Stability of a discretetime, macroeconomic disequilibrium model Kaper, B.


 Angela York
 1 years ago
 Views:
Transcription
1 Tilburg University Stability of a discretetime, macroeconomic disequilibrium model Kaper, B. Document version: Publisher final version (usually the publisher pdf) Publication date: 982 Link to publication Citation for published version (APA): Kaper, B. (982). Stability of a discretetime, macroeconomic disequilibrium model. (pp. 3). (Ter Discussie FEW). Tilburg: Faculteit der Economische Wetenschappen. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research You may not further distribute the material or use it for any profitmaking activity or commercial gain You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 5. aug. 205
2 BestemminqT ~, ` ~~"~ i i~:~~:;..., ~, lh~i':t'. '',;..:if'~ ~, I HGGES~:ïCOL ' TILBURG subfaculteit der econometrie REEKS "TER DISCUSSIE" I!I~IIIIIIIIIIIIIIII IIIIiIInI~h I~IInIiNI
3 No STABILITY OF A DISCRETETIME, MACROECONOMIC DIS EQUILIBRIUM MODEL. B. Kaper
4 STABILITY OF A DISCRETETIME, MACROECONOMIC DISEQUILIBRIUM MODEL. ABSTRACT. We invesi:.igate the stability of a macroeconomic monetary discretetime model with a constraint on the market for bankcredit. A theorem is proved on asymp 2 totic stability of a piecewise linear discretetime system in R which is not overall linear.
5 ~. INTRODUCTION. In [3] macroeconomic monetary models have been 3eveloped with constraints on the market for bankcredit. In studying the dynamics of these disequilibrium models we met the problem of asymptotic stability of discretetime systems which are not standard in the theory of difference equations, [5]. Similar problems arise in continuoustime disequilibrium problems (c.f. for instance []). Some advancements on that field of research have been made by e.g. Laro~ue [4], v.d. Heuvel [2]. In this paper we present a theorem on asymptotic stability of a piecewise linear discretetime system in ~22 which is not overall linear. This theorem is applicable to a macroeconomic monetary disequílibrium model that has been abstracted from [3]. In order to get a connection as well as possible with the disequilibrium models in Koning we will use the same type of variables.
6 3 2. A MACRO ECONOMIC DISEQUZLIBRIUM MODEL. We consider a macroeconomic monetary model with constraints on the market for bankcredit. The variables of the model represent relative of balanced growth. values on paths If x symbolises the the balancedgrowth value of a variable of the model viation of variable : X e xe In the neighborhood of the equilibrium the first difference ~x : x x is approximately equal growthrate (~x), ) to the difference of the actual and the balanced of the variable x in the past period. extra growthrate of the variable in question If in e then the relative de is X x actual value and x value with respect to the balancedgr.owth value of the the actual (x) deviations of their (cf. This is also known as the appendix). the model a exogeneous variables are zero and there is tween the actual and balancedgrowth value zerovalue at all time. will persist in the equality be the relative variables of the model If any exogeneous variable is given a non zero value relative variables of the model wi leave their zero position. In order to analyse the effect of a permanent pulse on any of the exo geneous variables we will multiply these variables with the Heavisidefunction H, H(x) 0, if x ~ 0, if x ~ 0. The value of all relative variables of the model will be equal to zero if all exogeneous variables are not effective in the model. The following quantities are involved by the model represent ) The the exogeneous part of the variable y national income c(y) demand for consumption i(t) demand for investment goods subscript indicates (the characters in brac;ket.s in question): a retardation of one period.
7 4 rb interest rate of bankcredit bd demand for bankcredit b(q) supply of bankcredit (a: discount rate) s The model is given by the following set of equilibrium and adjustment equations: (2) c Yly t YH (2.2) (2.3) i tlrb f y ~lc t ~2i t2(yy) t3(bd b) t th (2.4) bd Slrb f d2y (2.5) bs Qlrb ah (2.6) rb rb f pl (bd bs ) where b min {bd, bs} 'Phe greek characters provided with a subindex are positive (adjustment) con ;;tants of the mode]. The model will be reduced to a set of first order dif 2 ference equations in R. From (2.) (2.3) we qet an equation for y, ("l.7) y a~ n2tlrb n2t2y n2t3(bd b) f(ny t n2t)h] where a : (ny) n2t2) and bd b min {0, (S f crl)rb d2y ah}. From (2.4) (2.6) we derive an equation for rb, (2.8) rb rb t pl(dlrb } d2y alrb t ah). Let us introduce a new set of variables, xl(n) : Y x2 (n) rb
8 We get a S firstorder system in ~2z: xl(nt) an2t2 x(n) (2.9) bzxl(n) ar)2t x2(n) f(dl x2(nfl) Pld2 xl(n) f al)x2(n) f(8p Assuming that all variables were equal get at period ~,x2() arl2t3 min ap)x2(n) f PaH(n). to zero up to the zeroth period we {0, ~} PiQ This will be taken as the initial value of the replaced by function then might be sists of two linear subsystems whereas overall QH(n)} t a(rly t n2t)h(n) ~xl () Heaviside ar2t3 min {0, first order system the value. the system itself System is ( 2.9). ( 2.9) 3ubsystem, if d2xi(n) x(nfl) Alx(n) f(dl t ol)x2(n) a ~ 0 t bi where A bl a~2t2 t arl2t3ó2 an2t pcs2 (8fQ)K~ [ an2t3a t a ;ny f p~t ), c~q~ T and x(n) Subsystem 2, : [xl(n), if 82x(n) x(nfl) A2x(n) x2(n~l T ; t(dltal)x2(n) a~ 0 t b2 where A`',ind arl~ ~ ~G ar~2 t p S~ (8t6)P con ofcourse not linear: ar2t3(slfai) The
9 6 b2 ~a(ny f Pla]. n~t). The equilibrium position x of the overall system (2.9) is just equal common equilibrium solution of both subsystems provided it exists to the (c.f, the appendix), x(i A.)lb, i or 2. linear transformation to system Firially we apply a y(ni i x(n which transforms (2.9) (2.9), x, into a homogeneous (ntl) an2t2y(n) 2(nfl) c~cs2y~(n) firstorder system in R2, a~2tly2(n) min {0. S2y(n~ f (Slfal)y2(n)} (2.0) t (SPQlpl)y2(n) or equivalently into two linear subsystems, if d2y (n) (dltal)y2(n) f ~(nfl) Aly(n), ~(ntl) A2y(n). ~ 0 else The minimum function in (2.0) implies continuity of the right hand side of In the next section it will be shown that the 0 solution of such a 2 will be asymptotically stable if homogeneous pieccwi:;e linear system in ik (2.0). both subsystems art asymptotically stable. CONCLUSION: systems The equilibrium of (2.0) are asymptotically stable, Itr A,I i Or equivalently, ~ det A, i ~, is asymptotically stable i.e. if i E{,2} the equilibrium position of the model asymptotically stable if if both sub (2.) (2.6) is
10 f ap2t.s~ t ~an7t2 (2.) 7 (dltol)p~ t ar~2t 3~ FI~ol) ) PS~ ~ ~(a~2t2 f an2t3ó2)([ótq~p) ~ar~ltg t (6to ) I~ ~ NUMERICAL EXAMPLE: If we take the following set of coefficients tyie conditions (2.) (l. l~) (2.) (2.6) del is then ~(a~2t2) ( asymptotically stable: y t i~ S ii F~ exog. (a (0. 3) ). and [ 6}~~ p ) (2.2) f an2tle~lu2 in the ~ ~nodel are satisfied and the mo
11 3. f3 2 IN R. PIECEWISELINEAR DISCRETE DYNAMIC SYSTEMS We ccnsei~.lr~r 2 R (3.) tlr~~ lcl l.uwinc~ autonomous i~iecewiselinear diiyerence equation in Axn ~tl where A: A, i if x E C., i i E I C, be closed cones n. n {,2,...,n}, in R2 with vertices in the origin, with disjoint U C. ~t2; Let the numbering of the cones around the i origin be anticlockwise interiors, Ci ~~ Ci} We will prove ' {a ~ifllu~i.f~ ~ a z 0}, i E In, ntl asymptotic stability of the zero s~~lution of system 0 is an asymptotically stable solution of each of the x ~fl : (3.) if linear subsystems A.x i~ and the function in the right hand side of (3.) is continuous. THEOREM. Consider system (3.2) (3.). I tr A. Ii If ~ det A, i ~, Ki E I, n and (3.3) Ai ~i Ai ~ then system PROOF. The (3.) is asymptotically stable. the concept of a Liapunov We will make use of function (c.f. [5]). form of the Liapunov function is based on the one constructed by Laroque for piecewise linear differential V(x) where e Let V: R is positive 2 ~ R, : det2(x, Ax] is defined by (c.f. [4]). function has been introduced by van den Heuvel A refinement of Laroque's his thesis ( 2]. systems (3.5). definite on R2. in defined by t tlixll4 Because of (3.3) Relative to the V is a continuous system (3.) define function that.
12 9 ~I(x) V(Ax) V(x). Then V(x) det2[ Ax, A2x] t eu Axll 4 detz[ x, Ax] ell xll 4 ) {det2(aj) } det2[ x, Ax] t e{iiaxu4 Uxll4} 2 The expression det [x, Ax] equals zero if x is a real eigenvector of A. Consider the case that for some index i E I A. has an eigenvalue with a real n i eigenvector y that belongs to Int(Ci). By virtue of (3.2) we have ~~~ ~. Choose Y such that 0 ~ Y ~ a4. Then the set K defined by Y Ky : {x E R2~IIAxll4 Ilxll4 ~yllxll4} rl Int (Ci) contains y. Ky is an open cone. If the eigenvector of A, just equals q, theii by i i the continuity property of A~ is also an eigenvector of Ai ~qi Ai ~i Ai ~~ In that case in the definition of K the intersection should be taken with Int (C, U C ). i i qi Let V be the set of all eigenvectors of A satisfying the above conditions, v: {y I H i E In:[ AiY ay, a E IR,y ~ OJ nj y E ci~ }. To each ~ E V an open cone K can be assigned. Define Y K : U K. ye V y Then by assumption (3.2) and the definition of K we have for each x E K (3.4) V(x) ~ FyUxu4. Let us determine next the scalars a, f3, and e a: min {det2[ x, Ax] I Uxll, x~ K} (3 : max {IlAxll ~ IIxU } ) CayleyHamilton theorem: A2 tr(a) A det(a) I.
13 0 and (3.5) Note that a ~: 2S4 [ the scalars max idet 2 (Ai) I a and t3 exist by functions on compact sets. V(x) ~{det2(a~) i E In}], continuity of the respective the For each x~ K we have }aiixb4 t 2S4( i max {det2(ai) I i E In}).,~4x4. and hence (3.6) V(x) ~ laidet2(a.) 2 ~ From the definition of V and }IIxq4, the inequalities (3.4) that V is a Liapunov function in the classical case: tive definite. Then 0 is and (3.6) V(x) (globally) asymptotically stable. and we may conclude V(x) are posi~
14 Appenr~ices.. Let us denote the actual and balanced growth repectively g x e. in the past period by g rate Then and ( ltg) x xe ( fge) xe The first difference!~x 2. The ~xe X X Q e variable x f ge. e. is ( gge ) g4e. are equivalent if equilibrium positions of the linear subsystems holds (a.l) xxe ~ e of the relative there the relation (IAe)lbl Let us define A, A (IA2)lb2 b, where A A2 f A and bl bz f b, an23(dl}vl) an23s2 0 0 and b [ar2t3o, Relation (a.l) bz ~ b will 0]T. reduced into the successively be following relations: (IA2A)(IA2)lb2 or eventually b A(IA2)b2. The last relation can be 3. The equilibrium position xl x2 where checked by straiqht is given by Q{(StQ)Pla(nYfnZl) QlíPid2a(~Yfn7i) f forward substitution. x[xl, x2] anztlpla}, Pla(lfar2t2)}, T,
15 2 R( t an2t2)(dfqi)pl t an2tlpld2. In t}re numerical example the equilibrium is given by x(u.2, 0.24). The equilibrium quantities of the model are co.u9, i 0.24, y0.2, b bd b~ 0.3h, rb 0.24.
16 3 ~~ E~kalbar J.C., The stability of nonwalrasian processes, Ecvnometrica 48 (980), ~2~ FIeuvel, P. van den, The stability of a macroeconomic system with quantity constraints (98), Thesis 'Pechnische Hogeschool, Eindhoven, the Netherlands. [3) Koning, J.H., Kredietrantsoenering en onevenwichtigheid (982), Thesis, Tilburg University, the Netherlands. ~4~ C,aroque, G., Notes and Comments, A comment on "Strahle Spillover amonc~ Subst.i.tut:es", Iteview of Economic Studies (9fi), xz VII7, 35'~36. [5] Lasalle, J.P., Stabi.lity theory for difference equations, Studies in ordinary different.ial equations Ed. J. Hale, publ. by M.A.A., 977.
17 4 IN 98 REEDS VERSCHENEN: 0.. J.J.A. Moors Inadmissibility of linearly invariant estimators in truncated parameter spaces 0.2. H. Peer De mathematische structuur J. Klijnen van conjunctuurstructuurmodellen en een rekenprocedure voor numerieke simulatie van deze modellen 0.3. H. Peer Macro economic policy options in nonmarkt structures jan. jan. febr J. van Mier ~vergelijkinger en operatoren maart 0.5. A.L. Hempenius 0.6. R.J.M. Heuts 0.7. B. Kaper 0.8. R.M.J. Heuts and R. Willemse 0.9. J.P. Heesters 0. J.P. Heesters Definities van gemiddelde factorproductiviteiten en bezettingsgraad in een jaargangenmodel voor industriële sectoren, met een toepassing voor de sector Chemische Industrie Asymptotic Robustness of Prediction Intervals of Arima Models by Deviations of Normality Some aspects of differential equations with discontinuous righthand sides Impulse response patterns for various dynamic time teries models Aankleden of uitkleden? Een kritische beschouwing van de honorering van de huisarts vrij beroepsbeoefenaar Aankleden of uitkleden? Een kritische beschouwing van de honorering van de medisch specialist vrij beroepsbeoefenaar ten opzichte van de ambtenaar maart mei juli juni sept. okt.. Dr. G.P.L van Roij Rentearbitrage, valutaspeculatie en wisselkoersen nov. 2. J. Glombowski A Comment on Sherman's Marxist Cycle Model revised version 3. Drs. W.A.M. de Lange Deeltijdarbeid op de Katholieke H.A.C. de ConinckMerckx Hogeschool Tilburg M.R.M. Turlinas M.C.M. Puyk nov. nov.
18 5 4. Drs, w.a.m. de Lange Tabellenboek bij het Onderzoek L.H.M. Bosch 'Deeltijdarbeid op de Katholieke M.C.M. Turlings Hogeschool Tilburg' nov. 5. H. Peer Economische groei en uitputtelijke grondstoffer. nov.
19 6 IN 982 REEDS VERSCHENEN: O. W. van Groenendaal 02. M.D. Merbis 03. F. Boekema 04. P.T.W.M. Veugelers 05. F. Boekema 06. P. van Geel 07. J.H.M. Donaers, F.A.M, van der Reep Building and analyzing an jan econometric model with the use of a hybrid computer; part I. System properties of the jan. interplay model Decentralisatie en regionaal maart sociaaleconomisch beleid Een monetaristisch model voor maart de Nederlandse economie Morfologie van de "Wolstad", april Over het ontstaan en de ontwikkeling van de ruimtelijke geleding en struktuur van Tilburg. Over de (on)mogelijkheden mei van het model van Knoester. De betekenis van het monetaire beleid voor de Nederla.~dse eccnomie, presentatie van een analyse aan de hand van een eenvoudig model mei 08. R.M.J. Heuts The use of nonlinear transformation in ARIMAMOdels when the data are nongaussian distributed juni 09. B.B. van der Genugten 0. J. Roemen. J. Roemen 2. M.D. Merbis prelimi juli On the compensator Part I Problem formulation and naries Asymptotic normality of least squares estimators ín autoregressive linear regression models. j~i Van koetjes en kalfjes Z juli Van koetjes en kalfjes II juli 3. P. Slangen Bepaling van de optimale beleidsparameters voor een stochastisch kasbcheersprobleem met continue controle aug. 4. M.D. Merbis Linear Quadratic Gaussian Dynamic Games aug.
20 7 5. P. Hinssen Een kasbeheermodel onder J. Kriens onzekerheid sept. J. Th. van Lieshout 6. A. Hendriks en "Van Bedrijfsverzamelgebouw T, van der BijVeenstra naar Bedrijvencentrum" okt. 7. F.W.M. Boekema Industriepolitiek, Regionaal A.J. Hendriks beleid en Innovatie okt. L.H.J. Verhoef
21 u i ~ ~ir"i~ïwnii iiiiii iil WUii~~
The Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
More informationCONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
More informationA Second Course in Elementary Differential Equations: Problems and Solutions. Marcel B. Finan Arkansas Tech University c All Rights Reserved
A Second Course in Elementary Differential Equations: Problems and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved Contents 8 Calculus of MatrixValued Functions of a Real Variable
More informationScientific Computing: An Introductory Survey
Scientific Computing: An Introductory Survey Chapter 10 Boundary Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at UrbanaChampaign
More informationResearch Article TwoPeriod Inventory Control with Manufacturing and Remanufacturing under Return Compensation Policy
Discrete Dynamics in Nature and Society Volume 2013, Article ID 871286, 8 pages http://dx.doi.org/10.1155/2013/871286 Research Article TwoPeriod Inventory Control with Manufacturing and Remanufacturing
More informationApplications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
More informationMatrix Algebra and Applications
Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2  Matrices and Matrix Algebra Reading 1 Chapters
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More informationLecture 4: Partitioned Matrices and Determinants
Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying
More informationLecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10
Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction
More informationtegrals as General & Particular Solutions
tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationequations Karl Lundengård December 3, 2012 MAA704: Matrix functions and matrix equations Matrix functions Matrix equations Matrix equations, cont d
and and Karl Lundengård December 3, 2012 Solving General, Contents of todays lecture and (Kroenecker product) Solving General, Some useful from calculus and : f (x) = x n, x C, n Z + : f (x) = n x, x R,
More information9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
More informationECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.
More informationIncreasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.
1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.
More informationMultiplicity. Chapter 6
Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are
More informationOn the DStability of Linear and Nonlinear Positive Switched Systems
On the DStability of Linear and Nonlinear Positive Switched Systems V. S. Bokharaie, O. Mason and F. Wirth Abstract We present a number of results on Dstability of positive switched systems. Different
More informationESSAYS ON MONTE CARLO METHODS FOR STATE SPACE MODELS
VRIJE UNIVERSITEIT ESSAYS ON MONTE CARLO METHODS FOR STATE SPACE MODELS ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus
More informationa 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
More informationWelcome! Dr. Bas van Groezen Academic Director BSc Economics, Teacher & Researcher
Information session Bachelor Economics October 24, 2014 Welcome! Dr. Bas van Groezen Academic Director BSc Economics, Teacher & Researcher Drs. Linda van Klink Program Coordinator BSc Economics, Student
More informationMatrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
More informationSYSTEMS OF REGRESSION EQUATIONS
SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More information(Refer Slide Time: 01:1101:27)
Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture  6 Digital systems (contd.); inverse systems, stability, FIR and IIR,
More informationLecture 13 Linear quadratic Lyapunov theory
EE363 Winter 289 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discretetime
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationStationary random graphs on Z with prescribed iid degrees and finite mean connections
Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the nonnegative
More informationDynamic Eigenvalues for Scalar Linear TimeVarying Systems
Dynamic Eigenvalues for Scalar Linear TimeVarying Systems P. van der Kloet and F.L. Neerhoff Department of Electrical Engineering Delft University of Technology Mekelweg 4 2628 CD Delft The Netherlands
More informationFunctional Optimization Models for Active Queue Management
Functional Optimization Models for Active Queue Management Yixin Chen Department of Computer Science and Engineering Washington University in St Louis 1 Brookings Drive St Louis, MO 63130, USA chen@cse.wustl.edu
More informationEigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
More informationExample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
More informationBiggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationOPTIMAl PREMIUM CONTROl IN A NONliFE INSURANCE BUSINESS
ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NONliFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NONliFE INSURANCE BUSINESS By Martina Vandebroek
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationINDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulationbased method for estimating the parameters of economic models. Its
More information3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
More informationThe Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, ThreeDimensional Proper and Improper Rotation Matrices, I provided a derivation
More informationAustralian Dollars Exchange Rate and Gold Prices: An Interval Method Analysis
he 7th International Symposium on Operations Research and Its Applications (ISORA 08) Lijiang, China, October 3 Novemver 3, 2008 Copyright 2008 ORSC & APORC, pp. 46 52 Australian Dollars Exchange Rate
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationA First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved
A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)
More informationEquations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationu dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2
DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,
More informationNonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
More informationOverview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
More information1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
More informationCPC/CPA Hybrid Bidding in a Second Price Auction
CPC/CPA Hybrid Bidding in a Second Price Auction Benjamin Edelman Hoan Soo Lee Working Paper 09074 Copyright 2008 by Benjamin Edelman and Hoan Soo Lee Working papers are in draft form. This working paper
More informationVectors, Gradient, Divergence and Curl.
Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use
More informationDRAFT. Further mathematics. GCE AS and A level subject content
Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed
More informationSOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationThe Method of Lagrange Multipliers
The Method of Lagrange Multipliers S. Sawyer October 25, 2002 1. Lagrange s Theorem. Suppose that we want to maximize (or imize a function of n variables f(x = f(x 1, x 2,..., x n for x = (x 1, x 2,...,
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationOn Marginal Effects in Semiparametric Censored Regression Models
On Marginal Effects in Semiparametric Censored Regression Models Bo E. Honoré September 3, 2008 Introduction It is often argued that estimation of semiparametric censored regression models such as the
More informationMLD Model of BoilerTurbine System Based on PWA Linearization Approach
International Journal of Control Science and Engineering 2012, 2(4): 8892 DOI: 10.5923/j.control.20120204.06 MLD Model of BoilerTurbine System Based on PWA Linearization Approach M. Sarailoo *, B. Rezaie,
More informationLinear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
More informationIdentifying second degree equations
Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +
More informationProximal mapping via network optimization
L. Vandenberghe EE236C (Spring 234) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
More informationR mp nq. (13.1) a m1 B a mn B
This electronic version is for personal use and may not be duplicated or distributed Chapter 13 Kronecker Products 131 Definition and Examples Definition 131 Let A R m n, B R p q Then the Kronecker product
More informationLeastSquares Intersection of Lines
LeastSquares Intersection of Lines Johannes Traa  UIUC 2013 This writeup derives the leastsquares solution for the intersection of lines. In the general case, a set of lines will not intersect at a
More informationSchooling, Political Participation, and the Economy. (Online Supplementary Appendix: Not for Publication)
Schooling, Political Participation, and the Economy Online Supplementary Appendix: Not for Publication) Filipe R. Campante Davin Chor July 200 Abstract In this online appendix, we present the proofs for
More informationAN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEYINTERSCIENCE A John Wiley & Sons, Inc.,
More informationHøgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin email: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider twopoint
More informationAlgebra 2 Chapter 1 Vocabulary. identity  A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity  A statement that equates two equivalent expressions. verbal model A word equation that represents a reallife problem. algebraic expression  An expression with variables.
More informationCofactor Expansion: Cramer s Rule
Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating
More informationThe vertical differentiation model in the insurance market: costs structure and equilibria analysis
The vertical differentiation model in the insurance market: costs structure and equilibria analysis Denis V. Kuzyutin 1, Maria V. Nikitina, Nadezhda V. Smirnova and Ludmila N. Razgulyaeva 1 St.Petersburg
More informationDecisionmaking with the AHP: Why is the principal eigenvector necessary
European Journal of Operational Research 145 (2003) 85 91 Decision Aiding Decisionmaking with the AHP: Why is the principal eigenvector necessary Thomas L. Saaty * University of Pittsburgh, Pittsburgh,
More informationOn closedform solutions to a class of ordinary differential equations
International Journal of Advanced Mathematical Sciences, 2 (1 (2014 5770 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closedform
More informationExample 1: Competing Species
Local Linear Analysis of Nonlinear Autonomous DEs Local linear analysis is the process by which we analyze a nonlinear system of differential equations about its equilibrium solutions (also known as critical
More informationSecondOrder Linear Differential Equations
SecondOrder Linear Differential Equations A secondorder linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1
More informationWebbased Supplementary Materials for. Modeling of Hormone SecretionGenerating. Mechanisms With Splines: A PseudoLikelihood.
Webbased Supplementary Materials for Modeling of Hormone SecretionGenerating Mechanisms With Splines: A PseudoLikelihood Approach by Anna Liu and Yuedong Wang Web Appendix A This appendix computes mean
More informationSocial Security with Heterogeneous Populations Subject to Demographic Shocks
The Geneva Papers on Risk and Insurance Theory, 26: 5 24, 2001 c 2001 The Geneva Association Social Security with Heterogeneous Populations Subject to Demographic Shocks GABRIELLE DEMANGE DELTA, 48 Boulevard
More informationLinearQuadratic Optimal Controller 10.3 Optimal Linear Control Systems
LinearQuadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closedloop systems display the desired transient
More informationReal Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
More informationORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
More informationElementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version
Brochure More information from http://www.researchandmarkets.com/reports/3148843/ Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version Description:
More information3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field
3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important
More information1 Teaching notes on GMM 1.
Bent E. Sørensen January 23, 2007 1 Teaching notes on GMM 1. Generalized Method of Moment (GMM) estimation is one of two developments in econometrics in the 80ies that revolutionized empirical work in
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationTOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
More informationImplementations of tests on the exogeneity of selected. variables and their Performance in practice ACADEMISCH PROEFSCHRIFT
Implementations of tests on the exogeneity of selected variables and their Performance in practice ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationNPHardness Results Related to PPAD
NPHardness Results Related to PPAD Chuangyin Dang Dept. of Manufacturing Engineering & Engineering Management City University of Hong Kong Kowloon, Hong Kong SAR, China EMail: mecdang@cityu.edu.hk Yinyu
More informationLecture 1: The intertemporal approach to the current account
Lecture 1: The intertemporal approach to the current account Open economy macroeconomics, Fall 2006 Ida Wolden Bache August 22, 2006 Intertemporal trade and the current account What determines when countries
More informationGeneral Theory of Differential Equations Sections 2.8, 3.13.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.13.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
More informationDate: April 12, 2001. Contents
2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........
More informationExamples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
More informationMARKET STRUCTURE AND INSIDER TRADING. Keywords: Insider Trading, Stock prices, Correlated signals, Kyle model
MARKET STRUCTURE AND INSIDER TRADING WASSIM DAHER AND LEONARD J. MIRMAN Abstract. In this paper we examine the real and financial effects of two insiders trading in a static Jain Mirman model (Henceforth
More informationBias in the Estimation of Mean Reversion in ContinuousTime Lévy Processes
Bias in the Estimation of Mean Reversion in ContinuousTime Lévy Processes Yong Bao a, Aman Ullah b, Yun Wang c, and Jun Yu d a Purdue University, IN, USA b University of California, Riverside, CA, USA
More informationProbability and Statistics
CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b  0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute  Systems and Modeling GIGA  Bioinformatics ULg kristel.vansteen@ulg.ac.be
More information3 Signals and Systems: Part II
3 Signals and Systems: Part II Recommended Problems P3.1 Sketch each of the following signals. (a) x[n] = b[n] + 3[n  3] (b) x[n] = u[n]  u[n  5] (c) x[n] = 6[n] + 1n + (i)2 [n  2] + (i)ag[n  3] (d)
More informationLinear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
More informationAdding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
More information3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
More information6. Budget Deficits and Fiscal Policy
Prof. Dr. Thomas Steger Advanced Macroeconomics II Lecture SS 2012 6. Budget Deficits and Fiscal Policy Introduction Ricardian equivalence Distorting taxes Debt crises Introduction (1) Ricardian equivalence
More information4 Lyapunov Stability Theory
4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We
More information