Classification & Decision Trees Based in part on slides from textbook, slides of Susan Holmes. October 19, Statistics 202: Data Mining

Size: px
Start display at page:

Download "Classification & Decision Trees Based in part on slides from textbook, slides of Susan Holmes. October 19, Statistics 202: Data Mining"

Transcription

1 Classification & Decision Trees Based in part on slides from textbook, slides of Susan Holmes October 19, / 1

2 Classification Problem description We are given a data matrix X with either continuous or discrete variables such that each row X i F and a set of labels Y L. For a k-class problem, #L = k and we can think of L = {1,..., k}. Our goal is to find a classifier f : F L that allows us to predict the label of a new observation given a new set of features. 2 / 1

3 Classification A supervised problem Classification is a supervised problem. Usually, we use a subset of the data, the training set to learn or estimate the classifier yielding ˆf = ˆf training. The performance of ˆf is measured by applying it to each case in the test set and computing L(ˆf training (X j ), Y j ) j test 3 / 1

4 Classification 4 / 1

5 Classification Examples of classification tasks Predicting whether a tumor is benign or malignant. Classifying credit card transactions as fraudulent or legitimate. Predicting the type of a given tumor among several types. Cateogrizing a document or news story as one of {finance, weather, sports, etc.} 5 / 1

6 Classification Common techniques Decision Tree based Methods Rule-based Methods Discriminant Analysis Memory based reasoning Neural Networks Naïve Bayes Support Vector Machines 6 / 1

7 Classification trees 7 / 1

8 Classification trees 8 / 1

9 Applying a decision tree rule 9 / 1

10 Applying a decision tree rule 10 / 1

11 Applying a decision tree rule 11 / 1

12 Applying a decision tree rule 12 / 1

13 Applying a decision tree rule 13 / 1

14 Applying a decision tree rule 14 / 1

15 Applying a decision tree rule 15 / 1

16 Decision boundary for tree 16 / 1

17 Decision tree for iris data using all features 17 / 1

18 Decision tree for iris data using petal.length, petal.width 18 / 1

19 Regions in petal.length, petal.width plane Petal width Petal length 19 / 1

20 Decision boundary for tree Figure : Trees have trouble capturing structure not parallel to axes 20 / 1

21 Learning the tree 21 / 1

22 Learning the tree Hunt s algorithm (generic structure) Let D t be the set of training records that reach a node t If D t contains records that belong the same class y t, then t is a leaf node labeled as y t. If D t =, then t is a leaf node labeled by the default class, y d. If D t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset. This splitting procedure is what can vary for different tree learning algorithms / 1

23 Learning the tree 23 / 1

24 Learning the tree Issues Greedy strategy: Split the records based on an attribute test that optimizes certain criterion. What is the best split: What criterion do we use? Previous example chose first to split on Refund... How to split the records: Binary or multi-way? Previous example split Taxable Income at 80K... hen do we stop? Should we continue until each node if possible? Previous example stopped with all nodes being completely homogeneous / 1

25 Different splits: ordinal / nominal Figure : Binary or multi-way? 25 / 1

26 Different splits: continuous Figure : Binary or multi-way? 26 / 1

27 Choosing a variable to split on Figure : Which should we start the splitting on? 27 / 1

28 Learning the tree Choosing the best split Need some numerical criterion to choose among possible splits. Criterion should favor homogeneous or pure nodes. Common cost functions: Gini Index Entropy / Deviance / Information Misclassification Error 28 / 1

29 Choosing a variable to split on 29 / 1

30 Learning the tree GINI Index Suppose we have k classes and node t has frequencies p t = (p 1,t,..., p k,t ). Criterion GINI (t) = p j,t p j,t = 1 (j,j ) {1,...,k}:j j l j=1 Maximized when p j,t = 1/k with value 1 1/k Minimized when all records belong to a single class. Minimizing GINI will favour pure nodes... p 2 j,t. 30 / 1

31 Learning the tree Gain in GINI Index for a potential split Suppose t is to be split into j new child nodes (t l ) 1 l j. Each child node has a count n l and a vector of frequencies (p 1,tl,..., p k,tl ). Hence they have their own GINI index, GINI (t l ). The gain in GINI Index for this split is Gain(GINI, t (t l ) 1 l j ) = GINI (t) j l=1 n lgini (t l ) j l=1 n. l Greedy algorithm chooses the biggest gain in GINI index among a list of possible splits. 31 / 1

32 Decision tree for iris data using all features with GINI 32 / 1

33 Learning the tree Entropy / Deviance / Information Suppose we have k classes and node t has frequencies p t = (p 1,t,..., p k,t ). Criterion H(t) = k p j,t log p j,t j=1 Maximized when p i,t = 1/k with value log k Minimized when one class has no records in it. Minimizing entropy will favour pure nodes / 1

34 Decision tree for iris data using all features with Entropy 34 / 1

35 Learning the tree Gain in entropy for a potential split Suppose t is to be split into j new child nodes (t l ) 1 l j. Each child node has a count n l and a vector of frequencies (p 1,tl,..., p k,tl ). Hence they have their own entropy H(t l ). The gain in entropy for this split is j l=1 Gain(H, t (t l ) 1 l j ) = H(t) n lh(t l ) j l=1 n. l Greedy algorithm chooses the biggest gain in H among a list of possible splits. 35 / 1

36 Learning the tree Misclassification Error Suppose we have k classes and node t has frequencies p t = (p 1,t,..., p k,t ). The mode is Criterion ˆk(t) = argmax p k,t. k Misclassification Error(t) = 1 pˆk(t),t Not smooth in p t as GINI, H, can be more difficult to optimize numerically. 36 / 1

37 Different criteria: GINI, H, MC 37 / 1

38 Learning the tree Misclassification Error Example: suppose parent has 10 cases: {7D, 3R} A candidate split produces two nodes: {3D, 0R}, {4D, 3R}. The gain in MC is 0, but gain in GINI is > 0. Similarly, entropy will also show an improvement / 1

39 Choosing the split for a continuous variable 39 / 1

40 Learning the tree Stopping training As trees get deeper, or if splits are multi-way the number of data points per leaf node drops very quickly. Trees that are too deep tend to overfit the data. A common strategy is to prune the tree by removing some internal nodes. 40 / 1

41 Learning the tree Figure : Underfitting corresponds to the left-hand side, overfit to the right 41 / 1

42 Learning the tree Cost-complexity pruning (tree library) Given a criterion Q like H or GINI, we define the cost-complexity of a tree with terminal nodes (t j ) 1 j m C α (T ) = m n j Q(t j ) + αm j=1 Given a large tree T L we might compute C α (T ) for any subtree T of T L. The optimal tree is defined as ˆT α = argmin T T L C α (T ). Can be found by weakest-link pruning. See Elements of Statistical Learning for more / 1

43 Learning the tree Pre-pruning (rpart library) These methods stop the algorithm before it becomes a fully-grown tree. Examples Stop if all instances belong to the same class (kind of obvious). Stop if number of instances is less than some user-specified threshold. Both tree, rpart have rules like this. Stop if class distribution of instances are independent of the available features (e.g., using χ 2 test) Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain). This relates to cp in rpart. 43 / 1

44 Training and test error as a function of cp 44 / 1

45 Evaluating a classifier Metrics for Performance Evaluation PREDICTED CLASS l Class=Yes Class=Yes a ACTUAL (TP) CLASS Class=No c (FP) Most widely-used metric: Class=No b (FN) d (TN) 45 / 1

46 Evaluating a classifier Measures of performance Simplest is accuracy TP + TN Accuracy = TP + TN + FP + FN = SMC(Actual, Predicted) = 1 Misclassification Rate 46 / 1

47 Evaluating a classifier Accuracy isn t everything Consider an unbalanced 2-class problem with # 1 s=10, # 0 s=9990. Simply labelling everything 0 yields 99.9% accuracy. But, this classifier misses all class / 1

48 Evaluating a classifier Cost Matrix PREDICTED CLASS C(i j) Class=Yes Class=No ACTUAL Class=Yes C(Yes Yes) C(No Yes) CLASS Class=No C(Yes No) C(No No) C(i j): Cost of misclassifying class j example as class i Tan,Steinbach, Kumar Introduction to 4/18/ / 1

49 Learning the tree Measures of performance Classification rule changes to Label(p, C) = argmin i C(i j)p j j Accuracy is the same as cost if C(Y Y ) = C(N N) = c 1, C(Y N) = C(N Y ) = c / 1

50 Evaluating a classifier Computing Cost of Classification Cost Matrix ACTUAL CLASS PREDICTED CLASS C(i j) Model M 1 ACTUAL CLASS PREDICTED CLASS Model M 2 ACTUAL CLASS PREDICTED CLASS Accuracy = 80% Cost = 3910 Accuracy = 90% Cost = 4255 Tan,Steinbach, Kumar Introduction to 4/18/ / 1

51 Evaluating a classifier Measures of performance Other common ones TP Precision = TP + FP TN Specificity = TN + FP = TNR TP Sensitivity = Recall = TP + FN = TPR 2 Recall Precision F = Recall + Precision 2 TP = 2 TP + FN + FP 51 / 1

52 Evaluating a classifier Measures of performance Precision emphasizes P(p = Y, a = Y ) & P(p = Y, a = N). Recall emphasizes P(p = Y, a = Y ) & P(p = N, a = Y ). FPR = 1 TNR FNR = 1 TPR. 52 / 1

53 Evaluating a classifier Measure of performance We have done some simple training / test splits to see how well our classifier is doing. More accurately, this procedure measures how well our algorithm for learning the classifier is doing. How well this works may depend on Model: Are we using the right type of classifier model? Cost: Is our algorithm sensitive to the cost of misclassification? Data size: Do we have enough data to learn a model? 53 / 1

54 Evaluating a classifier Learning Curve l l Learning curve sh how accuracy cha with varying samp Requires a sampli schedule for creat learning curve: l Arithmetic sam (Langley, et a l Geometric sa (Provost et al Effect of small samp - Bias in the es - Variance of e Figure : As data increases, our estimate of accuracy improves, as does the variability of our estimate... Tan,Steinbach, Kumar Introduction to 4/18/ / 1

55 Evaluating a classifier Estimating performance Holdout: Split into test and training (e.g. 1/3 test, 2/3 training). Random subsampling: Repeated replicates of holdout, averaging results. Cross validation: Partition data into K disjoint subsets. For each subset S i, train on all but S i, then test on S i. Stratified sampling: May be helpful to sample so Y/N class is roughly equal in training data Bootstrap: Combine training error and bootstrap error / 1

56 56 / 1

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation. Lecture Notes for Chapter 4. Introduction to Data Mining Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data

More information

Data Mining Classification: Decision Trees

Data Mining Classification: Decision Trees Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous

More information

Data Mining with R. Decision Trees and Random Forests. Hugh Murrell

Data Mining with R. Decision Trees and Random Forests. Hugh Murrell Data Mining with R Decision Trees and Random Forests Hugh Murrell reference books These slides are based on a book by Graham Williams: Data Mining with Rattle and R, The Art of Excavating Data for Knowledge

More information

Data Mining. Nonlinear Classification

Data Mining. Nonlinear Classification Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

More information

Gerry Hobbs, Department of Statistics, West Virginia University

Gerry Hobbs, Department of Statistics, West Virginia University Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

More information

COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction

COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction COMP3420: Advanced Databases and Data Mining Classification and prediction: Introduction and Decision Tree Induction Lecture outline Classification versus prediction Classification A two step process Supervised

More information

Data Mining for Knowledge Management. Classification

Data Mining for Knowledge Management. Classification 1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

Lecture 10: Regression Trees

Lecture 10: Regression Trees Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Unit # 10 Sajjad Haider Fall 2012 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

More information

Statistical Data Mining. Practical Assignment 3 Discriminant Analysis and Decision Trees

Statistical Data Mining. Practical Assignment 3 Discriminant Analysis and Decision Trees Statistical Data Mining Practical Assignment 3 Discriminant Analysis and Decision Trees In this practical we discuss linear and quadratic discriminant analysis and tree-based classification techniques.

More information

Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

Overview. Evaluation Connectionist and Statistical Language Processing. Test and Validation Set. Training and Test Set

Overview. Evaluation Connectionist and Statistical Language Processing. Test and Validation Set. Training and Test Set Overview Evaluation Connectionist and Statistical Language Processing Frank Keller keller@coli.uni-sb.de Computerlinguistik Universität des Saarlandes training set, validation set, test set holdout, stratification

More information

Classification/Decision Trees (II)

Classification/Decision Trees (II) Classification/Decision Trees (II) Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Right Sized Trees Let the expected misclassification rate of a tree T be R (T ).

More information

Decision-Tree Learning

Decision-Tree Learning Decision-Tree Learning Introduction ID3 Attribute selection Entropy, Information, Information Gain Gain Ratio C4.5 Decision Trees TDIDT: Top-Down Induction of Decision Trees Numeric Values Missing Values

More information

Performance Metrics. number of mistakes total number of observations. err = p.1/1

Performance Metrics. number of mistakes total number of observations. err = p.1/1 p.1/1 Performance Metrics The simplest performance metric is the model error defined as the number of mistakes the model makes on a data set divided by the number of observations in the data set, err =

More information

Decision Tree Learning on Very Large Data Sets

Decision Tree Learning on Very Large Data Sets Decision Tree Learning on Very Large Data Sets Lawrence O. Hall Nitesh Chawla and Kevin W. Bowyer Department of Computer Science and Engineering ENB 8 University of South Florida 4202 E. Fowler Ave. Tampa

More information

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr WEKA Gallirallus Zeland) australis : Endemic bird (New Characteristics Waikato university Weka is a collection

More information

Performance Measures in Data Mining

Performance Measures in Data Mining Performance Measures in Data Mining Common Performance Measures used in Data Mining and Machine Learning Approaches L. Richter J.M. Cejuela Department of Computer Science Technische Universität München

More information

Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

More information

!"!!"#$$%&'()*+$(,%!"#$%$&'()*""%(+,'-*&./#-$&'(-&(0*".$#-$1"(2&."3$'45"

!!!#$$%&'()*+$(,%!#$%$&'()*%(+,'-*&./#-$&'(-&(0*.$#-$1(2&.3$'45 !"!!"#$$%&'()*+$(,%!"#$%$&'()*""%(+,'-*&./#-$&'(-&(0*".$#-$1"(2&."3$'45"!"#"$%&#'()*+',$$-.&#',/"-0%.12'32./4'5,5'6/%&)$).2&'7./&)8'5,5'9/2%.%3%&8':")08';:

More information

Professor Anita Wasilewska. Classification Lecture Notes

Professor Anita Wasilewska. Classification Lecture Notes Professor Anita Wasilewska Classification Lecture Notes Classification (Data Mining Book Chapters 5 and 7) PART ONE: Supervised learning and Classification Data format: training and test data Concept,

More information

Using Random Forest to Learn Imbalanced Data

Using Random Forest to Learn Imbalanced Data Using Random Forest to Learn Imbalanced Data Chao Chen, chenchao@stat.berkeley.edu Department of Statistics,UC Berkeley Andy Liaw, andy liaw@merck.com Biometrics Research,Merck Research Labs Leo Breiman,

More information

Predicting Flight Delays

Predicting Flight Delays Predicting Flight Delays Dieterich Lawson jdlawson@stanford.edu William Castillo will.castillo@stanford.edu Introduction Every year approximately 20% of airline flights are delayed or cancelled, costing

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore. CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes

More information

T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier. Santosh Tirunagari : 245577

T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier. Santosh Tirunagari : 245577 T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier Santosh Tirunagari : 245577 January 20, 2011 Abstract This term project gives a solution how to classify an email as spam or

More information

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4. Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics

More information

Classification and Prediction

Classification and Prediction Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser

More information

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015 An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

More information

Chapter 6. The stacking ensemble approach

Chapter 6. The stacking ensemble approach 82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

More information

Data Mining as a tool to Predict the Churn Behaviour among Indian bank customers

Data Mining as a tool to Predict the Churn Behaviour among Indian bank customers Data Mining as a tool to Predict the Churn Behaviour among Indian bank customers Manjit Kaur Department of Computer Science Punjabi University Patiala, India manjit8718@gmail.com Dr. Kawaljeet Singh University

More information

Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class Imbalance

Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class Imbalance Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class Imbalance Jesús M. Pérez, Javier Muguerza, Olatz Arbelaitz, Ibai Gurrutxaga, and José I. Martín Dept. of Computer

More information

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Tina R. Patil, Mrs. S. S. Sherekar Sant Gadgebaba Amravati University, Amravati tnpatil2@gmail.com, ss_sherekar@rediffmail.com

More information

6 Classification and Regression Trees, 7 Bagging, and Boosting

6 Classification and Regression Trees, 7 Bagging, and Boosting hs24 v.2004/01/03 Prn:23/02/2005; 14:41 F:hs24011.tex; VTEX/ES p. 1 1 Handbook of Statistics, Vol. 24 ISSN: 0169-7161 2005 Elsevier B.V. All rights reserved. DOI 10.1016/S0169-7161(04)24011-1 1 6 Classification

More information

Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

More information

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model ABSTRACT Mrs. Arpana Bharani* Mrs. Mohini Rao** Consumer credit is one of the necessary processes but lending bears

More information

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models

More information

Classification: Basic Concepts, Decision Trees, and Model Evaluation

Classification: Basic Concepts, Decision Trees, and Model Evaluation 4 Classification: Basic Concepts, Decision Trees, and Model Evaluation Classification, which is the task of assigning objects to one of several predefined categories, is a pervasive problem that encompasses

More information

Email Spam Detection A Machine Learning Approach

Email Spam Detection A Machine Learning Approach Email Spam Detection A Machine Learning Approach Ge Song, Lauren Steimle ABSTRACT Machine learning is a branch of artificial intelligence concerned with the creation and study of systems that can learn

More information

Question 2 Naïve Bayes (16 points)

Question 2 Naïve Bayes (16 points) Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the

More information

Data mining techniques: decision trees

Data mining techniques: decision trees Data mining techniques: decision trees 1/39 Agenda Rule systems Building rule systems vs rule systems Quick reference 2/39 1 Agenda Rule systems Building rule systems vs rule systems Quick reference 3/39

More information

Data Mining Methods: Applications for Institutional Research

Data Mining Methods: Applications for Institutional Research Data Mining Methods: Applications for Institutional Research Nora Galambos, PhD Office of Institutional Research, Planning & Effectiveness Stony Brook University NEAIR Annual Conference Philadelphia 2014

More information

Application of Data Mining Techniques to Model Breast Cancer Data

Application of Data Mining Techniques to Model Breast Cancer Data Application of Data Mining Techniques to Model Breast Cancer Data S. Syed Shajahaan 1, S. Shanthi 2, V. ManoChitra 3 1 Department of Information Technology, Rathinam Technical Campus, Anna University,

More information

How To Cluster

How To Cluster Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

More information

PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce. Authors: B. Panda, J. S. Herbach, S. Basu, R. J. Bayardo.

PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce. Authors: B. Panda, J. S. Herbach, S. Basu, R. J. Bayardo. PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce Authors: B. Panda, J. S. Herbach, S. Basu, R. J. Bayardo. VLDB 2009 CS 422 Decision Trees: Main Components Find Best Split Choose split

More information

W6.B.1. FAQs CS535 BIG DATA W6.B.3. 4. If the distance of the point is additionally less than the tight distance T 2, remove it from the original set

W6.B.1. FAQs CS535 BIG DATA W6.B.3. 4. If the distance of the point is additionally less than the tight distance T 2, remove it from the original set http://wwwcscolostateedu/~cs535 W6B W6B2 CS535 BIG DAA FAQs Please prepare for the last minute rush Store your output files safely Partial score will be given for the output from less than 50GB input Computer

More information

Leveraging Ensemble Models in SAS Enterprise Miner

Leveraging Ensemble Models in SAS Enterprise Miner ABSTRACT Paper SAS133-2014 Leveraging Ensemble Models in SAS Enterprise Miner Miguel Maldonado, Jared Dean, Wendy Czika, and Susan Haller SAS Institute Inc. Ensemble models combine two or more models to

More information

Model Combination. 24 Novembre 2009

Model Combination. 24 Novembre 2009 Model Combination 24 Novembre 2009 Datamining 1 2009-2010 Plan 1 Principles of model combination 2 Resampling methods Bagging Random Forests Boosting 3 Hybrid methods Stacking Generic algorithm for mulistrategy

More information

How To Make A Credit Risk Model For A Bank Account

How To Make A Credit Risk Model For A Bank Account TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP Csaba Főző csaba.fozo@lloydsbanking.com 15 October 2015 CONTENTS Introduction 04 Random Forest Methodology 06 Transactional Data Mining Project 17 Conclusions

More information

How To Detect Fraud With Reputation Features And Other Features

How To Detect Fraud With Reputation Features And Other Features Detection Using Reputation Features, SVMs, and Random Forests Dave DeBarr, and Harry Wechsler, Fellow, IEEE Computer Science Department George Mason University Fairfax, Virginia, 030, United States {ddebarr,

More information

E-commerce Transaction Anomaly Classification

E-commerce Transaction Anomaly Classification E-commerce Transaction Anomaly Classification Minyong Lee minyong@stanford.edu Seunghee Ham sham12@stanford.edu Qiyi Jiang qjiang@stanford.edu I. INTRODUCTION Due to the increasing popularity of e-commerce

More information

Evaluation & Validation: Credibility: Evaluating what has been learned

Evaluation & Validation: Credibility: Evaluating what has been learned Evaluation & Validation: Credibility: Evaluating what has been learned How predictive is a learned model? How can we evaluate a model Test the model Statistical tests Considerations in evaluating a Model

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Evaluating the Accuracy of a Classifier Holdout, random subsampling, crossvalidation, and the bootstrap are common techniques for

More information

Classification On The Clouds Using MapReduce

Classification On The Clouds Using MapReduce Classification On The Clouds Using MapReduce Simão Martins Instituto Superior Técnico Lisbon, Portugal simao.martins@tecnico.ulisboa.pt Cláudia Antunes Instituto Superior Técnico Lisbon, Portugal claudia.antunes@tecnico.ulisboa.pt

More information

Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News

Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News Sushilkumar Kalmegh Associate Professor, Department of Computer Science, Sant Gadge Baba Amravati

More information

FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS

FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information

Lecture 13: Validation

Lecture 13: Validation Lecture 3: Validation g Motivation g The Holdout g Re-sampling techniques g Three-way data splits Motivation g Validation techniques are motivated by two fundamental problems in pattern recognition: model

More information

Classification Problems

Classification Problems Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems

More information

Microsoft Azure Machine learning Algorithms

Microsoft Azure Machine learning Algorithms Microsoft Azure Machine learning Algorithms Tomaž KAŠTRUN @tomaz_tsql Tomaz.kastrun@gmail.com http://tomaztsql.wordpress.com Our Sponsors Speaker info https://tomaztsql.wordpress.com Agenda Focus on explanation

More information

Data Mining Techniques Chapter 6: Decision Trees

Data Mining Techniques Chapter 6: Decision Trees Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................

More information

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES Vijayalakshmi Mahanra Rao 1, Yashwant Prasad Singh 2 Multimedia University, Cyberjaya, MALAYSIA 1 lakshmi.mahanra@gmail.com

More information

Less naive Bayes spam detection

Less naive Bayes spam detection Less naive Bayes spam detection Hongming Yang Eindhoven University of Technology Dept. EE, Rm PT 3.27, P.O.Box 53, 5600MB Eindhoven The Netherlands. E-mail:h.m.yang@tue.nl also CoSiNe Connectivity Systems

More information

Homework Assignment 7

Homework Assignment 7 Homework Assignment 7 36-350, Data Mining Solutions 1. Base rates (10 points) (a) What fraction of the e-mails are actually spam? Answer: 39%. > sum(spam$spam=="spam") [1] 1813 > 1813/nrow(spam) [1] 0.3940448

More information

Applied Multivariate Analysis - Big data analytics

Applied Multivariate Analysis - Big data analytics Applied Multivariate Analysis - Big data analytics Nathalie Villa-Vialaneix nathalie.villa@toulouse.inra.fr http://www.nathalievilla.org M1 in Economics and Economics and Statistics Toulouse School of

More information

1 Maximum likelihood estimation

1 Maximum likelihood estimation COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N

More information

Cross-Validation. Synonyms Rotation estimation

Cross-Validation. Synonyms Rotation estimation Comp. by: BVijayalakshmiGalleys0000875816 Date:6/11/08 Time:19:52:53 Stage:First Proof C PAYAM REFAEILZADEH, LEI TANG, HUAN LIU Arizona State University Synonyms Rotation estimation Definition is a statistical

More information

An Approach to Detect Spam Emails by Using Majority Voting

An Approach to Detect Spam Emails by Using Majority Voting An Approach to Detect Spam Emails by Using Majority Voting Roohi Hussain Department of Computer Engineering, National University of Science and Technology, H-12 Islamabad, Pakistan Usman Qamar Faculty,

More information

Introduction to Learning & Decision Trees

Introduction to Learning & Decision Trees Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

More information

Electronic Payment Fraud Detection Techniques

Electronic Payment Fraud Detection Techniques World of Computer Science and Information Technology Journal (WCSIT) ISSN: 2221-0741 Vol. 2, No. 4, 137-141, 2012 Electronic Payment Fraud Detection Techniques Adnan M. Al-Khatib CIS Dept. Faculty of Information

More information

L13: cross-validation

L13: cross-validation Resampling methods Cross validation Bootstrap L13: cross-validation Bias and variance estimation with the Bootstrap Three-way data partitioning CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing E-mail Classifier

Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing E-mail Classifier International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-6, January 2013 Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing

More information

An analysis of suitable parameters for efficiently applying K-means clustering to large TCPdump data set using Hadoop framework

An analysis of suitable parameters for efficiently applying K-means clustering to large TCPdump data set using Hadoop framework An analysis of suitable parameters for efficiently applying K-means clustering to large TCPdump data set using Hadoop framework Jakrarin Therdphapiyanak Dept. of Computer Engineering Chulalongkorn University

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 15 - ROC, AUC & Lift Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-17-AUC

More information

Decision Trees. Andrew W. Moore Professor School of Computer Science Carnegie Mellon University. www.cs.cmu.edu/~awm awm@cs.cmu.

Decision Trees. Andrew W. Moore Professor School of Computer Science Carnegie Mellon University. www.cs.cmu.edu/~awm awm@cs.cmu. Decision Trees Andrew W. Moore Professor School of Computer Science Carnegie Mellon University www.cs.cmu.edu/~awm awm@cs.cmu.edu 42-268-7599 Copyright Andrew W. Moore Slide Decision Trees Decision trees

More information

Decision Trees. JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology. Doctoral School, Catania-Troina, April, 2008

Decision Trees. JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology. Doctoral School, Catania-Troina, April, 2008 Decision Trees JERZY STEFANOWSKI Institute of Computing Science Poznań University of Technology Doctoral School, Catania-Troina, April, 2008 Aims of this module The decision tree representation. The basic

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Analysis Tools and Libraries for BigData

Analysis Tools and Libraries for BigData + Analysis Tools and Libraries for BigData Lecture 02 Abhijit Bendale + Office Hours 2 n Terry Boult (Waiting to Confirm) n Abhijit Bendale (Tue 2:45 to 4:45 pm). Best if you email me in advance, but I

More information

IBM SPSS Decision Trees 21

IBM SPSS Decision Trees 21 IBM SPSS Decision Trees 21 Note: Before using this information and the product it supports, read the general information under Notices on p. 104. This edition applies to IBM SPSS Statistics 21 and to all

More information

On the application of multi-class classification in physical therapy recommendation

On the application of multi-class classification in physical therapy recommendation RESEARCH Open Access On the application of multi-class classification in physical therapy recommendation Jing Zhang 1,PengCao 1,DouglasPGross 2 and Osmar R Zaiane 1* Abstract Recommending optimal rehabilitation

More information

UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee

UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee UNDERSTANDING THE EFFECTIVENESS OF BANK DIRECT MARKETING Tarun Gupta, Tong Xia and Diana Lee 1. Introduction There are two main approaches for companies to promote their products / services: through mass

More information

A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE

A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE A NEW DECISION TREE METHOD FOR DATA MINING IN MEDICINE Kasra Madadipouya 1 1 Department of Computing and Science, Asia Pacific University of Technology & Innovation ABSTRACT Today, enormous amount of data

More information

An Overview and Evaluation of Decision Tree Methodology

An Overview and Evaluation of Decision Tree Methodology An Overview and Evaluation of Decision Tree Methodology ASA Quality and Productivity Conference Terri Moore Motorola Austin, TX terri.moore@motorola.com Carole Jesse Cargill, Inc. Wayzata, MN carole_jesse@cargill.com

More information

Keywords Data mining, Classification Algorithm, Decision tree, J48, Random forest, Random tree, LMT, WEKA 3.7. Fig.1. Data mining techniques.

Keywords Data mining, Classification Algorithm, Decision tree, J48, Random forest, Random tree, LMT, WEKA 3.7. Fig.1. Data mining techniques. International Journal of Emerging Research in Management &Technology Research Article October 2015 Comparative Study of Various Decision Tree Classification Algorithm Using WEKA Purva Sewaiwar, Kamal Kant

More information

Data Mining Application in Direct Marketing: Identifying Hot Prospects for Banking Product

Data Mining Application in Direct Marketing: Identifying Hot Prospects for Banking Product Data Mining Application in Direct Marketing: Identifying Hot Prospects for Banking Product Sagarika Prusty Web Data Mining (ECT 584),Spring 2013 DePaul University,Chicago sagarikaprusty@gmail.com Keywords:

More information

A Review of Missing Data Treatment Methods

A Review of Missing Data Treatment Methods A Review of Missing Data Treatment Methods Liu Peng, Lei Lei Department of Information Systems, Shanghai University of Finance and Economics, Shanghai, 200433, P.R. China ABSTRACT Missing data is a common

More information

IDENTIFIC ATION OF SOFTWARE EROSION USING LOGISTIC REGRESSION

IDENTIFIC ATION OF SOFTWARE EROSION USING LOGISTIC REGRESSION http:// IDENTIFIC ATION OF SOFTWARE EROSION USING LOGISTIC REGRESSION Harinder Kaur 1, Raveen Bajwa 2 1 PG Student., CSE., Baba Banda Singh Bahadur Engg. College, Fatehgarh Sahib, (India) 2 Asstt. Prof.,

More information

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM Thanh-Nghi Do College of Information Technology, Cantho University 1 Ly Tu Trong Street, Ninh Kieu District Cantho City, Vietnam

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

A Preliminary Performance Comparison of Two Feature Sets for Encrypted Traffic Classification

A Preliminary Performance Comparison of Two Feature Sets for Encrypted Traffic Classification A Preliminary Performance Comparison of Two Feature Sets for Encrypted Traffic Classification Riyad Alshammari and A. Nur Zincir-Heywood Dalhousie University, Faculty of Computer Science {riyad, zincir}@cs.dal.ca

More information

A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions

A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions Jing Gao Wei Fan Jiawei Han Philip S. Yu University of Illinois at Urbana-Champaign IBM T. J. Watson Research Center

More information

Feature Subset Selection in E-mail Spam Detection

Feature Subset Selection in E-mail Spam Detection Feature Subset Selection in E-mail Spam Detection Amir Rajabi Behjat, Universiti Technology MARA, Malaysia IT Security for the Next Generation Asia Pacific & MEA Cup, Hong Kong 14-16 March, 2012 Feature

More information

Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms

Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms Yin Zhao School of Mathematical Sciences Universiti Sains Malaysia (USM) Penang, Malaysia Yahya

More information

A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery

A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery Alex A. Freitas Postgraduate Program in Computer Science, Pontificia Universidade Catolica do Parana Rua Imaculada Conceicao,

More information

Identifying and Overcoming Common Data Mining Mistakes Doug Wielenga, SAS Institute Inc., Cary, NC

Identifying and Overcoming Common Data Mining Mistakes Doug Wielenga, SAS Institute Inc., Cary, NC Identifying and Overcoming Common Data Mining Mistakes Doug Wielenga, SAS Institute Inc., Cary, NC ABSTRACT Due to the large amount of data typically involved, data mining analyses can exacerbate some

More information