Quality of Service An Introduction

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Quality of Service An Introduction"

Transcription

1 An Introduction Mike Weaver 1

2 Session Objectives The new CCNP-ONT course introduces the concept of providing a Quality of Service framework in a converged IP (packet switched) network This session aims to introduce you to some of the fundamental components associated with this technology, so that.. at the completion of this session, you will be able to:- Explain the necessity for Quality of Service (QoS) in converged networks and describe and define some of the fundamental terms associated with incorporating QoS (e.g. bandwidth, delay, packet loss, queues, queuing, etc.) 2

3 Beyond best effort what is QoS? QoS is a term used to refer to technologies used to minimise some of the negative effects associated with congestion in a packet switched network Packet switched networks rely on queue (or buffer) availability at all ingress and egress points of network connected devices to smooth the bursty nature of computer generated traffic These buffers and the associated queues were the essential components of packet networks that allowed a far better performance for this type of traffic than traditional circuit switched networks 3

4 Dealing with congested networks the problems However, if these networks experience congestion at any node, they must queue traffic packets until there is sufficient capacity to allow onward transmission, leading to variable delays in delivery In early switched networks, all traffic was treated equally, regardless of its degree of elasticity Device buffers are finite, leading to packet loss if a buffer (queue) is full and cannot accept further packets In addition, queue length grows exponentially as the packet arrival rate approaches the transmission rate 4

5 Dealing with congested networks the solutions There are two fundamental techniques that can be used to attempt to alleviate these congestion problems in a converged IP network 1. Over provision the network. If there is no congestion, then essentially there are no problems! 2. Deploy QoS in the network, differentiating between inelastic traffic which must be delivered with minimal (and largely predictable) delay, and elastic traffic that can usually be queued without difficulty 5

6 A joint approach In reality, both approaches over provisioning and configuration of network devices to incorporate QoS techniques are often combined in modern networks QoS should generally be deployed in those parts of the network that are permanently or occasionally overloaded It is common that peripheral parts of a network are overloaded, and the backbone is over-provisioned 6

7 Delay in a perfect network t1 t time time d1 d2 d3 t1 t2 d1=d2=d3 7

8 Delay in a practical network T time time d1 d2 d3 d6 T1' d1 d2 d3 d6 T1 T1' 8

9 Review Questions The Practical Network Why are the delays different? What are some of the causes of packet loss? What effects will overall delay have on a traffic flow? Voice call? Streaming media? FTP traffic? Telnet traffic? What about variations in delay within the same flow? How can this variation be handled? What is delay a function of? 9

10 End to end packet delivery delay It can be seen that total packet delivery delay is a random value There will always be a minimum delay due to various physical characteristics of the network signal propagation, serialisation etc the End to End Delay 10

11 End to End Packet Delivery Delay End/End Delay = (P1 + Q1 + P2 + Q2 + P3 + Q3 + P4) ms Processing and Queuing Delay Q1 Processing and Queuing Delay Q2 Processing and Queuing Delay Q3 ` Propagation and Serialisation Delay P1 Propagation and Serialisation Delay P2 Propagation and Serialisation Delay P3 Propagation and Serialisation Delay P4 11

12 Delay of packet delivery There will also be a variable component due to additional buffering; queuing, etc and the amount of congestion within the network To analyse the delay, we need to create a distribution histogram a method that will allow us to compute the delay variability within the transmission of a very large number of packets ( ) 12

13 Delay histogram Delay Distribution The greater the number of packets measured, the more precisely the histogram reflects network delay For example, using this data allows us to state that the probability of packets having a delay < 54mS is 60% # of packets Delay (ms) 13

14 Delay distribution density function End to end delay for a typical connection smoothed over an infinite number of packets 14

15 Review Questions Delay characteristics Are delay characteristics important in an underprovisioned network that includes both elastic and inelastic traffic? If so, which characteristics? Why does this need to be a statistical analysis? 15

16 Bandwidth Transmission rates can be measured between any two interface elements in a network However, the network bandwidth is always equal to the path that has minimum bandwidth To increase bandwidth, it is necessary to deal with the slowest elements, or bottlenecks 16

17 QoS Techniques Now that we are aware of some of the factors to be considered in analysing network congestion, we can investigate how congestion problems can best be minimised for traffic that requires predictable characteristics...also called inelastic traffic Providing a known, or predefined, specific quality of service to inelastic packet streams is an essential tool in modern converged networks 17

18 QoS Support In most converged networks, there will be multiple information flows at any given point in time Each flow will need servicing according to some prerequisite QoS requirement As a minimum, each flow will be serviced by two queues at each network device A switch process queue ( input buffer ) An output interface queue ( output buffer ) To ensure that the required QoS can be achieved, it is essential that the utilisation coefficient of each resource serving the specific flow does not exceed the predefined value 18

19 Utilisation vs delay Maintaining utilisation < 90% for elastic traffic is considered congestion control and has been refined over many years To achieve a lower utilisation for inelastic traffic requires a separate queue for each resource at the output We Ws ρ 19

20 Queuing Models Departures Arrivals Queue (Waiting Area) Link (Server) Single FIFO Queue High Priority Queue (Waiting Area) Departures Arrivals Classify Link (Server) Priority Queuing Model Low Priority Queue (Waiting Area) 20

21 First In First Out (FIFO) queue This is the traditional queue or buffer also sometimes called First Come First Served (FCFS) Packets are placed into a single common queue in the order they arrive and retrieved in the same order This has generally been the default queuing algorithm used in packet switching devices, but it affords no opportunity to differentiate between different types of information flow All traffic types are treated equally 21

22 Priority Queuing A priority queuing mechanism divides traffic into a small number of classes, and assigns some priority characteristic to each class before placing the assigned packets in separate queues Each traffic class (queue) can then be treated according to this characteristic The actual mechanism used to classify the traffic is a separate process If there are packets in the higher priority queues then they are serviced before the lower priority queues using a scheduling algorithm 22

23 Priority Queuing If the traffic flow assigned a high priority is a small component of the overall traffic say a single VoIP conversation this approach works well It will nearly always provide the high priority flow the bandwidth it requires with minimal delay Lower priority (elastic) traffic will hardly be impacted, as the delay whilst the (relatively small) VoIP flow is serviced is largely transparent 23

24 Priority Queuing High 24

25 Weighted Queuing aka Custom Queuing An alternative to using a priority queue is to weight the queues such that they guarantee some minimum percentage of the available bandwidth to different classes of traffic when there is network congestion This is similar to priority queuing except each queue is allocated a percentage of available bandwidth rather than a specific priority 25

26 Weighted queuing 26

27 Weighted queuing The queues are serviced in a round robin fashion within a specific time period Assume the servicing cycle is 1s. Then the queues in the diagram would be activated for 150ms; 150ms; 400ms and 300ms If the output interface b/w is 100Mb/s, then 15Mb of data would be retrieved from the first queue during its service interval; 40Mb from the third queue etc Each queue receives guaranteed minimum b/w, which in most cases is more acceptable than suppressing low priority traffic 27

28 Weighted queuing Note that since the data is retrieved as packets, and not as bits, the actual value of allocated bandwidth will vary The variation will be a function of the queue cycle time a longer time means that the actual bandwidth tends towards the theoretical value but longer cycle times mean longer delays in transmission 28

29 Weighted queuing When a weighted queuing algorithm is used, the utilisation coefficient for a traffic class significantly influences the delay and delay variation for that class of packets For example, if 10% of the bandwidth of 100Mb/s is allocated to the queue, and the average rate of flow is 3Mb/s, then the utilisation coefficient is 3/10 = 0.3 Delays would be insignificant at such a value. However, if the flow was 9Mb/s, the queue would grow significantly! 29

30 Weighted Fair Queuing A modified approach to weighted queuing is to weight each queue equally, thus ensuring that each queue is treated equally or fairly Note that in both methods, if a queue is empty at its scheduled retrieval time, then it is omitted and the time available is distributed between all other queues according to each queue s weighting Flow based weighted fair queuing is one of Cisco s premier queuing techniques * and is the default on most serial interfaces at or below E1 * CCNP-ONT Curriculum

31 Priority vs Weighted Queuing Priority queuing ensure minimum delays for traffic of the highest priority It does not provide any guarantees for lower priority traffic flows Weighted queuing guarantees a mean traffic rate, but doesn t provide any guarantees about delay However, all flows get a guaranteed rate 31

32 Hybrid queuing To attempt to find some middle ground between the two extremes of priority vs weighted queuing, hybrid schemes have been developed The most popular scheme uses a single priority queue for the highest priority traffic, and weights each of the remaining queues (Cisco call this class based weighted fair queuing or CBWFQ) The priority queue is used for real-time traffic (i.e. voice) and the remaining queues for other traffic of varying degrees of elasticity according to need Obviously, there must be a mechanism to limit priority traffic from consuming all available bandwidth! 32

33 Questions Queuing If a router is managing two flows, one with packets of 500 bytes and the other with packets of 1000 bytes, what is the effect on bandwidth of a simple fair queue? What can be done to change this? Would a system that incorporates fair queuing have a longer overall delay than one that didn t? Why? 33

34 Queue management Using queuing algorithms is in response to congestion that is already apparent on the network congestion control mechanisms However, QoS techniques also incorporate methods that attempt to predict and prevent network congestion congestion avoidance mechanisms The aim of congestion avoidance is to prevent congestion, since it is better to transmit data at a lower rate without loss, than at a higher rate and lose packets during periods of congestion 34

35 Queue management Such mechanisms can be viewed as control processes that act on an inherently unstable ( open loop ) system, attempting to achieve a degree of stability The primary Cisco QoS tool used for congestion avoidance is known as Weighted Random Early Detection (WRED) 35

36 Weighted Random Early Detection WRED is a process by which packets are discarded randomly and earlier (i.e. before they would have been if the queue buffer became full) as congestion begins to increase at a network bottleneck The dropping of packets will cause transport protocols such as TCP (but NOT UDP) to throttle back the rate at which packets are launched into the network, (hopefully!) leading to an easing of the congestion The weighting in this process refers to preferential traffic handling for high priority packets, allowing lower priority packets to be discarded first 36

37 Classification If packets or more correctly, flows are to be identified for placing in different queues, then it is necessary to have a method of classification 37

38 Questions How much QoS is there currently on the Internet? What is the major issue with QoS on a public network? How should traffic be classified? How do we handle UDP avoidance? What is best to drop voice packets or ftp packets? 38

39 QoS Summary This presentation has looked at some of the fundamental components and issues associated with QoS The techniques described are primarily ones that are used on a hop by hop basis There are other methods not discussed here that attempt to provide guarantees from end to end However, remember that currently! the Internet is a best effort network so there is no guarantee the mechanisms will work across public links 39

40 QoS Summary And a timely last word on the arguments between those who suggest that more Internet bandwidth is the answer vs. those who suggest that traffic should be differentiated. 40

41 QoS Summary We don t need no reservation We don t need admission control All applications must be adaptive The Net works fine, so leave it alone Hey! Professor! Leave the Net alone! All we want is just flat rate pricing for all All we want is just flat rate pricing for all.. We don t need no traffic management Overprovision bandwidth for all The only true god is TCP/IP The Net isn t broken, so leave it alone Hey! Professor! Leave the Net alone! All we want is just flat rate pricing for all All we want is just flat rate pricing for all. (With thanks to Keshav, S; An Engineering Approach to Computer Networking; Addison-Wesley; 1997 and sung to Pink Floyd s The Wall ) 41

42 Questions? 42

Optimizing Converged Cisco Networks (ONT)

Optimizing Converged Cisco Networks (ONT) Optimizing Converged Cisco Networks (ONT) Module 3: Introduction to IP QoS Introducing QoS Objectives Explain why converged networks require QoS. Identify the major quality issues with converged networks.

More information

VoIP network planning guide

VoIP network planning guide VoIP network planning guide Document Reference: Volker Schüppel 08.12.2009 1 CONTENT 1 CONTENT... 2 2 SCOPE... 3 3 BANDWIDTH... 4 3.1 Control data 4 3.2 Audio codec 5 3.3 Packet size and protocol overhead

More information

VoIP Quality of Service - Basic Theory

VoIP Quality of Service - Basic Theory VoIP Quality of Service - Basic Theory PacNOG5 VoIP Workshop Papeete, French Polynesia. June 2009 Jonny Martin - jonny@jonnynet.net Intro What is Quality of Service (Qos)? QoS and the PBX Traffic Types

More information

Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics:

Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics: Quality of Service 1 Traditional Nonconverged Network Traditional data traffic characteristics: Bursty data flow FIFO access Not overly time-sensitive; delays OK Brief outages are survivable 2 1 Converged

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic.

Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. A Network and Data Link Layer infrastructure Design to Improve QoS in Voice and video Traffic Jesús Arturo Pérez,

More information

Quality of Service (QoS)) in IP networks

Quality of Service (QoS)) in IP networks Quality of Service (QoS)) in IP networks Petr Grygárek rek 1 Quality of Service (QoS( QoS) QoS is the ability of network to support applications without limiting it s s function or performance ITU-T T

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

This topic lists the key mechanisms use to implement QoS in an IP network.

This topic lists the key mechanisms use to implement QoS in an IP network. IP QoS Mechanisms QoS Mechanisms This topic lists the key mechanisms use to implement QoS in an IP network. QoS Mechanisms Classification: Each class-oriented QoS mechanism has to support some type of

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?

Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control? Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management

More information

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS? 18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic

More information

PART III. OPS-based wide area networks

PART III. OPS-based wide area networks PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity

More information

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements Outline Lecture 8 Performance Measurements and Metrics Performance Metrics Performance Measurements Kurose-Ross: 1.2-1.4 (Hassan-Jain: Chapter 3 Performance Measurement of TCP/IP Networks ) 2010-02-17

More information

Chapter 5 Configuring QoS

Chapter 5 Configuring QoS Chapter 5 Configuring QoS Configuring the Basic and Advanced QoS Settings The navigation pane at the top of the web browser interface contains a QoS tab that enables you to manage your FS700TS Smart Switch

More information

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University

More information

Distributed Systems 3. Network Quality of Service (QoS)

Distributed Systems 3. Network Quality of Service (QoS) Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski pxk@cs.rutgers.edu 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through

More information

Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications

Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications Sarhan M. Musa Mahamadou Tembely Matthew N. O. Sadiku Pamela H. Obiomon

More information

Internet structure: network of networks

Internet structure: network of networks Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and s 1.6 Delay & loss in packet-switched networks 1.7 Protocol

More information

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications Veselin Rakocevic School of Engineering and Mathematical Sciences City University, London, UK V.Rakocevic@city.ac.uk

More information

Improving Quality of Service

Improving Quality of Service Improving Quality of Service Using Dell PowerConnect 6024/6024F Switches Quality of service (QoS) mechanisms classify and prioritize network traffic to improve throughput. This article explains the basic

More information

VoIP 101. E911-Enhanced 911- Used for providing emergency service on cellular and internet voice calls.

VoIP 101. E911-Enhanced 911- Used for providing emergency service on cellular and internet voice calls. If you ve been researching phone systems for awhile, you ve probably heard the term VoIP. What s the definition? Do you need certain hardware for it to work? There are a few questions that should be answered

More information

Analysis of IP Network for different Quality of Service

Analysis of IP Network for different Quality of Service 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Analysis of IP Network for different Quality of Service Ajith

More information

Multimedia Requirements. Multimedia and Networks. Quality of Service

Multimedia Requirements. Multimedia and Networks. Quality of Service Multimedia Requirements Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Transfer/Control Protocols Quality of Service

More information

Lecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage

Lecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage Lecture 16: Quality of Service CSE 123: Computer Networks Stefan Savage Final Next week (trust Blink wrt time/location) Will cover entire class Style similar to midterm I ll post a sample (i.e. old) final

More information

Comparative Analysis of Congestion Control Algorithms Using ns-2

Comparative Analysis of Congestion Control Algorithms Using ns-2 www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Cisco Quality of Service and DDOS

Cisco Quality of Service and DDOS Cisco Quality of Service and DDOS Engineering Issues for Adaptive Defense Network MITRE 7/25/2001 Contents 1. INTRODUCTION...1 2. TESTBED SETUP...1 3. QUALITY OF SERVICE (QOS) TESTS...3 3.1. FIRST IN,

More information

Quality of Service for VoIP

Quality of Service for VoIP Quality of Service for VoIP WCS November 29, 2000 John T. Chapman Cisco Distinguished Engineer Broadband Products and Solutions Course Number Presentation_ID 1999, Cisco Systems, Inc. 1 The QoS Matrix

More information

PFS scheme for forcing better service in best effort IP network

PFS scheme for forcing better service in best effort IP network Paper PFS scheme for forcing better service in best effort IP network Monika Fudała and Wojciech Burakowski Abstract The paper presents recent results corresponding to a new strategy for source traffic

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP

ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP ENSC 427: Communication Networks ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP Spring 2010 Final Project Group #6: Gurpal Singh Sandhu Sasan Naderi Claret Ramos (gss7@sfu.ca) (sna14@sfu.ca)

More information

- QoS and Queuing - Queuing Overview

- QoS and Queuing - Queuing Overview 1 Queuing Overview - QoS and Queuing - A queue is used to store traffic until it can be processed or serialized. Both switch and router interfaces have ingress (inbound) queues and egress (outbound) queues.

More information

Random Early Detection Gateways for Congestion Avoidance

Random Early Detection Gateways for Congestion Avoidance Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson Lawrence Berkeley Laboratory University of California floyd@eelblgov van@eelblgov To appear in the August 1993 IEEE/ACM

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

MLPPP Deployment Using the PA-MC-T3-EC and PA-MC-2T3-EC

MLPPP Deployment Using the PA-MC-T3-EC and PA-MC-2T3-EC MLPPP Deployment Using the PA-MC-T3-EC and PA-MC-2T3-EC Overview Summary The new enhanced-capability port adapters are targeted to replace the following Cisco port adapters: 1-port T3 Serial Port Adapter

More information

IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS)

IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS) IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS) COURSE OVERVIEW: Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such

More information

5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues.

5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues. 5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues. 5.1 LEGACY INTEGRATION In most cases, enterprises own legacy PBX systems,

More information

Quality of Service (QoS) on Netgear switches

Quality of Service (QoS) on Netgear switches Quality of Service (QoS) on Netgear switches Section 1 Principles and Practice of QoS on IP networks Introduction to QoS Why? In a typical modern IT environment, a wide variety of devices are connected

More information

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

COMPARATIVE ANALYSIS OF DIFFERENT QUEUING MECHANISMS IN HETROGENEOUS NETWORKS

COMPARATIVE ANALYSIS OF DIFFERENT QUEUING MECHANISMS IN HETROGENEOUS NETWORKS COMPARATIVE ANALYSIS OF DIFFERENT QUEUING MECHANISMS IN HETROGENEOUS NETWORKS Shubhangi Rastogi 1, Samir Srivastava 2 M.Tech Student, Computer Science and Engineering, KNIT, Sultanpur, India 1 Associate

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

"Charting the Course... ... to Your Success!" QOS - Implementing Cisco Quality of Service 2.5 Course Summary

Charting the Course... ... to Your Success! QOS - Implementing Cisco Quality of Service 2.5 Course Summary Course Summary Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as best effort, IntServ, and DiffServ,

More information

Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led

Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led Course Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements,

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List

More information

Delay, loss, layered architectures. packets queue in router buffers. packets queueing (delay)

Delay, loss, layered architectures. packets queue in router buffers. packets queueing (delay) Computer Networks Delay, loss and throughput Layered architectures How do loss and delay occur? packets queue in router buffers packet arrival rate to exceeds output capacity packets queue, wait for turn

More information

Level 1 Technical. Networking and Technology Basics. Contents

Level 1 Technical. Networking and Technology Basics. Contents Level 1 Technical Networking and Technology Basics Contents 1 Glossary... 2 2 IP Networking Basics... 4 Fundamentals... 4 IP Addresses... 4 Subnet Masks... 5 Network Communication... 6 Transport Protocols...

More information

Network Management Quality of Service I

Network Management Quality of Service I Network Management Quality of Service I Patrick J. Stockreisser p.j.stockreisser@cs.cardiff.ac.uk Lecture Outline Basic Network Management (Recap) Introduction to QoS Packet Switched Networks (Recap) Common

More information

Computer Networks and the Internet

Computer Networks and the Internet ? Computer the IMT2431 - Data Communication and Network Security January 7, 2008 ? Teachers are Lasse Øverlier and http://www.hig.no/~erikh Lectures and Lab in A126/A115 Course webpage http://www.hig.no/imt/in/emnesider/imt2431

More information

The network we see so far. Internet Best Effort Service. Is best-effort good enough? An Audio Example. Network Support for Playback

The network we see so far. Internet Best Effort Service. Is best-effort good enough? An Audio Example. Network Support for Playback The network we see so far CSE56 - Lecture 08 QoS Network Xiaowei Yang TCP saw-tooth FIFO w/ droptail or red Best-effort service Web-surfing, email, ftp, file-sharing Internet Best Effort Service Our network

More information

SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005. Lecturer: Kartik Krishnan Lecture 1-3

SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005. Lecturer: Kartik Krishnan Lecture 1-3 SFWR 4C03: Computer Networks & Computer Security Jan 3-7, 2005 Lecturer: Kartik Krishnan Lecture 1-3 Communications and Computer Networks The fundamental purpose of a communication network is the exchange

More information

Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions

Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions 1 Nortel - 920-803 Technology Standards and Protocol for IP Telephony Solutions QUESTION: 1 To achieve the QoS necessary to deliver voice between two points on a Frame Relay network, which two items are

More information

Performance Evaluation of Quality of Service Assurance in MPLS Networks

Performance Evaluation of Quality of Service Assurance in MPLS Networks 114 Performance Evaluation of Quality of Service Assurance in MPLS Networks Karol Molnar, Jiri Hosek, Lukas Rucka, Dan Komosny and Martin Vlcek Brno University of Technology, Communication, Purkynova 118,

More information

Chapter 3 ATM and Multimedia Traffic

Chapter 3 ATM and Multimedia Traffic In the middle of the 1980, the telecommunications world started the design of a network technology that could act as a great unifier to support all digital services, including low-speed telephony and very

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

Network administrators must be aware that delay exists, and then design their network to bring end-to-end delay within acceptable limits.

Network administrators must be aware that delay exists, and then design their network to bring end-to-end delay within acceptable limits. Delay Need for a Delay Budget The end-to-end delay in a VoIP network is known as the delay budget. Network administrators must design a network to operate within an acceptable delay budget. This topic

More information

920-803 - technology standards and protocol for ip telephony solutions

920-803 - technology standards and protocol for ip telephony solutions 920-803 - technology standards and protocol for ip telephony solutions 1. Which CODEC delivers the greatest compression? A. B. 711 C. D. 723.1 E. F. 726 G. H. 729 I. J. 729A Answer: C 2. To achieve the

More information

Network congestion control using NetFlow

Network congestion control using NetFlow Network congestion control using NetFlow Maxim A. Kolosovskiy Elena N. Kryuchkova Altai State Technical University, Russia Abstract The goal of congestion control is to avoid congestion in network elements.

More information

STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT

STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT 1. TIMING ACCURACY The accurate multi-point measurements require accurate synchronization of clocks of the measurement devices. If for example time stamps

More information

PCoIP Protocol Network Design Checklist. TER1105004 Issue 3

PCoIP Protocol Network Design Checklist. TER1105004 Issue 3 PCoIP Protocol Network Design Checklist TER1105004 Issue 3 Teradici Corporation #101-4621 Canada Way, Burnaby, BC V5G 4X8 Canada phone +1.604.451.5800 fax +1.604.451.5818 www.teradici.com The information

More information

Wide Area Networks. Learning Objectives. LAN and WAN. School of Business Eastern Illinois University. (Week 11, Thursday 3/22/2007)

Wide Area Networks. Learning Objectives. LAN and WAN. School of Business Eastern Illinois University. (Week 11, Thursday 3/22/2007) School of Business Eastern Illinois University Wide Area Networks (Week 11, Thursday 3/22/2007) Abdou Illia, Spring 2007 Learning Objectives 2 Distinguish between LAN and WAN Distinguish between Circuit

More information

Verifying Network Bandwidth

Verifying Network Bandwidth Verifying Network Bandwidth My current project is to install a new Gigabit link between the datacenter and Smith Hall on the far side of the campus, says Joe Homes, the network administrator for a Pacific

More information

Flow aware networking for effective quality of service control

Flow aware networking for effective quality of service control IMA Workshop on Scaling 22-24 October 1999 Flow aware networking for effective quality of service control Jim Roberts France Télécom - CNET james.roberts@cnet.francetelecom.fr Centre National d'etudes

More information

Chapter 4. VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network)

Chapter 4. VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network) Chapter 4 VoIP Metric based Traffic Engineering to Support the Service Quality over the Internet (Inter-domain IP network) 4.1 Introduction Traffic Engineering can be defined as a task of mapping traffic

More information

Cisco CCNP 642 845 Optimizing Converged Cisco Networks (ONT)

Cisco CCNP 642 845 Optimizing Converged Cisco Networks (ONT) Cisco CCNP 642 845 Optimizing Converged Cisco Networks (ONT) Course Number: 642 845 Length: 5 Day(s) Certification Exam This course will help you prepare for the following exam: Cisco CCNP Exam 642 845:

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

Analysis of Basic Quality of Service Mechanism for Voice over IP In Hamdard University Network Campus

Analysis of Basic Quality of Service Mechanism for Voice over IP In Hamdard University Network Campus Analysis of Basic Quality of Service Mechanism for Voice over IP In Hamdard University Network Campus Shahbaz Akhatar Siddiqui Student MS (Telecom) Hamdard University Karachi Junior Lecturer in National

More information

The Impact of QoS Changes towards Network Performance

The Impact of QoS Changes towards Network Performance International Journal of Computer Networks and Communications Security VOL. 3, NO. 2, FEBRUARY 2015, 48 53 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) The Impact

More information

QoS in PAN-OS. Tech Note PAN-OS 4.1. Revision A 2011, Palo Alto Networks, Inc.

QoS in PAN-OS. Tech Note PAN-OS 4.1. Revision A 2011, Palo Alto Networks, Inc. QoS in PAN-OS Tech Note PAN-OS 4.1 Revision A Contents Overview... 3 Why QoS... 3 Learn about Applications in your Network... 3 Terms and Concepts... 3 Classification... 3 Priority Queues... 4 Limiting

More information

Real-time apps and Quality of Service

Real-time apps and Quality of Service Real-time apps and Quality of Service Focus What transports do applications need? What network mechanisms provide which kinds of quality assurances? Topics Real-time versus Elastic applications Adapting

More information

Multi Stage Filtering

Multi Stage Filtering Multi Stage Filtering Technical Brief With the increasing traffic volume in modern data centers, largely driven by e-business and mobile devices, network and application performance monitoring has become

More information

Exam 1 Review Questions

Exam 1 Review Questions CSE 473 Introduction to Computer Networks Exam 1 Review Questions Jon Turner 10/2013 1. A user in St. Louis, connected to the internet via a 20 Mb/s (b=bits) connection retrieves a 250 KB (B=bytes) web

More information

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource

More information

Computer Networks Homework 1

Computer Networks Homework 1 Computer Networks Homework 1 Reference Solution 1. (15%) Suppose users share a 1 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 10 percent of the time.

More information

EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP

EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP Scientific Bulletin of the Electrical Engineering Faculty Year 11 No. 2 (16) ISSN 1843-6188 EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP Emil DIACONU 1, Gabriel PREDUŞCĂ 2, Denisa CÎRCIUMĂRESCU

More information

A SENSIBLE GUIDE TO LATENCY MANAGEMENT

A SENSIBLE GUIDE TO LATENCY MANAGEMENT A SENSIBLE GUIDE TO LATENCY MANAGEMENT By Wayne Rash Wayne Rash has been writing technical articles about computers and networking since the mid-1970s. He is a former columnist for Byte Magazine, a former

More information

Voice over IP (VoIP) and QoS/QoE

Voice over IP (VoIP) and QoS/QoE Voice over IP (VoIP) and QoS/QoE Professor Richard Harris School of Engineering and Advanced Technology (SEAT) Presentation Outline Understanding jitter and methods to overcome problems with jitter Quality

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

VOICE OVER IP AND NETWORK CONVERGENCE

VOICE OVER IP AND NETWORK CONVERGENCE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Assaid O. SHAROUN* VOICE OVER IP AND NETWORK CONVERGENCE As the IP network was primarily designed to carry data, it

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

The need for bandwidth management and QoS control when using public or shared networks for disaster relief work

The need for bandwidth management and QoS control when using public or shared networks for disaster relief work International Telecommunication Union The need for bandwidth management and QoS control when using public or shared networks for disaster relief work Stephen Fazio Chief, Global Telecommunications Officer

More information

Project Report on Traffic Engineering and QoS with MPLS and its applications

Project Report on Traffic Engineering and QoS with MPLS and its applications Project Report on Traffic Engineering and QoS with MPLS and its applications Brief Overview Multiprotocol Label Switching (MPLS) is an Internet based technology that uses short, fixed-length labels to

More information

SPEAKEASY QUALITY OF SERVICE: VQ TECHNOLOGY

SPEAKEASY QUALITY OF SERVICE: VQ TECHNOLOGY SPEAKEASY QUALITY OF SERVICE: VQ TECHNOLOGY August 2005 Formoreinformation,contactSpeakeasyPartnerITS at630.420.2550orvisitwww.teamits.com. www.speakeasy.net 800-556-5829 1201 Western Ave Seattle, WA 98101

More information

A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks

A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks T.Chandrasekhar 1, J.S.Chakravarthi 2, K.Sravya 3 Professor, Dept. of Electronics and Communication Engg., GIET Engg.

More information

The Quality of Internet Service: AT&T s Global IP Network Performance Measurements

The Quality of Internet Service: AT&T s Global IP Network Performance Measurements The Quality of Internet Service: AT&T s Global IP Network Performance Measurements In today's economy, corporations need to make the most of opportunities made possible by the Internet, while managing

More information

The Basics. Configuring Campus Switches to Support Voice

The Basics. Configuring Campus Switches to Support Voice Configuring Campus Switches to Support Voice BCMSN Module 7 1 The Basics VoIP is a technology that digitizes sound, divides that sound into packets, and transmits those packets over an IP network. VoIP

More information

Introduction. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross

Introduction. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross Introduction Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross Roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core packet switching,

More information

Mixer/Translator VOIP/SIP. Translator. Mixer

Mixer/Translator VOIP/SIP. Translator. Mixer Mixer/Translator VOIP/SIP RTP Mixer, translator A mixer combines several media stream into a one new stream (with possible new encoding) reduced bandwidth networks (video or telephone conference) appears

More information

What VoIP Requires From a Data Network

What VoIP Requires From a Data Network A White Paper by NEC Unified Solutions, Inc. What VoIP Requires From a Data Network Introduction Here is a very common story. A customer has a data network based on TCP/IP that is working well. He can

More information

Configure Policy-based Routing

Configure Policy-based Routing How To Note How To Configure Policy-based Routing Introduction Policy-based routing provides a means to route particular packets to their destination via a specific next-hop. Using policy-based routing

More information

Performance Measurement of Wireless LAN Using Open Source

Performance Measurement of Wireless LAN Using Open Source Performance Measurement of Wireless LAN Using Open Source Vipin M Wireless Communication Research Group AU KBC Research Centre http://comm.au-kbc.org/ 1 Overview General Network Why Network Performance

More information

Configuring QoS. Understanding QoS CHAPTER

Configuring QoS. Understanding QoS CHAPTER 24 CHAPTER This chapter describes how to configure quality of service (QoS) by using standard QoS commands. With QoS, you can give preferential treatment to certain types of traffic at the expense of others.

More information

17: Queue Management. Queuing. Mark Handley

17: Queue Management. Queuing. Mark Handley 17: Queue Management Mark Handley Queuing The primary purpose of a queue in an IP router is to smooth out bursty arrivals, so that the network utilization can be high. But queues add delay and cause jitter.

More information

Clearing the Way for VoIP

Clearing the Way for VoIP Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.

More information

Fiber Channel Over Ethernet (FCoE)

Fiber Channel Over Ethernet (FCoE) Fiber Channel Over Ethernet (FCoE) Using Intel Ethernet Switch Family White Paper November, 2008 Legal INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR

More information