BOOTP, DHCP) Announcements HOST AUTO CONFIGURATION (BOOTP, DHCP) I. HW5 online today, due in week! Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University copyright 2005 Douglas S. Reeves 2 I. Auto configuration

More information

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration Interconnection of Heterogeneous Networks Internetworking Service model Addressing Address mapping Automatic host configuration Wireless LAN network@home outer Ethernet PPS Internet-Praktikum Internetworking

More information

2 TCP-like Design. Answer

2 TCP-like Design. Answer Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about

More information

CSCI-1680 CDN & P2P Chen Avin

CSCI-1680 CDN & P2P Chen Avin CSCI-1680 CDN & P2P Chen Avin Based partly on lecture notes by Scott Shenker and John Jannotti androdrigo Fonseca And Computer Networking: A Top Down Approach - 6th edition Last time DNS & DHT Today: P2P

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

IPTV AND VOD NETWORK ARCHITECTURES. Diogo Miguel Mateus Farinha

IPTV AND VOD NETWORK ARCHITECTURES. Diogo Miguel Mateus Farinha IPTV AND VOD NETWORK ARCHITECTURES Diogo Miguel Mateus Farinha Instituto Superior Técnico Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: diogo.farinha@ist.utl.pt ABSTRACT IPTV and Video on Demand

More information

Web Caching and CDNs. Aditya Akella

Web Caching and CDNs. Aditya Akella Web Caching and CDNs Aditya Akella 1 Where can bottlenecks occur? First mile: client to its ISPs Last mile: server to its ISP Server: compute/memory limitations ISP interconnections/peerings: congestion

More information

Hashing in Networked Systems

Hashing in Networked Systems LB Server Cluster Switches Hashing in Networked Systems COS 461: Computer Networks Spring 2011 Mike Freedman h@p://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Hash funcion Hashing FuncIon that

More information

Introduction to Computer Networks

Introduction to Computer Networks Introduction to Computer Networks Chen Yu Indiana University Basic Building Blocks for Computer Networks Nodes PC, server, special-purpose hardware, sensors Switches Links: Twisted pair, coaxial cable,

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

How To Write A Transport Layer Protocol For Wireless Networks

How To Write A Transport Layer Protocol For Wireless Networks Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Introduction Issues Design Goals Classifications TCP Over Ad Hoc Wireless Networks Other Transport Layer Protocols Security

More information

A Comparison of Application-Level and Router-Assisted Hierarchical Schemes for Reliable Multicast

A Comparison of Application-Level and Router-Assisted Hierarchical Schemes for Reliable Multicast A Comparison of Application-Level and Router-Assisted Hierarchical Schemes for Reliable Multicast Pavlin Radoslavov, Christos Papadopoulos, Ramesh Govindan, and Deborah Estrin Abstract One approach to

More information

Content Delivery Networks

Content Delivery Networks Content Delivery Networks Terena 2000 ftp://ftpeng.cisco.com/sgai/t2000cdn.pdf Silvano Gai Cisco Systems, USA Politecnico di Torino, IT sgai@cisco.com Terena 2000 1 Agenda What are Content Delivery Networks?

More information

First Midterm for ECE374 02/25/15 Solution!!

First Midterm for ECE374 02/25/15 Solution!! 1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management

More information

Ad hoc and Sensor Networks Chapter 13: Transport Layer and Quality of Service

Ad hoc and Sensor Networks Chapter 13: Transport Layer and Quality of Service Ad hoc and Sensor Networks Chapter 13: Transport Layer and Quality of Service António Grilo Courtesy: Holger Karl, UPB Overview Dependability requirements Delivering single packets Delivering blocks of

More information

Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer

Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer CPSC 360 Network Programming Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer Systems Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu

More information

DNS, CDNs Weds March 17 2010 Lecture 13. What is the relationship between a domain name (e.g., youtube.com) and an IP address?

DNS, CDNs Weds March 17 2010 Lecture 13. What is the relationship between a domain name (e.g., youtube.com) and an IP address? DNS, CDNs Weds March 17 2010 Lecture 13 DNS What is the relationship between a domain name (e.g., youtube.com) and an IP address? DNS is the system that determines this mapping. Basic idea: You contact

More information

ECSE-6600: Internet Protocols Exam 2

ECSE-6600: Internet Protocols Exam 2 ECSE-6600: Internet Protocols Exam 2 Time: 75 min (strictly enforced) Points: 50 YOUR NAME: Be brief, but DO NOT omit necessary detail {Note: Simply copying text directly from the slides or notes will

More information

Common P2P Examples. Peer to Peer Networks. Client-Server Architecture. Uses of P2P. Napster Morpheus Gnutella Freenet BitTorrent Skype

Common P2P Examples. Peer to Peer Networks. Client-Server Architecture. Uses of P2P. Napster Morpheus Gnutella Freenet BitTorrent Skype Peer to Peer Networks Common P2P Examples Napster Morpheus Gnutella Freenet BitTorrent Skype 1 2 Uses of P2P Client-Server Architecture File sharing Instant messaging Voice communication Collaboration

More information

Mathematical Modelling of Computer Networks: Part II. Module 1: Network Coding

Mathematical Modelling of Computer Networks: Part II. Module 1: Network Coding Mathematical Modelling of Computer Networks: Part II Module 1: Network Coding Lecture 3: Network coding and TCP 12th November 2013 Laila Daniel and Krishnan Narayanan Dept. of Computer Science, University

More information

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.

More information

Carnegie Mellon Computer Science Department. 15-744 Spring 2007 Theory Problem Set 2

Carnegie Mellon Computer Science Department. 15-744 Spring 2007 Theory Problem Set 2 Carnegie Mellon Computer Science Department. - Spring Theory Problem Set This problem set has questions. Answer them as clearly and concisely as possible. You may discuss ideas with others in the class,

More information

PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS

PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS Reza Azizi Engineering Department, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran reza.azizi@bojnourdiau.ac.ir

More information

EE 7376: Introduction to Computer Networks. Homework #3: Network Security, Email, Web, DNS, and Network Management. Maximum Points: 60

EE 7376: Introduction to Computer Networks. Homework #3: Network Security, Email, Web, DNS, and Network Management. Maximum Points: 60 EE 7376: Introduction to Computer Networks Homework #3: Network Security, Email, Web, DNS, and Network Management Maximum Points: 60 1. Network security attacks that have to do with eavesdropping on, or

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Reliable Multicast Protocol with Packet Forwarding in Wireless Internet

Reliable Multicast Protocol with Packet Forwarding in Wireless Internet Reliable Multicast Protocol with Packet Forwarding in Wireless Internet Taku NOGUCHI, Toru YOSHIKAWA and Miki YAMAMOTO College of Information Science and Engineering, Ritsumeikan University 1-1-1, Nojihigashi,

More information

A Network Monitoring System with a Peer-to-Peer Architecture

A Network Monitoring System with a Peer-to-Peer Architecture A Network Monitoring System with a Peer-to-Peer Architecture Paulo Salvador, Rui Valadas University of Aveiro / Institute of Telecommunications Aveiro E-mail: salvador@av.it.pt; rv@det.ua.pt Abstract The

More information

First Midterm for ECE374 03/24/11 Solution!!

First Midterm for ECE374 03/24/11 Solution!! 1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your

More information

RESEARCH ISSUES IN PEER-TO-PEER DATA MANAGEMENT

RESEARCH ISSUES IN PEER-TO-PEER DATA MANAGEMENT RESEARCH ISSUES IN PEER-TO-PEER DATA MANAGEMENT Bilkent University 1 OUTLINE P2P computing systems Representative P2P systems P2P data management Incentive mechanisms Concluding remarks Bilkent University

More information

1. The Web: HTTP; file transfer: FTP; remote login: Telnet; Network News: NNTP; e-mail: SMTP.

1. The Web: HTTP; file transfer: FTP; remote login: Telnet; Network News: NNTP; e-mail: SMTP. Chapter 2 Review Questions 1. The Web: HTTP; file transfer: FTP; remote login: Telnet; Network News: NNTP; e-mail: SMTP. 2. Network architecture refers to the organization of the communication process

More information

Content Delivery Networks

Content Delivery Networks Content Delivery Networks Silvano Gai Cisco Systems, USA Politecnico di Torino, IT sgai@cisco.com 1 Agenda What are Content Delivery Networks? DNS based routing Server Load Balancing Content Routers Ethical

More information

Interoperability of Peer-To-Peer File Sharing Protocols

Interoperability of Peer-To-Peer File Sharing Protocols Interoperability of -To- File Sharing Protocols Siu Man Lui and Sai Ho Kwok -to- (P2P) file sharing software has brought a hot discussion on P2P file sharing among all businesses. Freenet, Gnutella, and

More information

Group Encrypted Transport VPN

Group Encrypted Transport VPN Group Encrypted Transport VPN Petr Růžička petr.ruzicka@cisco.com Cisco Systems Czech Republic V Celnici 10, 117 21 Praha Abstract Today's networked applications, such as voice and video, are accelerating

More information

Introduction to Network Operating Systems

Introduction to Network Operating Systems As mentioned earlier, different layers of the protocol stack use different kinds of addresses. We can now see that the Transport Layer (TCP) uses port addresses to route data to the correct process, the

More information

HPAM: Hybrid Protocol for Application Level Multicast. Yeo Chai Kiat

HPAM: Hybrid Protocol for Application Level Multicast. Yeo Chai Kiat HPAM: Hybrid Protocol for Application Level Multicast Yeo Chai Kiat Scope 1. Introduction 2. Hybrid Protocol for Application Level Multicast (HPAM) 3. Features of HPAM 4. Conclusion 1. Introduction Video

More information

Content Distribution Networks (CDN)

Content Distribution Networks (CDN) 229 Content Distribution Networks (CDNs) A content distribution network can be viewed as a global web replication. main idea: each replica is located in a different geographic area, rather then in the

More information

Administrative Distance

Administrative Distance RIP is a distance vector routing protocol. It shares routing information through the local broadcast in every 30 seconds. In this tutorial we will explain RIP routing fundamentals with examples such as

More information

A Transport Protocol for Multimedia Wireless Sensor Networks

A Transport Protocol for Multimedia Wireless Sensor Networks A Transport Protocol for Multimedia Wireless Sensor Networks Duarte Meneses, António Grilo, Paulo Rogério Pereira 1 NGI'2011: A Transport Protocol for Multimedia Wireless Sensor Networks Introduction Wireless

More information

Classes of multimedia Applications

Classes of multimedia Applications Classes of multimedia Applications Streaming Stored Audio and Video Streaming Live Audio and Video Real-Time Interactive Audio and Video Others Class: Streaming Stored Audio and Video The multimedia content

More information

Adapting Distributed Hash Tables for Mobile Ad Hoc Networks

Adapting Distributed Hash Tables for Mobile Ad Hoc Networks University of Tübingen Chair for Computer Networks and Internet Adapting Distributed Hash Tables for Mobile Ad Hoc Networks Tobias Heer, Stefan Götz, Simon Rieche, Klaus Wehrle Protocol Engineering and

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Congestion Control Overview

Congestion Control Overview Congestion Control Overview Problem: When too many packets are transmitted through a network, congestion occurs t very high traffic, performance collapses completely, and almost no packets are delivered

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs)

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs) CS6956: Wireless and Mobile Networks Lecture Notes: //05 IEEE 80. Wireless Local Area Networks (WLANs) CSMA/CD Carrier Sense Multi Access/Collision Detection detects collision and retransmits, no acknowledgement,

More information

ACMS: The Akamai Configuration Management System

ACMS: The Akamai Configuration Management System ACMS: The Akamai Configuration Management System Alex Sherman, Philip A. Lisiecki, Andy Berkheimer, and Joel Wein. Akamai Technologies, Inc. Columbia University Polytechnic University. {andyb,lisiecki,asherman,jwein}@akamai.com

More information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.

More information

A Survey of Peer-to-Peer File Sharing Technologies

A Survey of Peer-to-Peer File Sharing Technologies Athens University of Economics and Business The ebusiness Centre (www.eltrun.gr) A Survey of Peer-to-Peer File Sharing Technologies White Paper Page 1 of 1 A Survey of Peer-to-Peer File Sharing Technologies

More information

HollyShare: Peer-to-Peer File Sharing Application

HollyShare: Peer-to-Peer File Sharing Application HollyShare: Peer-to-Peer File Sharing Application ICS 243A Class Project Songmei Han Bijit Hore Ilya Issenin Sean McCarthy Shannon Tauro HollyShare Project: Final Report 1 INTRODUCTION...3 SURVEY...5 Architecture

More information

Peer-to-Peer Networks 02: Napster & Gnutella. Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

Peer-to-Peer Networks 02: Napster & Gnutella. Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg Peer-to-Peer Networks 02: Napster & Gnutella Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg Napster Shawn (Napster) Fanning - published 1999 his beta

More information

Content Delivery Network (CDN) and P2P Model

Content Delivery Network (CDN) and P2P Model A multi-agent algorithm to improve content management in CDN networks Agostino Forestiero, forestiero@icar.cnr.it Carlo Mastroianni, mastroianni@icar.cnr.it ICAR-CNR Institute for High Performance Computing

More information

Acknowledgements. Peer to Peer File Storage Systems. Target Uses. P2P File Systems CS 699. Serving data with inexpensive hosts:

Acknowledgements. Peer to Peer File Storage Systems. Target Uses. P2P File Systems CS 699. Serving data with inexpensive hosts: Acknowledgements Peer to Peer File Storage Systems CS 699 Some of the followings slides are borrowed from a talk by Robert Morris (MIT) 1 2 P2P File Systems Target Uses File Sharing is one of the most

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

A Framework for Scalable Global IP-Anycast (GIA)

A Framework for Scalable Global IP-Anycast (GIA) A Framework for Scalable Global IP-Anycast (GIA) Dina Katabi, John Wroclawski MIT Laboratory for Computer Science 545 Technology Square Cambridge, MA 02139 {dina,jtw}@lcs.mit.edu ABSTRACT This paper proposes

More information