Dynamic Topic Models. Abstract. 1. Introduction


 Trevor Goodwin
 1 years ago
 Views:
Transcription
1 David M. Blei omputer Science Department, Princeton University, Princeton, NJ 08544, USA John D. Lafferty School of omputer Science, arnegie Mellon University, Pittsburgh PA 15213, USA Abstract A family of probabilistic time series models is developed to analye the time evolution of topics in large document collections. The approach is to use state space models on the natural parameters of the multinomial distributions that represent the topics. Variational approximations based on Kalman filters and nonparametric avelet regression are developed to carry out approximate posterior inference over the latent topics. In addition to giving quantitative, predictive models of a sequential corpus, dynamic topic models provide a qualitative indo into the contents of a large document collection. The models are demonstrated by analying the OR ed archives of the journal Science from 1880 through Introduction Managing the explosion of electronic document archives requires ne tools for automatically organiing, searching, indexing, and brosing large collections. Recent research in machine learning and statistics has developed ne techniques for finding patterns of ords in document collections using hierarchical probabilistic models Blei et al., 2003; Mcallum et al., 2004; RosenZvi et al., 2004; Griffiths and Steyvers, 2004; Buntine and Jakulin, 2004; Blei and Lafferty, These models are called topic models because the discovered patterns often reflect the underlying topics hich combined to form the documents. Such hierarchical probabilistic models are easily generalied to other kinds of data; for example, topic models have been used to analye images FeiFei and Perona, 2005; Sivic et al., 2005, biological data Pritchard et al., 2000, and survey data Erosheva, In an exchangeable topic model, the ords of each docu Appearing in Proceedings of the 23 rd International onference on Machine Learning, Pittsburgh, PA, opyright 2006 by the authors/oners. ment are assumed to be independently dran from a mixture of multinomials. The mixing proportions are randomly dran for each document; the mixture components, or topics, are shared by all documents. Thus, each document reflects the components ith different proportions. These models are a poerful method of dimensionality reduction for large collections of unstructured documents. Moreover, posterior inference at the document level is useful for information retrieval, classification, and topicdirected brosing. Treating ords exchangeably is a simplification that it is consistent ith the goal of identifying the semantic themes ithin each document. For many collections of interest, hoever, the implicit assumption of exchangeable documents is inappropriate. Document collections such as scholarly journals, , nes articles, and search query logs all reflect evolving content. For example, the Science article The Brain of Professor Laborde may be on the same scientific path as the article Reshaping the ortical Motor Map by Unmasking Latent Intracortical onnections, but the study of neuroscience looked much different in 1903 than it did in The themes in a document collection evolve over time, and it is of interest to explicitly model the dynamics of the underlying topics. In this paper, e develop a dynamic topic model hich captures the evolution of topics in a sequentially organied corpus of documents. We demonstrate its applicability by analying over 100 years of OR ed articles from the journal Science, hich as founded in 1880 by Thomas Edison and has been published through the present. Under this model, articles are grouped by year, and each year s articles arise from a set of topics that have evolved from the last year s topics. In the subsequent sections, e extend classical state space models to specify a statistical model of topic evolution. We then develop efficient approximate posterior inference techniques for determining the evolving topics from a sequential collection of documents. Finally, e present qualitative results that demonstrate ho dynamic topic models allo the exploration of a large document collection in ne
2 ays, and quantitative results that demonstrate greater predictive accuracy hen compared ith static topic models. 2. Dynamic Topic Models While traditional time series modeling has focused on continuous data, topic models are designed for categorical data. Our approach is to use state space models on the natural parameter space of the underlying topic multinomials, as ell as on the natural parameters for the logistic normal distributions used for modeling the documentspecific topic proportions. First, e revie the underlying statistical assumptions of a static topic model, such as latent Dirichlet allocation LDA Blei et al., Let 1:K be K topics, each of hich is a distribution over a fixed vocabulary. In a static topic model, each document is assumed dran from the folloing generative process: 1. hoose topic proportions from a distribution over the K 1simplex, such as a Dirichlet. 2. For each ord: a hoose a topic assignment Z Mult. b hoose a ord W Mult. This process implicitly assumes that the documents are dran exchangeably from the same set of topics. For many collections, hoever, the order of the documents reflects an evolving set of topics. In a dynamic topic model, e suppose that the data is divided by time slice, for example by year. We model the documents of each slice ith a K component topic model, here the topics associated ith slice t evolve from the topics associated ith slice t 1. For a Kcomponent model ith V terms, let t,k denote the V vector of natural parameters for topic k in slice t. The usual representation of a multinomial distribution is by its mean parameteriation. If e denote the mean parameter of a V dimensional multinomial by π, the ith component of the natural parameter is given by the mapping i = logπ i /π V. In typical language modeling applications, Dirichlet distributions are used to model uncertainty about the distributions over ords. Hoever, the Dirichlet is not amenable to sequential modeling. Instead, e chain the natural parameters of each topic t,k in a state space model that evolves ith Gaussian noise; the simplest version of such a model is t,k t 1,k N t 1,k,σ 2 I. 1 Our approach is thus to model sequences of compositional random variables by chaining Gaussian distributions in a dynamic model and mapping the emitted values to the simplex. This is an extension of the logistic normal distribu N N N A A A Figure 1. Graphical representation of a dynamic topic model for three time slices. Each topic s natural parameters t,k evolve over time, together ith the mean parameters t of the logistic normal distribution for the topic proportions. tion Aitchison, 1982 to timeseries simplex data West and Harrison, In LDA, the documentspecific topic proportions are dran from a Dirichlet distribution. In the dynamic topic model, e use a logistic normal ith mean to express uncertainty over proportions. The sequential structure beteen models is again captured ith a simple dynamic model t t 1 N t 1,δ 2 I. 2 For simplicity, e do not model the dynamics of topic correlation, as as done for static models by Blei and Lafferty By chaining together topics and topic proportion distributions, e have sequentially tied a collection of topic models. The generative process for slice t of a sequential corpus is thus as follos: 1. Dra topics t t 1 N t 1,σ 2 I. 2. Dra t t 1 N t 1,δ 2 I. 3. For each document: a Dra η N t,a 2 I b For each ord: i. Dra Z Multπη. ii. Dra W t,d,n Multπ t,. Note that π maps the multinomial natural parameters to the mean parameters, π k,t = exp k,t, P exp k,t,. The graphical model for this generative process is shon in Figure 1. When the horiontal arros are removed, breaking the time dynamics, the graphical model reduces to a set of independent topic models. With time dynamics, the kth K
3 topic at slice t has smoothly evolved from the kth topic at slice t 1. For clarity of presentation, e no focus on a model ith K dynamic topics evolving as in 1, and here the topic proportion model is fixed at a Dirichlet. The technical issues associated ith modeling the topic proportions in a time series as in 2 are essentially the same as those for chaining the topics together. 3. Approximate Inference Working ith time series over the natural parameters enables the use of Gaussian models for the time dynamics; hoever, due to the nonconjugacy of the Gaussian and multinomial models, posterior inference is intractable. In this section, e present a variational method for approximate posterior inference. We use variational methods as deterministic alternatives to stochastic simulation, in order to handle the large data sets typical of text analysis. While Gibbs sampling has been effectively used for static topic models Griffiths and Steyvers, 2004, nonconjugacy makes sampling methods more difficult for this dynamic model. The idea behind variational methods is to optimie the free parameters of a distribution over the latent variables so that the distribution is close in KullbackLiebler KL divergence to the true posterior; this distribution can then be used as a substitute for the true posterior. In the dynamic topic model, the latent variables are the topics t,k, mixture proportions t,d, and topic indicators t,d,n. The variational distribution reflects the group structure of the latent variables. There are variational parameters for each topic s sequence of multinomial parameters, and variational parameters for each of the documentlevel latent variables. The approximate variational posterior is K q k,1,..., k,t ˆ k,1,..., ˆ k,t 3 k=1 T Dt d=1 q t,d γ t,d N t,d n=1 q t,d,n φ t,d,n In the commonly used meanfield approximation, each latent variable is considered independently of the others. In the variational distribution of { k,1,..., k,t }, hoever, e retain the sequential structure of the topic by positing a dynamic model ith Gaussian variational observations {ˆ k,1,..., ˆ k,t }. These parameters are fit to minimie the KL divergence beteen the resulting posterior, hich is Gaussian, and the true posterior, hich is not Gaussian. A similar technique for Gaussian processes is described in Snelson and Ghahramani, The variational distribution of the documentlevel latent. N N N A A A Figure 2. A graphical representation of the variational approximation for the time series topic model of Figure 1. The variational parameters ˆ and ˆ are thought of as the outputs of a Kalman filter, or as observed data in a nonparametric regression setting. variables follos the same form as in Blei et al Each proportion vector t,d is endoed ith a free Dirichlet parameter γ t,d, each topic indicator t,d,n is endoed ith a free multinomial parameter φ t,d,n, and optimiation proceeds by coordinate ascent. The updates for the documentlevel variational parameters have a closed form; e use the conjugate gradient method to optimie the topiclevel variational observations. The resulting variational approximation for the natural topic parameters { k,1,..., k,t } incorporates the time dynamics; e describe one approximation based on a Kalman filter, and a second based on avelet regression Variational Kalman Filtering The vie of the variational parameters as outputs is based on the symmetry properties of the Gaussian density, f µ,σ x = f x,σ µ, hich enables the use of the standard forardbackard calculations for linear state space models. The graphical model and its variational approximation are shon in Figure 2. Here the triangles denote variational parameters; they can be thought of as hypothetical outputs of the Kalman filter, to facilitate calculation. To explain the main idea behind this technique in a simpler setting, consider the model here unigram models t in the natural parameteriation evolve over time. In this model there are no topics and thus no mixing parameters. The calculations are simpler versions of those e need for the more general latent variable models, but exhibit the es K
4 sential features. Our state space model is t t 1 N t 1,σ 2 I t,n t Multπ t and e form the variational state space model here ˆ t t N t, ˆν 2 t I The variational parameters are ˆ t and ˆν t. Using standard Kalman filter calculations Kalman, 1960, the forard mean and variance of the variational posterior are given by m t E t ˆ 1:t = ˆν 2 t V t 1 + σ 2 + ˆν 2 t m t V t E t m t 2 ˆ 1:t ˆν 2 t = V t 1 + σ 2 + ˆν t 2 V t 1 + σ 2 ˆν 2 t V t 1 + σ 2 + ˆν 2 t ˆ t ith initial conditions specified by fixed m 0 and V 0. The backard recursion then calculates the marginal mean and variance of t given ˆ 1:T as m t 1 E t 1 ˆ 1:T = σ 2 V t 1 + σ 2 m t σ 2 V t 1 + σ 2 m t Ṽ t 1 E t 1 m t 1 2 ˆ 1:T 2 Vt 1 = V t 1 + Ṽt V t 1 + σ 2 V t 1 + σ 2 ith initial conditions m T = m T and ṼT = V T. We approximate the posterior p 1:T 1:T using the state space posterior q 1:T ˆ 1:T. From Jensen s inequality, the loglikelihood is bounded from belo as log pd 1:T 4 q 1:T ˆ p 1:T pd 1:T 1:T 1:T log q 1:T ˆ d 1:T 1:T = E q log p 1:T + E q log pd t t + Hq Details of optimiing this bound are given in an appendix Variational Wavelet Regression The variational Kalman filter can be replaced ith variational avelet regression; for a readable introduction standard avelet methods, see Wasserman We rescale time so it is beteen 0 and 1. For 128 years of Science e take n = 2 J and J = 7. To be consistent ith our earlier notation, e assume that ˆ t = m t + ˆνɛ t here ɛ t N0,1. Our variational avelet regression algorithm estimates {ˆ t }, hich e vie as observed data, just as in the Kalman filter method, as ell as the noise level ˆν. For concreteness, e illustrate the technique using the Haar avelet basis; Daubechies avelets are used in our actual examples. The model is then J 1 ˆ t = φx t + 2 j 1 j=0 k=0 D jk ψ jk x t here x t = t/n, φx = 1 for 0 x 1, { 1 if 0 x 1 ψx = 2, 1 if 1 2 < x 1 and ψ jk x = 2 j/2 ψ2 j x k. Our variational estimate for the posterior mean becomes J 1 m t = ˆφx t + 2 j 1 j=0 k=0 ˆD jk ψ jk x t. here ˆ = n 1 n ˆ t, and ˆD jk are obtained by thresholding the coefficients Z jk = 1 n n ˆ t ψ jk x t. To estimate ˆ t e use gradient ascent, as for the Kalman filter approximation, requiring the derivatives m t / ˆ t. If soft thresholding is used, then e have that m t ˆ s = ˆ ˆ s φx t + J 1 2 j 1 j=0 k=0 ˆD jk ˆ s ψ jk x t. ith ˆ/ ˆ s = n 1 and { 1 ˆD jk / ˆ s = n ψ jkx s if Z jk > λ 0 otherise. Note also that Z jk > λ if and only if ˆD jk > 0. These derivatives can be computed using offtheshelf softare for the avelet transform in any of the standard avelet bases. Sample results of running this and the Kalman variational algorithm to approximate a unigram model are given in Figure 3. Both variational approximations smooth out the
5 Darin Einstein moon e+00 2e 04 4e 04 6e 04 0e+00 2e 04 4e 04 6e 04 8e 04 1e e+00 2e 04 4e 04 6e 04 0e+00 2e 04 4e 04 6e 04 8e 04 1e 03 Figure 3. omparison of the Kalman filter top and avelet regression bottom variational approximations to a unigram model. The variational approximations red and blue curves smooth out the local fluctuations in the unigram counts gray curves of the ords shon, hile preserving the sharp peaks that may indicate a significant change of content in the journal. The avelet regression is able to superresolve the double spikes in the occurrence of Einstein in the 1920s. The spike in the occurrence of Darin near 1910 may be associated ith the centennial of Darin s birth in local fluctuations in the unigram counts, hile preserving the sharp peaks that may indicate a significant change of content in the journal. While the fit is similar to that obtained using standard avelet regression to the normalied counts, the estimates are obtained by minimiing the KL divergence as in standard variational approximations. In the dynamic topic model of Section 2, the algorithms are essentially the same as those described above. Hoever, rather than fitting the observations from true observed counts, e fit them from expected counts under the documentlevel variational distributions in Analysis of Science We analyed a subset of 30,000 articles from Science, 250 from each of the 120 years beteen 1881 and Our data ere collected by JSTOR.jstor.org, a notforprofit organiation that maintains an online scholarly archive obtained by running an optical character recognition OR engine over the original printed journals. JS TOR indexes the resulting text and provides online access to the scanned images of the original content through keyord search. Our corpus is made up of approximately 7.5 million ords. We pruned the vocabulary by stemming each term to its root, removing function terms, and removing terms that occurred feer than 25 times. The total vocabulary sie is 15,955. To explore the corpus and its themes, e estimated a 20component dynamic topic model. Posterior inference took approximately 4 hours on a 1.5GHZ PoerP Macintosh laptop. To of the resulting topics are illustrated in Figure 4, shoing the top several ords from those topics in each decade, according to the posterior mean number of occurrences as estimated using the Kalman filter variational approximation. Also shon are example articles hich exhibit those topics through the decades. As illustrated, the model captures different scientific themes, and can be used to inspect trends of ord usage ithin them. To validate the dynamic topic model quantitatively, e consider the task of predicting the next year of Science given all the articles from the previous years. We compare the predictive poer of three 20topic models: the dynamic topic model estimated from all of the previous years, a static topic model estimated from all of the previous years, and a static topic model estimated from the single previous year. All the models are estimated to the same convergence criterion. The topic model estimated from all the previous data and dynamic topic model are initialied at the same point. The dynamic topic model performs ell; it alays assigns higher likelihood to the next year s articles than the other to models Figure 5. It is interesting that the predictive poer of each of the models declines over the years. We can tentatively attribute this to an increase in the rate of specialiation in scientific language.
6 9 : : 9 < D F E;;? = I D F E=? > D I D D? = =? J K GD 9 : L M < D I D F E;;? = F E=? > D =? J K GD 9 L M M I D? G? > D = E> D H? < = B J B J D? < D N < D F E;;? = 9 L 9 M I D D H? < =B? G? > D = E> J B J D? O < F B 9 L P M D H? < =B? G? > D = Q I GK? 9 L R M D H? < =B S I Q?? G? > D = E> Q I GK? 9 L T M N < D D H? < = B 9 L U M D S < I O J < = N D 9 L V M DS < < O J? = Q? 9 L X M < F? G I D 9 L : M < F? G D S < 9 L L = A B J D = K > D K = < F? G J D I D? D S < I D P M M M J D I D? I D J B J D? D S < Y K D K N H B J E> e f ggh i!! " # $ %% & ' ' Z [ \ ] ^ _ ` a b c d _ ` d Z h jh k gil m * ' +, n o f m go e / " 4 / 5 4 & ' " 5 6 ", ª «{ { { { } ~ ƒ ƒ } ~ ƒ ~ } ˆ }~ ƒ } ˆ ˆ ~ Š ƒ } ˆ Ž Š Ž Š Ž ~ } } Š } Ž Ž ˆ ~ }~ }ƒ ~ Ž Š }ƒ Š Œ ~ ƒ Œ ˆ ~ Š ƒ ƒ Ž ~ } }Š } Ž Ž } Œ ~ }ƒ Ž ~ } Ž } Ž Ž ~ Ž ~ Ž Ž Ž } } Š Ž }ƒ }ƒ }ƒ Ž Š Ž Š ƒ Ž Œ } }ƒ } Ž Š } ˆ } ~ Œ } } Š Š ~ } ˆ ~ ~ Ž } Ž } ~ Ž ~ } }~ ƒ ~ ƒ ~ ƒ } ~ } } ~ ƒ Œ } ~ } ƒ ~ }~ ~ ~ ~ }ƒ Ž } Ž ƒ Ž }~ } } Š Ž ƒ Ž Ž ƒ }~ } }ƒ ~ ~ }ƒ Ž Š Ž š } }Š Ž Ž } } Ž ˆ ~ Ž ~ Ž }~ }ƒ } } } Ž } } Ž } } Ž ~ Ž Ž ~ p q r s t u v x r y r p m h i h k f m h o il m œ ž œ Ÿ ž ž œ Ÿ ž œ Ÿ ž œ Ÿ ž œ Ÿ ž ž ž ž 8 " '!!, %% & 5 5. & * ' 0 / $ * & " 2 4 ± 4 ± " 8 5 ' $ ' ' 0 0 Figure 4. Examples from the posterior analysis of a 20topic dynamic model estimated from the Science corpus. For to topics, e illustrate: a the top ten ords from the inferred posterior distribution at ten year lags b the posterior estimate of the frequency as a function of year of several ords from the same to topics c example articles throughout the collection hich exhibit these topics. Note that the plots are scaled to give an idea of the shape of the trajectory of the ords posterior probability i.e., comparisons across ords are not meaningful. 5. Discussion We have developed sequential topic models for discrete data by using Gaussian time series on the natural parameters of the multinomial topics and logistic normal topic proportion models. We derived variational inference algorithms that exploit existing techniques for sequential data; e demonstrated a novel use of Kalman filters and avelet regression as variational approximations. Dynamic topic models can give a more accurate predictive model, and also offer ne ays of brosing large, unstructured document collections. There are many ays that the ork described here can be extended. One direction is to use more sophisticated state space models. We have demonstrated the use of a simple Gaussian model, but it ould be natural to include a drift term in a more sophisticated autoregressive model to explicitly capture the rise and fall in popularity of a topic, or in the use of specific terms. Another variant ould allo for heteroscedastic time series. Perhaps the most promising extension to the methods presented here is to incorporate a model of ho ne topics in the collection appear or disappear over time, rather than assuming a fixed number of topics. One possibility is to use a simple GaltonWatson or birthdeath process for the topic population. While the analysis of birthdeath or branching processes often centers on extinction probabilities, here a goal ould be to find documents that may be responsible for spaning ne themes in a collection.
7 Negative log likelihood log scale 1e+06 2e+06 4e+06 7e+06 LDA prev LDA all DTM data. PhD thesis, arnegie Mellon University, Department of Statistics. FeiFei, L. and Perona, P A Bayesian hierarchical model for learning natural scene categories. IEEE omputer Vision and Pattern Recognition. Griffiths, T. and Steyvers, M Finding scientific topics. Proceedings of the National Academy of Science, 101: Kalman, R A ne approach to linear filtering and prediction problems. Transaction of the AMSE: Journal of Basic Engineering, 82: Year Figure 5. This figure illustrates the performance of using dynamic topic models and static topic models for prediction. For each year beteen 1900 and 2000 at 5 year increments, e estimated three models on the articles through that year. We then computed the variational bound on the negative log likelihood of next year s articles under the resulting model loer numbers are better. DTM is the dynamic topic model; LDAprev is a static topic model estimated on just the previous year s articles; LDAall is a static topic model estimated on all the previous articles. Acknoledgments This research as supported in part by NSF grants IIS and IIS , the DARPA ALO project, and a grant from Google. References Aitchison, J The statistical analysis of compositional data. Journal of the Royal Statistical Society, Series B, 442: Blei, D., Ng, A., and Jordan, M Latent Dirichlet allocation. Journal of Machine Learning Research, 3: Blei, D. M. and Lafferty, J. D orrelated topic models. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Systems 18. MIT Press, ambridge, MA. Buntine, W. and Jakulin, A Applying discrete PA in data analysis. In Proceedings of the 20th onference on Uncertainty in Artificial Intelligence, pages AUAI Press. Erosheva, E Grade of membership and latent structure models ith application to disability survey Mcallum, A., orradaemmanuel, A., and Wang, X The authorrecipienttopic model for topic and role discovery in social netorks: Experiments ith Enron and academic . Technical report, University of Massachusetts, Amherst. Pritchard, J., Stephens, M., and Donnelly, P Inference of population structure using multilocus genotype data. Genetics, 155: RosenZvi, M., Griffiths, T., Steyvers, M., and Smith, P The authortopic model for authors and documents. In Proceedings of the 20th onference on Uncertainty in Artificial Intelligence, pages AUAI Press. Sivic, J., Rusell, B., Efros, A., Zisserman, A., and Freeman, W Discovering objects and their location in images. In International onference on omputer Vision IV Snelson, E. and Ghahramani, Z Sparse Gaussian processes using pseudoinputs. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Systems 18, ambridge, MA. MIT Press. Wasserman, L Springer. All of Nonparametric Statistics. West, M. and Harrison, J Bayesian Forecasting and Dynamic Models. Springer. A. Derivation of Variational Algorithm In this appendix e give some details of the variational algorithm outlined in Section 3.1, hich calculates a distribution q 1:T ˆ 1:T to maximie the loer bound on
8 log pd 1:T. The first term of the righthand side of 5 is E q log p t t 1 = V T 2 1 2σ 2 = V T 2 log σ 2 + log 2π E q t t 1 T t t 1 log σ 2 + log 2π 1 2σ 2 1 T σ 2 Tr m t m t 1 2 Ṽt + 1 2σ 2 TrṼ0 TrṼT using the Gaussian quadratic form identity E m,v x µ T Σ 1 x µ = The second term of 5 is m µ T Σ 1 m µ + TrΣ 1 V. E q log pd t t = n t E q t log exp t n t m t n ˆζ 1 t t + n t n t log ˆζ t exp m t + Ṽt/2 Next, e maximie ith respect to ˆ s : lˆ, ˆν ˆ = s 1 T mt σ 2 m t m t 1, ˆ m t 1, s ˆ s + n t n tˆζ 1 t exp m t + Ṽt/2 mt ˆ. s The forardbackard equations for m t can be used to derive a recurrence for m t / ˆ s. The forard recurrence is m t ˆ s = ˆν 2 t mt 1 v t 1 + σ 2 + ˆν t 2 ˆ + s ˆν 2 t 1 v t 1 + σ 2 + ˆν t 2 δ s,t, ith the initial condition m 0 / ˆ s = 0. The backard recurrence is then m t 1 σ 2 mt 1 ˆ = s V t 1 + σ 2 ˆ + s 1 σ 2 V t 1 + σ 2 mt ˆ s, ith the initial condition m T / ˆ s = m T / ˆ s. here n t = n t, introducing additional variational parameters ˆζ 1:T. The third term of 5 is the entropy Hq = = log Ṽt + T log 2π 2 log Ṽt + TV 2 log 2π. To maximie the loer bound as a function of the variational parameters e use a conjugate gradient algorithm. First, e maximie ith respect to ˆζ; the derivative is l ˆζ t = n t ˆζ 2 t Setting to ero and solving for ˆζ t gives exp m t + Ṽt/2 n t ˆζ t. ˆζ t = exp m t + Ṽt/2.
Bayesian Statistics: Indian Buffet Process
Bayesian Statistics: Indian Buffet Process Ilker Yildirim Department of Brain and Cognitive Sciences University of Rochester Rochester, NY 14627 August 2012 Reference: Most of the material in this note
More informationEmail Spam Filtering Using Genetic Algorithm: A Deeper Analysis
ISSN:09759646 Mandeep hodhary et al, / (IJSIT) International Journal of omputer Science and Information Technologies, Vol. 6 (5), 205, 42664270 Email Spam Filtering Using Genetic Algorithm: A Deeper
More informationCorrelated Topic Models
Correlated Topic Models David M. Blei Department of Computer Science Princeton University John D. Lafferty School of Computer Science Carnegie Mellon University Abstract Topic models, such as latent Dirichlet
More informationSTA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
More informationCRITERIUM FOR FUNCTION DEFININING OF FINAL TIME SHARING OF THE BASIC CLARK S FLOW PRECEDENCE DIAGRAMMING (PDM) STRUCTURE
st Logistics International Conference Belgrade, Serbia 830 November 03 CRITERIUM FOR FUNCTION DEFININING OF FINAL TIME SHARING OF THE BASIC CLARK S FLOW PRECEDENCE DIAGRAMMING (PDM STRUCTURE Branko Davidović
More informationLatent Dirichlet Markov Allocation for Sentiment Analysis
Latent Dirichlet Markov Allocation for Sentiment Analysis Ayoub Bagheri Isfahan University of Technology, Isfahan, Iran Intelligent Database, Data Mining and Bioinformatics Lab, Electrical and Computer
More information11. Time series and dynamic linear models
11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd
More informationA Quantitative Approach to the Performance of Internet Telephony to Ebusiness Sites
A Quantitative Approach to the Performance of Internet Telephony to Ebusiness Sites Prathiusha Chinnusamy TransSolutions Fort Worth, TX 76155, USA Natarajan Gautam Harold and Inge Marcus Department of
More informationTopic models for Sentiment analysis: A Literature Survey
Topic models for Sentiment analysis: A Literature Survey Nikhilkumar Jadhav 123050033 June 26, 2014 In this report, we present the work done so far in the field of sentiment analysis using topic models.
More informationStatistics Graduate Courses
Statistics Graduate Courses STAT 7002Topics in StatisticsBiological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
More informationDirichlet Processes A gentle tutorial
Dirichlet Processes A gentle tutorial SELECT Lab Meeting October 14, 2008 Khalid ElArini Motivation We are given a data set, and are told that it was generated from a mixture of Gaussian distributions.
More informationExpert Systems with Applications
Expert Systems ith Applications 36 (2009) 5450 5455 Contents lists available at ScienceDirect Expert Systems ith Applications journal homepage:.elsevier.com/locate/esa Trading rule discovery in the US
More informationNetwork Traffic Prediction Based on the Wavelet Analysis and Hopfield Neural Network
Netork Traffic Prediction Based on the Wavelet Analysis and Hopfield Neural Netork Sun Guang Abstract Build a mathematical model is the key problem of netork traffic prediction. Traditional single netork
More informationA Learning Based Method for SuperResolution of Low Resolution Images
A Learning Based Method for SuperResolution of Low Resolution Images Emre Ugur June 1, 2004 emre.ugur@ceng.metu.edu.tr Abstract The main objective of this project is the study of a learning based method
More informationIntroduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011
Introduction to Machine Learning Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 1 Outline 1. What is machine learning? 2. The basic of machine learning 3. Principles and effects of machine learning
More informationStatistical Models in Data Mining
Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of
More informationAnalysis of Bayesian Dynamic Linear Models
Analysis of Bayesian Dynamic Linear Models Emily M. Casleton December 17, 2010 1 Introduction The main purpose of this project is to explore the Bayesian analysis of Dynamic Linear Models (DLMs). The main
More informationThe Research on Demand Forecasting of Supply Chain Based on ICCELMAN
505 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 46, 2015 Guest Editors: Peiyu Ren, Yancang Li, Huiping Song Copyright 2015, AIDIC Servizi S.r.l., ISBN 9788895608372; ISSN 22839216 The
More information1 Maximum likelihood estimation
COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N
More informationData Mining Chapter 6: Models and Patterns Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University
Data Mining Chapter 6: Models and Patterns Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Models vs. Patterns Models A model is a high level, global description of a
More informationMaximum likelihood estimation of mean reverting processes
Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For
More informationBayesian networks  Timeseries models  Apache Spark & Scala
Bayesian networks  Timeseries models  Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup  November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
More informationBayes and Naïve Bayes. cs534machine Learning
Bayes and aïve Bayes cs534machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule
More informationTracking Algorithms. Lecture17: Stochastic Tracking. Joint Probability and Graphical Model. Probabilistic Tracking
Tracking Algorithms (2015S) Lecture17: Stochastic Tracking Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Deterministic methods Given input video and current state, tracking result is always same. Local
More informationData Mining Yelp Data  Predicting rating stars from review text
Data Mining Yelp Data  Predicting rating stars from review text Rakesh Chada Stony Brook University rchada@cs.stonybrook.edu Chetan Naik Stony Brook University cnaik@cs.stonybrook.edu ABSTRACT The majority
More informationLinear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
More informationThe Exponential Family
The Exponential Family David M. Blei Columbia University November 3, 2015 Definition A probability density in the exponential family has this form where p.x j / D h.x/ expf > t.x/ a./g; (1) is the natural
More informationLCs for Binary Classification
Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it
More informationChoosing the Optimal ObjectOriented Implementation using Analytic Hierarchy Process
hoosing the Optimal ObjectOriented Implementation using Analytic Hierarchy Process Naunong Sunanta honlameth Arpnikanondt King Mongkut s University of Technology Thonburi, naunong@sit.kmutt.ac.th King
More informationLogistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
More informationMachine Learning for Data Science (CS4786) Lecture 1
Machine Learning for Data Science (CS4786) Lecture 1 TuTh 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:
More informationOPTIMIZING WEB SERVER'S DATA TRANSFER WITH HOTLINKS
OPTIMIZING WEB SERVER'S DATA TRANSFER WIT OTLINKS Evangelos Kranakis School of Computer Science, Carleton University Ottaa,ON. K1S 5B6 Canada kranakis@scs.carleton.ca Danny Krizanc Department of Mathematics,
More informationLecture 11: Graphical Models for Inference
Lecture 11: Graphical Models for Inference So far we have seen two graphical models that are used for inference  the Bayesian network and the Join tree. These two both represent the same joint probability
More informationA Probabilistic Model for Online Document Clustering with Application to Novelty Detection
A Probabilistic Model for Online Document Clustering with Application to Novelty Detection Jian Zhang School of Computer Science Cargenie Mellon University Pittsburgh, PA 15213 jian.zhang@cs.cmu.edu Zoubin
More informationDeterministic Samplingbased Switching Kalman Filtering for Vehicle Tracking
Proceedings of the IEEE ITSC 2006 2006 IEEE Intelligent Transportation Systems Conference Toronto, Canada, September 1720, 2006 WA4.1 Deterministic Samplingbased Switching Kalman Filtering for Vehicle
More informationLearning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu
Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of
More informationLecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
More informationBasics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar
More informationText Mining in JMP with R Andrew T. Karl, Senior Management Consultant, Adsurgo LLC Heath Rushing, Principal Consultant and CoFounder, Adsurgo LLC
Text Mining in JMP with R Andrew T. Karl, Senior Management Consultant, Adsurgo LLC Heath Rushing, Principal Consultant and CoFounder, Adsurgo LLC 1. Introduction A popular rule of thumb suggests that
More informationNetwork Big Data: Facing and Tackling the Complexities Xiaolong Jin
Network Big Data: Facing and Tackling the Complexities Xiaolong Jin CAS Key Laboratory of Network Data Science & Technology Institute of Computing Technology Chinese Academy of Sciences (CAS) 20150810
More informationSummary of Probability
Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible
More informationProbabilistic Latent Semantic Analysis (plsa)
Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg Rainer.Lienhart@informatik.uniaugsburg.de www.multimediacomputing.{de,org} References
More informationREDUCING RISK OF HANDARM VIBRATION INJURY FROM HANDHELD POWER TOOLS INTRODUCTION
Health and Safety Executive Information Document HSE 246/31 REDUCING RISK OF HANDARM VIBRATION INJURY FROM HANDHELD POWER TOOLS INTRODUCTION 1 This document contains internal guidance hich has been made
More informationBayesian Predictive Profiles with Applications to Retail Transaction Data
Bayesian Predictive Profiles with Applications to Retail Transaction Data Igor V. Cadez Information and Computer Science University of California Irvine, CA 926973425, U.S.A. icadez@ics.uci.edu Padhraic
More informationOnline Courses Recommendation based on LDA
Online Courses Recommendation based on LDA Rel Guzman Apaza, Elizabeth Vera Cervantes, Laura Cruz Quispe, José Ochoa Luna National University of St. Agustin Arequipa  Perú {r.guzmanap,elizavvc,lvcruzq,eduardo.ol}@gmail.com
More information> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(1)) > plot(exp.btgpllm, main = "treed GP LLM,", proj = c(2)) quantile diff (error)
> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(1)) > plot(exp.btgpllm, main = "treed GP LLM,", proj = c(2)) 0.4 0.2 0.0 0.2 0.4 treed GP LLM, mean treed GP LLM, 0.00 0.05 0.10 0.15 0.20 x1 x1 0.4
More informationPredict the Popularity of YouTube Videos Using Early View Data
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050
More informationRegression Using Support Vector Machines: Basic Foundations
Regression Using Support Vector Machines: Basic Foundations Technical Report December 2004 Aly Farag and Refaat M Mohamed Computer Vision and Image Processing Laboratory Electrical and Computer Engineering
More informationNEURAL NETWORKS A Comprehensive Foundation
NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments
More informationPATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
More information203.4770: Introduction to Machine Learning Dr. Rita Osadchy
203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:
More informationStatistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics: Behavioural
More informationAuxiliary Variables in Mixture Modeling: 3Step Approaches Using Mplus
Auxiliary Variables in Mixture Modeling: 3Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives
More informationSocial Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
More informationTRENDS IN AN INTERNATIONAL INDUSTRIAL ENGINEERING RESEARCH JOURNAL: A TEXTUAL INFORMATION ANALYSIS PERSPECTIVE. wernervanzyl@sun.ac.
TRENDS IN AN INTERNATIONAL INDUSTRIAL ENGINEERING RESEARCH JOURNAL: A TEXTUAL INFORMATION ANALYSIS PERSPECTIVE J.W. Uys 1 *, C.S.L. Schutte 2 and W.D. Van Zyl 3 1 Indutech (Pty) Ltd., Stellenbosch, South
More informationPrinciples of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
More informationHT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
More informationThe Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
More informationI, ONLINE KNOWLEDGE TRANSFER FREELANCER PORTAL M. & A.
ONLINE KNOWLEDGE TRANSFER FREELANCER PORTAL M. Micheal Fernandas* & A. Anitha** * PG Scholar, Department of Master of Computer Applications, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamilnadu
More informationMachine Learning and Pattern Recognition Logistic Regression
Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,
More informationProbabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014
Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about
More informationMachine Learning Logistic Regression
Machine Learning Logistic Regression Jeff Howbert Introduction to Machine Learning Winter 2012 1 Logistic regression Name is somewhat misleading. Really a technique for classification, not regression.
More informationMachine Learning in FX Carry Basket Prediction
Machine Learning in FX Carry Basket Prediction Tristan Fletcher, Fabian Redpath and Joe D Alessandro Abstract Artificial Neural Networks ANN), Support Vector Machines SVM) and Relevance Vector Machines
More informationWhen scientists decide to write a paper, one of the first
Colloquium Finding scientific topics Thomas L. Griffiths* and Mark Steyvers *Department of Psychology, Stanford University, Stanford, CA 94305; Department of Brain and Cognitive Sciences, Massachusetts
More informationMobile Phone APP Software Browsing Behavior using Clustering Analysis
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis
More informationDissertation TOPIC MODELS FOR IMAGE RETRIEVAL ON LARGESCALE DATABASES. Eva Hörster
Dissertation TOPIC MODELS FOR IMAGE RETRIEVAL ON LARGESCALE DATABASES Eva Hörster Department of Computer Science University of Augsburg Adviser: Readers: Prof. Dr. Rainer Lienhart Prof. Dr. Rainer Lienhart
More informationDetection of changes in variance using binary segmentation and optimal partitioning
Detection of changes in variance using binary segmentation and optimal partitioning Christian Rohrbeck Abstract This work explores the performance of binary segmentation and optimal partitioning in the
More informationStatistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSABulletine 2014) Before
More informationTensor Factorization for MultiRelational Learning
Tensor Factorization for MultiRelational Learning Maximilian Nickel 1 and Volker Tresp 2 1 Ludwig Maximilian University, Oettingenstr. 67, Munich, Germany nickel@dbs.ifi.lmu.de 2 Siemens AG, Corporate
More informationMachine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu
Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machinelearning Logistics Lectures M 9:3011:30 am Room 4419 Personnel
More information10601. Machine Learning. http://www.cs.cmu.edu/afs/cs/academic/class/10601f10/index.html
10601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601f10/index.html Course data All uptodate info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601f10/index.html
More informationChristfried Webers. Canberra February June 2015
c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic
More informationBayesian Image SuperResolution
Bayesian Image SuperResolution Michael E. Tipping and Christopher M. Bishop Microsoft Research, Cambridge, U.K..................................................................... Published as: Bayesian
More informationUNIVERSITY OF NOTTINGHAM. Discussion Papers in Economics. Note on a generalized wage rigidity result
UNIVERSITY OF NOTTINGHAM Discussion Papers in Economics Discussion Paper No. 07/04 Note on a generalized age rigidity result By Arijit Mukherjee June 007 007 DP 07/04 Note on a generalized age rigidity
More information2010 Master of Science Computer Science Department, University of Massachusetts Amherst
Scott Niekum Postdoctoral Research Fellow The Robotics Institute, Carnegie Mellon University Contact Information Smith Hall, Room 228 Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213
More informationProbabilistic. review articles. Surveying a suite of algorithms that offer a solution to managing large document archives.
doi:10.1145/2133806.2133826 Surveying a suite of algorithms that offer a solution to managing large document archives. by David M. Blei Probabilistic Topic Models As our collective knowledge continues
More informationMachine Learning I Week 14: Sequence Learning Introduction
Machine Learning I Week 14: Sequence Learning Introduction Alex Graves Technische Universität München 29. January 2009 Literature Pattern Recognition and Machine Learning Chapter 13: Sequential Data Christopher
More informationExample: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation:  Feature vector X,  qualitative response Y, taking values in C
More informationVariational Mean Field for Graphical Models
Variational Mean Field for Graphical Models CS/CNS/EE 155 Baback Moghaddam Machine Learning Group baback @ jpl.nasa.gov Approximate Inference Consider general UGs (i.e., not treestructured) All basic
More informationTutorial on Markov Chain Monte Carlo
Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,
More informationDesigning a learning system
Lecture Designing a learning system Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x48845 http://.cs.pitt.edu/~milos/courses/cs750/ Design of a learning system (first vie) Application or Testing
More informationBig Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
More informationA Statistical Framework for Operational Infrasound Monitoring
A Statistical Framework for Operational Infrasound Monitoring Stephen J. Arrowsmith Rod W. Whitaker LAUR 1103040 The views expressed here do not necessarily reflect the views of the United States Government,
More informationSanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi110012 sanjeevk@iasri.res.in 1. Introduction The field of data mining and knowledgee discovery is emerging as a
More informationGaussian Processes in Machine Learning
Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany carl@tuebingen.mpg.de WWW home page: http://www.tuebingen.mpg.de/ carl
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationRELogAnalysis Well Log Analysis
RESys Reservoir Evaluation System RELogAnalysis Well Log Analysis Users Manual Copyright 20062010, The Comport Computing Company All Rights Reserved RESys is an integrated softare system for performing
More informationNeural Networks. CAP5610 Machine Learning Instructor: GuoJun Qi
Neural Networks CAP5610 Machine Learning Instructor: GuoJun Qi Recap: linear classifier Logistic regression Maximizing the posterior distribution of class Y conditional on the input vector X Support vector
More informationCell Phone based Activity Detection using Markov Logic Network
Cell Phone based Activity Detection using Markov Logic Network Somdeb Sarkhel sxs104721@utdallas.edu 1 Introduction Mobile devices are becoming increasingly sophisticated and the latest generation of smart
More informationAssessing Data Mining: The State of the Practice
Assessing Data Mining: The State of the Practice 2003 Herbert A. Edelstein Two Crows Corporation 10500 Falls Road Potomac, Maryland 20854 www.twocrows.com (301) 9833555 Objectives Separate myth from reality
More informationAn Experience Based Learning Controller
J. Intelligent Learning Systems & Applications, 2010, 2: 8085 doi:10.4236/jilsa.2010.22011 Published Online May 2010 (http://.scirp.org/journal/jilsa) An Experience Based Learning Controller Debadutt
More informationModeling and Analysis of Call Center Arrival Data: A Bayesian Approach
Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach Refik Soyer * Department of Management Science The George Washington University M. Murat Tarimcilar Department of Management Science
More informationA RegimeSwitching Model for Electricity Spot Prices. Gero Schindlmayr EnBW Trading GmbH g.schindlmayr@enbw.com
A RegimeSwitching Model for Electricity Spot Prices Gero Schindlmayr EnBW Trading GmbH g.schindlmayr@enbw.com May 31, 25 A RegimeSwitching Model for Electricity Spot Prices Abstract Electricity markets
More informationFinding soontofail disks in a haystack
Finding soontofail disks in a haystack Moises Goldszmidt Microsoft Research Abstract This paper presents a detector of soontofail disks based on a combination of statistical models. During operation
More informationIntroduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
More informationTOWARD BIG DATA ANALYSIS WORKSHOP
TOWARD BIG DATA ANALYSIS WORKSHOP 邁 向 巨 量 資 料 分 析 研 討 會 摘 要 集 2015.06.0506 巨 量 資 料 之 矩 陣 視 覺 化 陳 君 厚 中 央 研 究 院 統 計 科 學 研 究 所 摘 要 視 覺 化 (Visualization) 與 探 索 式 資 料 分 析 (Exploratory Data Analysis, EDA)
More informationAn Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
More informationSelling Tshirts and Time Shares in the Cloud
Selling Tshirts and Time Shares in the Cloud Daniel Gmach HP Labs Palo Alto, CA, USA daniel.gmach@hp.com Jerry Rolia HP Labs Palo Alto, CA, USA jerry.rolia@hp.com Ludmila Cherkasova HP Labs Palo Alto,
More information1.2 Cultural Orientation and Consumer Behavior
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 16051616 (2009) A Ne Perspective for Neural Netorks: Application to a Marketing Management Problem JAESOO KIM AND HEEJUNE AHN + Department of Computer
More informationLearning Vector Quantization: generalization ability and dynamics of competing prototypes
Learning Vector Quantization: generalization ability and dynamics of competing prototypes Aree Witoelar 1, Michael Biehl 1, and Barbara Hammer 2 1 University of Groningen, Mathematics and Computing Science
More information