Procedures for Determining a Soil s Water Content

Size: px
Start display at page:

Download "Procedures for Determining a Soil s Water Content"

Transcription

1 Procedures for Determining a Soil s Water Content Laboratory determination of Water Content of Soil and Rock D Abstracted, with permission, from the 1996 Annual Book of ASTM Standards, copyright American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA Scope This test method covers the laboratory determination of the water content of soil rock, and similar materials by mass. The water content of a material is defined by this standard as a ratio, expressed as a percentage, of the mass of pore or free water in a given mass of material to the mass of the solid material. This standard requires the drying of material in an oven at high temperatures. Summary of Test Method The test specimen is dried in an oven to constant mass. The loss of mass due to drying is considered to be water in the soil pores. The water content is calculated using the mass of water and the mass of the dry specimen. Significance of Use For many materials, the water content is one of the most significant index properties used in establishing a correlation between soil behavior and its properties. The water content of a material is used in expressing the phase of relationships of air, water, and solids in a given volume of material. In fine-grained (cohesive) soils, the consistency of a given soil type depends on its water content. The water content of a given soil, along with its liquid and plastic limits as determined by Test Method D 4318, is used to express its relative consistency or liquidity index. Apparatus The following items are required for this testing method: 1. A thermostatically controlled oven, preferably of the force-draft type capable of maintaining a uniform temperature of 110 ± 5 C throughout the drying chamber. 2. A balance with a readability of 0.01 g 3. Specimen containers for drying. 4. Container handling devices. 5. Miscellaneous items such as knives, spatulas, scoops, etc. Samples Samples shall be stored in jars or other containers in such a way as to prevent or minimize moisture condensation on the insides of the containers.

2 Test Specimen The minimum mass of moist martial selected to be representative of the total sample, if the total sample is not tested by this method, shall be in accordance with the following: Max Particle Size (100% passing) Standard Sieve Size Minimum Mass of Moist Test Specimen for reporting Water Content to ± 0.1% Minimum Mass of Moist Test Specimen for reporting Water Content to ± 1% 2 mm or less No g 20g 4.75 mm No g 20g 9.5 mm 3/8 in. 500g 50g 19.0 mm 3/4 in. 2.5kg 250g 37.5 mm 1 1/2 in. 10kg 1kg 75.0 mm 3 in. 50kg 5kg If the total sample is used it does not have to meet the minimum mass requirements provided in the table above and the report shall indicate that the total sample was used. If a sample smaller than the minimum is used then it must be stated in the report. Test Specimen Selection When the test specimen is a portion of a larger amount of material, the specimen must be selected to be representative of the water condition of the total amount of material. The manner in which the test sample is selected depends on the purpose and application of the test, type of material being tested, the water condition, and the type of sample (from another test, bag, block and the likes). If disturbed samples such as trimmings, bag samples and the likes are being used, obtain the test specimen by one of the following methods: 1. If the material is such that it can be manipulated and handled without significant moisture loss, the material should be mixed and then reduced to the required size by quartering or splitting. 2. If the material is such that it cannot be thoroughly mixed and/or split, from a stockpile of the material, mixing as much as possible. Take at least five portions of the material at random locations using a sampling tool and combine all portions for the test specimen. 3. If the material or conditions are such that a stockpile can not be formed, take as many portions of the material as possible at random locations and combine all the portions for the test specimen. For intact samples such as block, tube, split barrel, and the like, obtain the test specimen by the following method: Carefully trim at least 3 mm of material from the outer surface of the sample to see if the material is layered and to remove material that is drier or wetter than the main portion of the sample. Then carefully trim at least 5 mm, or a thickness equal to the maximum particle size present, from the entire exposed surface from the interval to be tested.

3 Procedure 1. Determine and record the mass of the clean and dry specimen container (and its lid if used). 2. Select a representative test specimen. 3. Place the moist test specimen in the container and, if used, set the lib securely in position. 4. Determine and record the mass of the container and the moist material. 5. Remove the lid (if used) and place the container with moist material in the drying oven. Dry the material to a constant mass. Maintaining the oven at 110 ± 5 C unless otherwise specified. The time required for obtaining a constant mass may vary depending on the type of material, size of specimen, and oven type as well as other factors. The influence of these factors generally can be established by good judgment, and experience with the material being used and the apparatus being used. 12 to 16 hours should be sufficient. 6. After the material has been dried to a constant mass remove the container from the oven (and replace the lid if used). Allow the material and container to cool to room temperature or until the container can be handled comfortably with bare hands and the operation of the balance will not be affected by convection currents and/or its being heated. Determine and record the mass of the dried sample and the container using the same balance. Calculation Calculate the Water content of the material as follows: w = ( M cws M ) ( M M ) c M w 100 = 100 M s where: w = water content, %, M cws = mass of container and wet specimen, g, M = mass of container and oven dry specimen, g, M c = mass of container, g, M w = mass of water, g, and M s = mass of solid particles. Report The report and data sheet shall include the following: 1. Identification of the sample and material being tested, such as boring number, sample number, test number, container number etc. 2. Water content of the specimen to the nearest 1% or 0.1%, as appropriate for based on the minimum sample used. 3. Indicate if test specimen had a mass less than the minimum indicated in chart above. 4. Indicate if the test specimen contained more than one type of material (layered, etc.) 5. Indicate the method of drying if different from oven drying at 110 ± 5 C 6. Indicate if any material (size or amount) was excluded from the test specimen.

4 Statement on Precision The single operator coefficient or variation has been found to be 2.7%. Therefore, results of two properly conducted test by the same operator with the same equipment should not be considered suspect unless they differ by more than 7.8 percent of their mean.

5 Determination of Water Content of Soil By the Microwave Oven Method D Abstracted, with permission, from the 1996 Annual Book of ASTM Standards, copyright American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA Scope This test method outlines procedures for determining the water content of soils by incremental drying soil in a microwave oven. This method is not intended as a replacement of Test Method D 2216, but rather as a supplement when rapid results are required or desired to expedite other phases of testing. Test Method D 2216 is to be used as a method to compare for accuracy and correction. Summary of Test Method A moist soil specimen is place in a suitable container an its mass determined and recorded. It is then placed in a microwave oven, subjected to an interval of drying, and removed from the oven and its new mass is determined. This procedure is repeated until the mass becomes nearly constant. The difference between the mass of the moist specimen and the dried specimen is used as the mass water originally contained in the specimen. The water content is determined by dividing the mass of water by the dry mass of the soil, multiplied by 100. For a given soil and sample size, the time to achieve a constant dry mass can be noted and used as a minimum drying time for subsequent tests using the same size specimen of the same soil. Significance of Use Test Method D 2216 can be time consuming the use of this microwave method can expedite the determination of soil s water content. The principal objection to the use of the microwave oven for water content determination has been the possibility of over heating the soil, thereby yielding a water content higher than would be determined by Test Method D While not eliminating this possibility, the incremental drying procedure described in this method will minimize its effects. Apparatus The following items will be required for this testing method: 1. A microwave oven, preferably with a vented chamber, is suitable. The required size and over rating of the oven is dependent on its intended use. Ovens with variable power controls and input power ratings of about 700 W have been found to be adequate for this use. Variable power controls are important and reduce the potential for overheating the test specimen. 2. A scale having a 2000 g or greater and readability of 0.1 g is required. 3. Specimen container suitable for use in a microwave. These containers must be dry. 4. Container handling devices such as gloves or holders. 5. Stirring tools such as putty knives, glass rods or spatulas for cutting and stirring the test specimen before and during testing.

6 Samples Keep samples that are stored prior to testing in non-corrodible airtight containers at a temperature between approximately 3 and 30 C in an area prevents direct exposure to sunlight. The water content determination should be performed as soon as practical after sampling, especially if potentially corrodible containers (such as steel thin walled tube, paint cans, and the like) or unsealed sample bags are used. Test Specimen The test specimen should be selected with the same method as described for specimen selection in Test Method D Conditioning Prepare and process the specimen as quickly as possible to minimize unrecorded moisture loss that will result in erroneous water content determinations. Cut or break up the soil into small size aggregations. If the specimens are not to be tested immediately, store them in a sealed container to prevent loss of moisture. Procedure 1. Determine the mass of a clean, dry container or dish, and record. 2. Place the soil specimen in the container, and immediately determine and record its mass. 3. Place the soil specimen in the container in a microwave oven with the heat sink and turn the oven on for 3 min. If experience with a particular soil type and specimen size indicate shorter or longer initial drying times can be used without overheating and subsequent drying time may be adjusted. 4. After the set time has elapsed, remove the container and soil from the oven, either weigh the specimen immediately, or place in dissector to cool to allow handing and to prevent damage to the balance. Determine and record the mass. 5. With a small spatula or knife or short length of glass rod carefully mix the soil, taking special precautions not to lose any soil. 6. Return the container and soil to the oven and reheat in the oven for 1 min. 7. Repeat step 4 thru 6, until the change in between two consecutive mass determinations would have an insignificant effect on the calculated moisture content. A change of 0.1% or less of the initial wet mass of the soil should be acceptable for most specimens. 8. Use the final mass determination in calculating the water content. Obtain this value immediately after the heating cycle, or, if the mass determination is to be delayed, after cooling in a dissector.

7 Calculation Calculate the Water content of the material as follows: w = ( M cws M ) ( M M ) c M w 100 = 100 M s where: w = water content, %, M cws = mass of container and wet specimen, g, M = mass of container and oven dry specimen, g, M c = mass of container, g, M w = mass of water, g, and M s = mass of solid particles. Report Report the following information: 1. Identification of the sample (material) being tested by boring number sample number, test number and the like. 2. Water content of the specimen to the nearest 1%. 3. Indicate if the test specimen has a mass less than the minimum required. 4. Indicate if the test specimen contained more than one type of soil. 5. Indication of any material (size, amount, and layer or layer sequences) excluded from the test specimen. 6. Time and setting of initial drying period and subsequent incremental drying periods. 7. Initial mass of test specimen prior to drying (wet mass of sample), and the mass after the final incremental drying periods (dry mass of soil). 8. Identification of comparison test(s) if performed. 9. Identification of microwave oven and drying settings and cycles used. Precision Studies on microwave drying have indicated single laboratory average precision, expressed as a percent moisture content of 0.96% or less, depending upon the soil type, initial moisture, and specimen size.

Standard Test Procedures Manual

Standard Test Procedures Manual STP 206-4 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test This method describes the procedure for determining the liquid limit, plastic limit and the plasticity index of coarse-grained

More information

Apr 17, 2000 LAB MANUAL 1302.0. 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified)

Apr 17, 2000 LAB MANUAL 1302.0. 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified) Apr 17, 2000 LAB MANUAL 1302.0 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified) 1302.1 SCOPE This method describes a procedure for the quantitative determination of the distribution

More information

SOIL-LIME TESTING. Test Procedure for. TxDOT Designation: Tex-121-E 1. SCOPE 2. APPARATUS 3. MATERIALS TXDOT DESIGNATION: TEX-121-E

SOIL-LIME TESTING. Test Procedure for. TxDOT Designation: Tex-121-E 1. SCOPE 2. APPARATUS 3. MATERIALS TXDOT DESIGNATION: TEX-121-E Test Procedure for SOIL-LIME TESTING TxDOT Designation: Tex-121-E Effective Date: August 2002 1. SCOPE 1.1 This method consists of three parts. 1.1.1 Part I determines the unconfined compressive strength

More information

DryWeight BulkVolume

DryWeight BulkVolume Test Procedure for BULK SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATE TxDOT Designation: Tex-201-F Effective Date: January 2016 1. SCOPE 1.1 Use this method to determine the bulk specific gravity

More information

The University of Toledo Soil Mechanics Laboratory

The University of Toledo Soil Mechanics Laboratory 1 Grain Size Distribution Sieve Analysis The University of Toledo Soil Mechanics Laboratory Introduction The grain size distribution is a representation of the approximate distribution of soil grain sizes

More information

DETERMINING ASPHALT CONTENT FROM ASPHALT PAVING MIXTURES BY THE IGNITION METHOD

DETERMINING ASPHALT CONTENT FROM ASPHALT PAVING MIXTURES BY THE IGNITION METHOD Test Procedure for DETERMINING ASPHALT CONTENT FROM ASPHALT PAVING MIXTURES BY THE IGNITION METHOD TxDOT Designation: Tex-236-F Effective Date: March 2016 1. SCOPE 1.1 Use this test method to determine

More information

METHOD A7 THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF GRAVEL, SOIL AND SAND

METHOD A7 THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF GRAVEL, SOIL AND SAND SCOPE METHOD A7 THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF GRAVEL, SOIL AND SAND Definition The maximum dry density and optimum moisture content, as defined below, is

More information

Florida Method of Test for TESTING OF GROUND TIRE RUBBER Designation: FM 5-559

Florida Method of Test for TESTING OF GROUND TIRE RUBBER Designation: FM 5-559 Florida Method of Test for TESTING OF GROUND TIRE RUBBER Designation: FM 5-559 1 SCOPE 1.1 This method is used to determine the physical requirements of ground tire rubber for use in asphalt rubber using

More information

LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO

LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO LABORATORY DETERMINATION OF CALIFORNIA BEARING RATIO STANDARD IS: 2720 (Part 16) 1979. DEFINITION California bearing ratio is the ratio of force per unit area required to penetrate in to a soil mass with

More information

METHOD OF TEST FOR SAMPLING AND TESTING CRUMB RUBBER MODIFIER

METHOD OF TEST FOR SAMPLING AND TESTING CRUMB RUBBER MODIFIER STATE OF CALIFORNIA BUSINESS, TRANSPORTATION AND HOUSING AGENCY DEPARTMENT OF TRANSPORTATION DIVISION OF ENGINEERING SERVICES Transportation Laboratory 5900 Folsom Boulevard Sacramento, California 95819-4612

More information

Apr 17, 2000 LAB MANUAL 1811.0

Apr 17, 2000 LAB MANUAL 1811.0 Apr 17, 2000 LAB MANUAL 1811.0 1811 BULK SPECIFIC GRAVITY (GMB) AND DENSITY OF COMPACTED BITUMINOUS SPECIMENS USING PARAFFIN OR PARAFILM ASTM Designation D 1188 (MN/DOT Modified) 1811.1 SCOPE This test

More information

ATT-72/94, SALT SIEVE ANALYSIS. This method describes the procedure for determining the gradation of salt.

ATT-72/94, SALT SIEVE ANALYSIS. This method describes the procedure for determining the gradation of salt. 1.0 Scope ATT-72/94, SALT SIEVE ANALYSIS 1.0 SCOPE This method describes the procedure for determining the gradation of salt. 2.0 EQUIPMENT sieves: 80 µm, 160 µm, 315 µm, 630 µm, 1 250 µm, 2 500 µm, 5

More information

METHOD A10 (a) THE DETERMINATION OF THE IN-PLACE DRY DENSITY OF SOIL OR GRAVEL BY THE SAND REPLACEMENT METHOD

METHOD A10 (a) THE DETERMINATION OF THE IN-PLACE DRY DENSITY OF SOIL OR GRAVEL BY THE SAND REPLACEMENT METHOD METHOD A10 (a) THE DETERMINATION OF THE IN-PLACE DRY DENSITY OF SOIL OR GRAVEL BY THE SAND REPLACEMENT METHOD 1 SCOPE The in-place dry density of compacted soil or gravel, as defined below, is determined

More information

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES Test Procedure for SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES TxDOT Designation: Tex-200-F Effective Date: January 2016 1. SCOPE 1.1 Use this test method to determine the particle size distribution of

More information

PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE

PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE Test Procedure for PARTICLE SIZE ANALYSIS OF SOILS TxDOT Designation: Tex-110-E Effective Date: August 1999 1. SCOPE 1.1 This method covers the quantitative determination of the distribution of particle

More information

PERMEABILITY TEST. To determine the coefficient of permeability of a soil using constant head method.

PERMEABILITY TEST. To determine the coefficient of permeability of a soil using constant head method. PERMEABILITY TEST A. CONSTANT HEAD OBJECTIVE To determine the coefficient of permeability of a soil using constant head method. need and Scope The knowledge of this property is much useful in solving problems

More information

HIGHWAYS DEPARTMENT GUIDANCE NOTES ON SOIL TEST FOR PAVEMENT DESIGN

HIGHWAYS DEPARTMENT GUIDANCE NOTES ON SOIL TEST FOR PAVEMENT DESIGN HIGHWAYS DEPARTMENT GUIDANCE NOTES ON SOIL TEST FOR PAVEMENT DESIGN Research & Development Division RD/GN/012 August 1990 HIGHWAYS DEPARTMENT GUIDANCE NOTES (RD/GN/012) SOIL TEST FOR PAVEMENT DESIGN Prepared

More information

In-situ Density Determination by Sand Replacement Method

In-situ Density Determination by Sand Replacement Method University of Texas at Arlington Geotechnical Engineering Laboratory Test Procedure In-situ Density Determination by Sand Replacement Method Lecture Note 7 (Thursday 03-04-04) 1 Definitions, Objectives

More information

Specific volume and absorption properties

Specific volume and absorption properties Accepted 1980 Fluff Specific volume and absorption properties 1 Scope This SCAN-test Method describes the preparation of test pieces of fluff and a procedure for their use in determining the specific volume

More information

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,

More information

The Analytical Balance

The Analytical Balance Chemistry 119: Experiment 1 The Analytical Balance Operation of the Single-Pan Analytical Balance Receive instruction from your teaching assistant concerning the proper operation of the Sartorius BP 210S

More information

Coursework B. Sample Investigation Title

Coursework B. Sample Investigation Title Coursework B Sample Investigation Title Qualitatively investigate the effectiveness of three methods of preventing an object containing iron from corrosion 1 Report Preparation Worksheet 1. Introduction

More information

MOISTURE (Karl Fischer, Buffered)

MOISTURE (Karl Fischer, Buffered) MOIST.03-1 MOISTURE (Karl Fischer, Buffered) PRINCIPLE SCOPE The sample is dissolved in a mixture of methanol and formamide (50:50 v/v) and then titrated with standardized Karl Fischer reagent. The titration

More information

Standard Test Procedures Manual

Standard Test Procedures Manual STP 205-13 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test This method describes the procedure for determining the relationship between the moisture and density of fine-grained

More information

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT.

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. September 1, 2003 CONCRETE MANUAL 5-694.300 MIX DESIGN 5-694.300 NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. 5-694.301

More information

KWANG SING ENGINEERING PTE LTD

KWANG SING ENGINEERING PTE LTD KWANG SING ENGINEERING PTE LTD 1. INTRODUCTION This report represents the soil investigation works at Aljunied Road / Geylang East Central. The objective of the soil investigation is to obtain soil parameters

More information

PHYSICAL AND PLASTICITY CHARACTERISTICS

PHYSICAL AND PLASTICITY CHARACTERISTICS 0 PHYSICAL AND PLASTICITY CHARACTERISTICS EXPERIMENTS #1-5 CE 3143 October 7, 2003 Group A David Bennett 1 TABLE OF CONTENTS 1. Experiment # 1: Determination of Water Content (August 26, 2003) pp. 1-3

More information

THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF MATERIALS USING THE VIBRATORY HAMMER COMPACTION

THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF MATERIALS USING THE VIBRATORY HAMMER COMPACTION THE DETERMINATION OF THE MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT OF MATERIALS USING THE VIBRATORY HAMMER COMPACTION 1. SCOPE The maximum dry density and optimum moisture content, as defined below,

More information

Standard Test Procedures Manual

Standard Test Procedures Manual STP 204-2 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test The method described is a procedure used to determine the asphalt content of asphaltaggregate mixtures. 1.2. Application

More information

Grammage of paper and paperboard (weight per unit area) (Revision of T 410 om-08) (underscores and strikeouts indicate changes from Draft 1)

Grammage of paper and paperboard (weight per unit area) (Revision of T 410 om-08) (underscores and strikeouts indicate changes from Draft 1) NOTICE: This is a DRAFT of a TAPPI Standard in ballot. Although available for public viewing, it is still under TAPPI s copyright and may not be reproduced or distributed without permission of TAPPI. This

More information

GUIDELINE FOR HAND HELD SHEAR VANE TEST

GUIDELINE FOR HAND HELD SHEAR VANE TEST GUIDELINE FOR HAND HELD SHEAR VANE TEST NZ GEOTECHNICAL SOCIETY INC August 2001 CONTENTS Page 1.0 Introduction 2 2.0 Background 2 3.0 Recommended Practice 3 4.0 Undrained Shear Strength 3 5.0 Particular

More information

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 (11)

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 (11) SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 (11) MATERIALS FINER THAN 75 µm (No. 200) SIEVE IN MINERAL AGGREGATE BY WASHING FOP FOR AASHTO T 11 (11) Scope Sieve analysis determines

More information

Standard Test 1. SCOPE. 1.1. Description of Test

Standard Test 1. SCOPE. 1.1. Description of Test STP 206-9 Standard Test Section: Procedures Manual 1. SCOPE 1.1. Description of Test This test covers the determination of the approximate percentage of lightweight pieces in aggregate by means of sink-float

More information

EXPERIMENT 10 CONSTANT HEAD METHOD

EXPERIMENT 10 CONSTANT HEAD METHOD EXPERIMENT 10 PERMEABILITY (HYDRAULIC CONDUCTIVITY) TEST CONSTANT HEAD METHOD 106 Purpose: The purpose of this test is to determine the permeability (hydraulic conductivity) of a sandy soil by the constant

More information

What is a Terrarium? Supplies Choosing your container Choosing your plants Building Your Terrarium

What is a Terrarium? Supplies Choosing your container Choosing your plants Building Your Terrarium What is a Terrarium? A terrarium is a collection of small plants growing in a transparent, sealed container. A terrarium is a closed environment, and can actually be used to illustrate how an ecosystem

More information

Determination of Thermal Conductivity of Coarse and Fine Sand Soils

Determination of Thermal Conductivity of Coarse and Fine Sand Soils Proceedings World Geothermal Congress Bali, Indonesia, - April Determination of Thermal Conductivity of Coarse and Fine Sand Soils Indra Noer Hamdhan 1 and Barry G. Clarke 2 1 Bandung National of Institute

More information

Commonwealth of Pennsylvania PA Test Method No. 632 Department of Transportation October 2013 5 Pages LABORATORY TESTING SECTION. Method of Test for

Commonwealth of Pennsylvania PA Test Method No. 632 Department of Transportation October 2013 5 Pages LABORATORY TESTING SECTION. Method of Test for Commonwealth of Pennsylvania PA Test Method No. 632 Department of Transportation 5 Pages LABORATORY TESTING SECTION Method of Test for TIME OF SETTING OF CONCRETE MIXTURES BY PENETRATION RESISTANCE 1.

More information

SPECIFIC GRAVITY OF COARSE AGGREGATE AASHTO T 85

SPECIFIC GRAVITY OF COARSE AGGREGATE AASHTO T 85 SPECIFIC GRAVITY OF COARSE AGGREGATE AASHTO T 85 GLOSSARY Absorption: The increase in weight due to water contained in the pores of the material. Bulk Specific Gravity (also known as Bulk Dry Specific

More information

Proper use of the Rebound Hammer Updated to reflect the changes to ASTM C805

Proper use of the Rebound Hammer Updated to reflect the changes to ASTM C805 CEMEX USA - Technical Bulletin 2.1 Proper use of the Rebound Hammer Updated to reflect the changes to ASTM C805 The Rebound Hammer has been around since the late 1940 s and today is a commonly used method

More information

Standard Test Procedures Manual

Standard Test Procedures Manual STP 240-6 Standard Test Procedures Manual Section: PENETRATION TEST & SPLIT- BARREL SAMPLING 1. SCOPE 1.1. Description of Test This method describes the standard penetration test using the split-barrel

More information

STANDARD OPERATING PROCEDURES

STANDARD OPERATING PROCEDURES Date: July 27, 2014 Author: Emily Barasa STANDARD OPERATING PROCEDURES METHOD FOR DETERMINATION OF ATTERBERG LIMITS AND LINEAR SHRINKAGE IN SOILS Contact Details: Telephone: +254 (20) 7224000/4235/4279/4163

More information

Construction. 3-part thixotropic epoxy patching mortar. Product Description. Tests

Construction. 3-part thixotropic epoxy patching mortar. Product Description. Tests Product Data Sheet Edition 05/12/2014 Identification no: 020204030010000044 Sikadur -41 CF Rapid 3-part thixotropic epoxy patching mortar Construction Product Description Uses Characteristics / Advantages

More information

Rajesh Swaminathan. March 13, 2005

Rajesh Swaminathan. March 13, 2005 Chemistry 12 IB Corrosion of Iron Rajesh Swaminathan March 13, 2005 1 Planning A 1.1 Aim The aim of the experiment is to investigate factors that affect the rate of corrosion of iron. More specifically,

More information

METHOD OF TEST FOR UNIT WEIGHT OF FRESH CONCRETE

METHOD OF TEST FOR UNIT WEIGHT OF FRESH CONCRETE STATE OF CALIFORNIA BUSINESS, TRANSPORTATION AND HOUSING AGENCY DEPARTMENT OF TRANSPORTATION DIVISION OF ENGINEERING SERVICES Transportation Laboratory 5900 Folsom Blvd. Sacramento, California 95819-4612

More information

Making a Terrarium. fairchild tropical botanic garden 1

Making a Terrarium. fairchild tropical botanic garden 1 Making a Terrarium What is a Terrarium? A terrarium is a collection of small plants growing in a transparent, sealed container. A terrarium is a closed environment, and can actually be used to illustrate

More information

COMPACTING BITUMINOUS SPECIMENS USING THE SUPERPAVE GYRATORY COMPACTOR (SGC)

COMPACTING BITUMINOUS SPECIMENS USING THE SUPERPAVE GYRATORY COMPACTOR (SGC) Test Procedure for COMPACTING BITUMINOUS SPECIMENS USING THE SUPERPAVE TxDOT Designation: Tex-241-F Effective Date: December 2015 1. SCOPE 1.1 Use this test method to: compact cylindrical specimens of

More information

Standard Operating Procedure for the Determination of Total and Total Dissolved Solids CCAL 13A.2

Standard Operating Procedure for the Determination of Total and Total Dissolved Solids CCAL 13A.2 Standard Operating Procedure for the Determination of Total and Total Dissolved Solids CCAL 13A.2 Cooperative Chemical Analytical Laboratory College of Forestry Oregon State University 321 Richardson Hall

More information

LAB 24 Transpiration

LAB 24 Transpiration Name: AP Biology Lab 24 LAB 24 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences

More information

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer

product manual HS-4210 HS-4210_MAN_09.08 Digital Static Cone Penetrometer HS-4210_MAN_09.08 product manual HS-4210 Digital Static Cone Penetrometer Introduction This Manual covers the measurement of bearing capacity using the Humboldt Digital Static Cone Penetrometer (DSCP).

More information

POPCORN 2005, 2004, 1997 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright is included.

POPCORN 2005, 2004, 1997 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright is included. POPCORN 2005, 2004, 1997 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright is included. According to The Popcorn Board, Americans today consume

More information

Assembly of LPCC Packages AN-0001

Assembly of LPCC Packages AN-0001 Assembly of LPCC Packages AN-0001 Surface Mount Assembly and Handling of ANADIGICS LPCC Packages 1.0 Overview ANADIGICS power amplifiers are typically packaged in a Leadless Plastic Chip Carrier (LPCC)

More information

HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included.

HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included. HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included. OBJECTIVE In this experiment, the properties of a hydrated compound

More information

SECTION 623 CONCRETE BONDING COMPOUND, EPOXY MORTAR AND EPOXY POLYMER CONCRETE OVERLAY SECTION 623.10 CONCRETE BONDING COMPOUND.

SECTION 623 CONCRETE BONDING COMPOUND, EPOXY MORTAR AND EPOXY POLYMER CONCRETE OVERLAY SECTION 623.10 CONCRETE BONDING COMPOUND. SECTION 623 CONCRETE BONDING COMPOUND, EPOXY MORTAR AND EPOXY POLYMER CONCRETE OVERLAY SECTION 623.10 CONCRETE BONDING COMPOUND. 623.10.1 Description. This work shall consist of preparing the surface,

More information

Steam Sterilization Cycles for Lab Applications

Steam Sterilization Cycles for Lab Applications Steam Sterilization Cycles for Lab Applications Presented by Gary Butler STERIS Life Sciences August 2009 Early Steam Sterilizers Koch Upright Sterilizer First Pressurized Sterilizer First built by Pasteur-Chamberlain

More information

Solids, Volatile Dissolved and Fixed Dissolved

Solids, Volatile Dissolved and Fixed Dissolved , 8277 Solids, Volatile Dissolved and Fixed Dissolved Gravimetric Method 1 Scope and Application: For wastewater. 1 Adapted from Standard Methods for the Examination of Water and Wastewater DOC316.53.001206

More information

1. The Determination of Boiling Point

1. The Determination of Boiling Point 1. The Determination of Boiling Point Objective In this experiment, you will first check your thermometer for errors by determining the temperature of two stable equilibrium systems. You will then use

More information

Soil Testing Soil index properties 24. Cone Penetrometer Method BS 1377, 1924-2, EN DD ENV 1997-2. Semi-Automatic Cone Penetrometer

Soil Testing Soil index properties 24. Cone Penetrometer Method BS 1377, 1924-2, EN DD ENV 1997-2. Semi-Automatic Cone Penetrometer 24 Soil index properties Soil Index Properties Soil index properties are used extensively by engineers to discriminate between the different kinds of soil within a broad category, e.g. clay will exhibit

More information

PAINT REMOVAL SYSTEM PAINT REMOVAL SPECIFICATION SAFE WORK METHOD STATEMENT FOR LEAD PAINT REMOVAL

PAINT REMOVAL SYSTEM PAINT REMOVAL SPECIFICATION SAFE WORK METHOD STATEMENT FOR LEAD PAINT REMOVAL PAINT REMOVAL SYSTEM PAINT REMOVAL SPECIFICATION SAFE WORK METHOD STATEMENT FOR LEAD PAINT REMOVAL CONTENTS: 1.0 AWARENESS AND PRECAUTION 2.0 TEST SAMPLING & REMOVAL EVALUATION 3.0 SITE EVALUATION 4.0

More information

Determination of Insoluble Solids in Pretreated Biomass March 2008 Material

Determination of Insoluble Solids in Pretreated Biomass March 2008 Material National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Determination of Insoluble Solids

More information

Treatment of a surface or structure to resist the passage of water in the absence of hydrostatic pressure. presence of hydrostatic pressure.

Treatment of a surface or structure to resist the passage of water in the absence of hydrostatic pressure. presence of hydrostatic pressure. Recommend Approval: Team Leader Date Division Chief Date Approved: Director Date Maryland Department of Transportation State Highway Administration Office of Materials Technology MARYLAND STANDARD METHOD

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS

METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS Laboratory Testing Manual Date: 99 06 21 Page 1 of 7 METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS 1. SCOPE 1.1 This method covers the determination of the coefficient of permeability

More information

Microwave Rice Maker

Microwave Rice Maker Microwave Rice Maker CONTENT Microwave Rice Maker How does the cover work? Why is it better? Preparation Cooking Serving Tips Precautions Assembly In a Nutshell General Information Microwave Rice Maker

More information

ARDEX GUIDE SPECIFICATION ARDEX Exterior Concrete Repair & Resurfacing Polymer-Modified, Cement-Based, Patch & Horizontal Overlay Materials

ARDEX GUIDE SPECIFICATION ARDEX Exterior Concrete Repair & Resurfacing Polymer-Modified, Cement-Based, Patch & Horizontal Overlay Materials ARDEX GUIDE SPECIFICATION ARDEX Exterior Concrete Repair & Resurfacing Polymer-Modified, Cement-Based, Patch & Horizontal Overlay Materials SECTION 03 92 50 PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings,

More information

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

More information

Knowledge Domain: Plumbing Unit: Leaking Skill: Epoxy

Knowledge Domain: Plumbing Unit: Leaking Skill: Epoxy Knowledge Domain: Plumbing Unit: Leaking Skill: Epoxy Tools and Parts Required: 1) Jar 2) Oversized lid 3) Epoxy 4) Rubber tube 5) Soapy water 6) Safety goggles 7) Latex gloves 8) Scrap stick to mix epoxy

More information

Standard Test Procedures Manual

Standard Test Procedures Manual STP 206-1 Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test 2. APPARATUS This method describes the procedure for determining the relationship between the particle size distribution

More information

FEDERAL SPECIFICATION BEADS (GLASS SPHERES) RETRO-REFLECTIVE

FEDERAL SPECIFICATION BEADS (GLASS SPHERES) RETRO-REFLECTIVE INCH-POUND TT-B-1325D 10 July 2007 SUPERSEDING TT-B-1325C June 1, 1993 FEDERAL SPECIFICATION BEADS (GLASS SPHERES) RETRO-REFLECTIVE The General Services Administration has authorized the use of this federal

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

FOREWORD. The Plastics Pipe Institute. This Technical Note, TN-30, was first issued in January 2006 and was revised and republished in September 2013.

FOREWORD. The Plastics Pipe Institute. This Technical Note, TN-30, was first issued in January 2006 and was revised and republished in September 2013. Requirements for the Use of Rework Materials in Manufacturing of Polyethylene Gas Pipe TN-30/2013 105 Decker Court, Suite 825, Irving, TX 75062 P: 469-499-1044 F: 469-499-1063 www.plasticpipe.org FOREWORD

More information

FIELD SAMPLING AND TESTING MANUAL TESTING PROCEDURES FOR ALL TESTS

FIELD SAMPLING AND TESTING MANUAL TESTING PROCEDURES FOR ALL TESTS FIELD SAMPLING AND TESTING MANUAL TESTING PROCEDURES FOR ALL TESTS Intentionally Left Blank TESTING PROCEDURES FOR ALL TESTS TABLE OF CONTENTS ND T 2 ND T 11 ND T 23 ND T 27 ND T 84 ND T 85 ND T 87 ND

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers

Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers International Journal of Materials Engineering 12, 2(1): 7-11 DOI: 1.923/j.ijme.11.2 Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers Venu Malagavelli *, Neelakanteswara

More information

S.3.6. BULK DENSITY AND TAPPED DENSITY OF POWDERS. Final text for addition to The International Pharmacopoeia

S.3.6. BULK DENSITY AND TAPPED DENSITY OF POWDERS. Final text for addition to The International Pharmacopoeia March 2012 S.3.6. BULK DENSITY AND TAPPED DENSITY OF POWDERS Final text for addition to The International Pharmacopoeia This monograph was adopted at the Forty-sixth WHO Expert Committee on Specifications

More information

TECHNICAL DATA SHEET GRILON BG-15 S

TECHNICAL DATA SHEET GRILON BG-15 S TECHNICAL DATA SHEET GRILON BG-1 S Grilon BG-1 S is a heat stabilised PA6 injection moulding grade with 1% glass fibres. Grilon BG-1 S has the following important properties: Excellent surface finish Easy

More information

Trench Rescue by Buddy Martinette

Trench Rescue by Buddy Martinette Trench Rescue by Buddy Martinette SOIL TYPE AND TESTING It is imperative that rescue personnel understand soil types and testing procedures if the want to be competent at trench rescue operations. Determining

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

Relative Humidity Calibration Kit

Relative Humidity Calibration Kit Revised 6.8.12 Relative Humidity Calibration Kit For Calibrating All RH Measuring Kestrel Meters Model Numbers 3000, 3500, 4000, 4200, 4250, 4300, 4400, 4500 2011 Nielsen-Kellerman Co. While the calibration

More information

Manufacturing Quality Concrete Products

Manufacturing Quality Concrete Products CEMEX USA - Technical Bulletin 8.0 Manufacturing Quality Concrete Products Establishing or Upgrading a Quality Program Overview The following guidelines were developed for MCP (manufactured concrete products)

More information

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 888 PORTLAND CEMENT CONCRETE PAVEMENT USING QC/QA.

STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 888 PORTLAND CEMENT CONCRETE PAVEMENT USING QC/QA. STATE OF OHIO DEPARTMENT OF TRANSPORTATION SUPPLEMENTAL SPECIFICATION 888 PORTLAND CEMENT CONCRETE PAVEMENT USING QC/QA October 21, 2011 888.01 General 888.02 Materials 888.03 Concrete Proportioning 888.04

More information

LABORATORY II. PLASTICITY - Atterberg limits. w L - Cone test, Cassagrande test

LABORATORY II. PLASTICITY - Atterberg limits. w L - Cone test, Cassagrande test LABORATORY II. PLASTICITY - Atterberg limits w L - Cone test, Cassagrande test Consistency - limits I P w L w P Is plasticity important? Smectite Structure Tetrahedral layer Octahedral layer Tetrahedral

More information

Standard Operating Procedure for Cleaning Nylon Filters Used for the Collection of PM 2. 5 Material

Standard Operating Procedure for Cleaning Nylon Filters Used for the Collection of PM 2. 5 Material PM 2.5 Nylon Filter Cleaning Date: August 25,2009 Page I of8 Standard Operating Procedure for Cleaning Nylon Filters Used for the Collection of PM 2. 5 Material Environmental and Industrial Sciences Division

More information

STANDARD OPERATING PROCEDURE S (SOP S) FOR HAZARDOUS ANALYSIS CRITICAL CONTROL POINT (HACCP) PLANS

STANDARD OPERATING PROCEDURE S (SOP S) FOR HAZARDOUS ANALYSIS CRITICAL CONTROL POINT (HACCP) PLANS STANDARD OPERATING PROCEDURE S (SOP S) FOR HAZARDOUS ANALYSIS CRITICAL CONTROL POINT (HACCP) PLANS RECEIVING: All food must be from approved sources. Foods must be wholesome and not adulterated. No home-prepared

More information

Virginia Gardener http://www.hort.vt.edu/envirohort

Virginia Gardener http://www.hort.vt.edu/envirohort The Virginia Gardener http://www.hort.vt.edu/envirohort Name Help Sheets: Seeds What Is a Seed? A seed is a very young plant that is in the dormant, or resting stage. It is very much alive. There are three

More information

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION JEDEC STANDARD Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing JESD22-A113D (Revision of JESD22-A113C) AUGUST 2003 JEDEC SOLID STATE TECHNOLOGY ASSOCIATION NOTICE JEDEC

More information

NEW ELECTRICAL SUBSTATION Building 300 SECTION 07 53 23 ETHYLENE-PROPYLENE-DIENE-MONOMER ROOFING WORK

NEW ELECTRICAL SUBSTATION Building 300 SECTION 07 53 23 ETHYLENE-PROPYLENE-DIENE-MONOMER ROOFING WORK ETHYLENE-PROPYLENE-DIENE-MONOMER ROOFING WORK PART 1 GENERAL 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to within

More information

Harvesting, Drying, and Storing Malting Barley

Harvesting, Drying, and Storing Malting Barley Harvesting, Drying, and Storing Malting Barley To Get Market Premiums Maltsters will pay premiums for malting barley that has been harvested in good condition and stored properly. Bright barley with good

More information

Standard Test Methods for Carbon Black Surface Area by Multipoint B.E.T. Nitrogen Adsorption 1

Standard Test Methods for Carbon Black Surface Area by Multipoint B.E.T. Nitrogen Adsorption 1 Designation: D 4820 99 Standard Test Methods for Carbon Black Surface Area by Multipoint B.E.T. Nitrogen Adsorption 1 This standard is issued under the fixed designation D 4820; the number immediately

More information

SEM-COM SEALING GLASSES. SEM-COM Company, Inc. 1040 N. Westwood Ave. Toledo, Ohio 43607

SEM-COM SEALING GLASSES. SEM-COM Company, Inc. 1040 N. Westwood Ave. Toledo, Ohio 43607 SEM-COM SEALING GLASSES SEM-COM Company, Inc. 1040 N. Westwood Ave. Toledo, Ohio 43607 Phone : (419) 537-8813 Fax: (419) 537-7054 e-mail: sem-com@sem-com.com www.sem-com.com SEM-COM SEALANTS SEM-COM has

More information

Scotch-Weld TM. Acrylic Adhesives. DP8405NS Green. Product Data Sheet. Date: March 2014 Supersedes: August 2013

Scotch-Weld TM. Acrylic Adhesives. DP8405NS Green. Product Data Sheet. Date: March 2014 Supersedes: August 2013 Scotch-Weld TM Product Data Sheet Acrylic Adhesives Date: Supersedes: August 2013 Product Description 3M TM Scotch-Weld Acrylic Adhesives are high performance, twopart acrylic adhesives that offer good

More information

Standard Test Method for Water in Petroleum Products and Bituminous Materials by Distillation 1

Standard Test Method for Water in Petroleum Products and Bituminous Materials by Distillation 1 Designation: D 95 99 e1 An American National Standard American Association State Highway Transportation Standard AASHTO No. T55 Designation: Manual of Petroleum Measurement Standards (MPMS), Chapter 10.5

More information

Technical Data SeaQueen

Technical Data SeaQueen Technical Data SeaQueen Product description Antifouling SeaQueen is a tin free self-polishing antifouling based on a copolymer binder. IMO Anti-fouling System Convention compliant (AFS/CONF/26). Recommended

More information

Module 1: History of Fuels. Lecture 6: Fundamental definitions, properties and various measurements

Module 1: History of Fuels. Lecture 6: Fundamental definitions, properties and various measurements 1 P age Module 1: History of Fuels Lecture 6: Fundamental definitions, properties and various measurements 2 P age Keywords: Characterisation, analytical methods, standards 1.3 Fundamental definitions,

More information

How To Test A Base Axe

How To Test A Base Axe Scotch-Weld DP760 Product Data Sheet Updated : February 2009 Supersedes: June 2001 Product Description DP760 epoxy adhesive is a non-sag, two-part room temperature curing adhesive designed for use when

More information

RAUFOSS EXPLOSIVE COMPRESSION FITTINGS

RAUFOSS EXPLOSIVE COMPRESSION FITTINGS INSTRUCTION MANUAL FOR RAUFOSS EXPLOSIVE COMPRESSION FITTINGS Box 7 2831 Raufoss Norway Tlf.: +47 61 15 17 87 Fax: +47 61 15 25 56 25 January 2013, rev 2 Available on www.vpmetall.no Page 1 CONTENTS GENERAL

More information

SCREEN PRINTING INSTRUCTIONS

SCREEN PRINTING INSTRUCTIONS SCREEN PRINTING INSTRUCTIONS For Photo-Imageable Solder Masks and Idents Type 5600 Two Part Solder Masks and Idents Mega Electronics Ltd., Mega House, Grip Industrial Estate, Linton, Cambridge, ENGLAND

More information

LAYING BLOCK AND BRICK

LAYING BLOCK AND BRICK LAYING BLOCK AND BRICK Products highlighted in this section: SAKRETE Type N Mortar Mix SAKRETE Type S Mortar Mix Brick And Block Laying Basics The first step in building a brick or block wall is to construct

More information

Math Matters: Dissecting Hydrometer Calculations

Math Matters: Dissecting Hydrometer Calculations Math Matters: Dissecting Hydrometer Calculations By Jonathan Sirianni, Laboratory Assessor In the 16th century Galileo and the Tower of Pisa made famous the fact that two objects, no matter their mass,

More information

Material test chamber with mechanical convection

Material test chamber with mechanical convection FP series 400 Material test chambers Material test chamber with mechanical convection A BINDER material test chamber with mechanical convection of the FP series provides reliably short drying times and

More information