Electrical EngineeringCE

Size: px
Start display at page:

Download "Electrical EngineeringCE"

Transcription

1 Electrical EngineeringCE ELECTRICAL and COMPUTER ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite and all core and technical elective courses used for credit towards the B.Sc.E. degree. NOTE: Not all technical electives are offered every year. Please check with the ECE Department and/or the online timetable. ECE 1813 Electricity and Magnetism 4 ch (3C 1T 2L) An introduction to the fundamentals of electricity and magnetism and applications. Covers concepts of charge, voltage, current, power, energy, electric and magnetic fields, and the electromagnetic spectrum. Includes resistors, resistance, Ohm s law, Kirchhoff s voltage and current laws, some electrical properties of materials. Electric sources, simple series, parallel, and series-parallel DC circuits and branch current analysis are examined. The basic concepts of digital switching logic are introduced, including gates and truth tables. Energy conversion and simple electric machines are examined. The behaviour and use of common sensors and transducers are discussed. Prerequisite: two years of high school physics. Corequisite: MATH ECE 2213 Digital Systems 4 ch (3C 2L) Introduces the design of digital systems, including basic design concepts and implementation technology, number representations, synthesis of combinational and sequential logic, and the use of HDL and computer-based design tools. Prerequisites: CS 1003 or CS 1073 or equivalent. Recommended ECE 1813 or EE ECE 2412 Simulation and Engineering Analysis 4 ch (3C 1.5L) An introduction to modeling and numerical methods as applied in the solution of engineering problems. The solution of nonlinear equations, polynomials, curve fitting, numerical integration and difference equations. Simulation tools such as MATLAB will be used. Prerequisites: CS 1003 or CS 1073 or equivalent; ECE 1813 or EE 1813 or equivalent; MATH 1013 ;MATH 1503 or equivalent. ECE 2683 Electric Circuits and Machines (for non electricals) Network analysis including AC. Introduction to transformers, DC machines and AC machines. Cannot be used for credit by students in the Electrical Engineering and Computer Engineering programs. Prerequisites: ECE 1818 or EE 1813 or equivalent, MATH 1013, MATH ECE 2701 Electric Circuits and Electronics (for non-electricals) Network analysis including AC. Introduction to electronic devices, circuits, and motors. Cannot be used for credit by students in the Electrical Engineering and Computer Engineering programs. Prerequisites: ECE 1813 or EE1813 or equivalent, MATH 1013, MATH ECE 2711 Electric Circuits Basic DC circuits: Network analysis and theorems. AC circuits: introduction of phasors,

2 Network analysis and theorems applied to AC circuits. Prerequisites: MATH 1013, ECE1813 or EE 1813 or equivalent. ECE 2722 Circuits and Systems Network analysis. Transient and steady state responses. Transfer functions, complex frequencies, poles and zeros, Laplace Transforms. Frequency Response and Bode Plots. Filters (passive and active). Prerequisites: ECE 2711 or EE 2711 andmath 1503 or equivalent. Corequisite: MATH 3503 or equivalent. ECE 3031 Electrical and Computer Engineering Design The emphasis is on application of design methodologies to electrical and computer engineering design problems in some major areas of Electrical Engineering. Topics include: design specifications and requirements, simulation and construction, laboratory measurement techniques, design verification, the implementation cycle, environmental impact, project management, economic evaluation and safety assessment. One or more design projects form an integral part of the course. Prerequisites: ECE 2722 or EE 2722, ECE 2213 or CMPE 2213, ECE 2412 or CMPE 2412, ENGG 1001, ENGG 1003, ENGG Co-requisite: ECE 3111 or EE ECE 3111 Electronics I An introduction to analog electronics using a device-based approach. The course starts with basic nomenclature and the ideal amplifier model concept. Semiconductor diodes, BJTs and MOSFETs are then introduced followed by how these devices can be used to implement single-stage small-signal amplifiers. To compliment this overall analog approach, the use of both BJTs and MOSFETs in digital logic gates is also covered which in turn introduces the concept of noise margins. Prerequisite: ECE 2711 or EE 2711 or ECE 2701 or EE ECE 3122 Electronics II This course follows a similar approach to Electronics I ( ECE 3111 ), however in this more advanced course, the ideal devices introduced earlier are replaced with real devices. The overall theme of this course is frequency response and feedback techniques as applied to small-signal amplifiers. In addition, circuit modeling using a computer is introduced and used as a design aid. Prerequisite: ECE 2722 or EE 2711, ECE 3111 or EE ECE 3213 Advanced Software Engineering The methods and tools of software engineering applicable to engineering systems (such as real time or embedded systems) are considered with engineering emphasis. Topics include design tools and techniques, project management, requirements definition, specifications, testing, verification and validation, maintenance for the engineering system context. Prerequisite: CS ECE 3221 Computer Organization Register transfer systems and datapaths, microprocessors, microprocessor architecture and operation, instruction formats, assembly language programming, procedures and parameter passing, system bus timing, interfacing memory IO ports, serial and parallel data transfer, interrupts. Prerequisites: ECE 2213 or CMPE 2213 ; CS 1023 or CS ECE 3232 Embedded Systems Design 4 ch (3c 2L) A hardware oriented course with emphasis on the components and techniques used in the design of embedded systems. Topics include system design and methodologies and techniques, microcontroller hardware design, software design using C, testing and implementation. A team project will be used to provide the opportunity to apply the content of this course to the development of an embedded application. Most lecture material will be delivered in the context of this project. Prerequisite: CS1023 or CS1083; ECE 3221 or CMPE

3 3221. ECE 3242 Computer Architecture Important aspects of computer architecture will be covered with a unifying theme of computer system performance. Topics include computer evolution, system busses, main memory, cache memory, memory management, CPU structure, CPU pipelining, superscalar processors, reduced instruction set computers, 64-but processors, and parallel processing architectures. Prerequisite: ECE 3221 or CMPE ECE 3312 Systems and Control Mathematical models of dynamic systems, linear systems, analysis in the time and frequency domain, stability, Routh-Hurwitz and Nyquist stability criteria, feedforward and feedback control, PID controllers, principles of feedback design. Prerequisites: ECE 2722 or EE 2722, MATH 3503, ENGG ECE 3511 Signals 4 ch (3C 1T 1.5*L) Signal theory. Discrete-time (DT) and continuous-time (CT) signals. Power and energy signals. Linear time-invariant transformations and the convolution integral/sum. DT and CT Fourier Series, DT and CT Fourier Transforms and their properties. Power/energy spectrum. Sampling Theory. The Discrete Fourier Transform. Prerequisite: ECE 2722 or EE 2722and MATH Co-requisite: STAT ECE 3612 Electric Machines and Design in Sustainable Energy Systems 4 ch (3C 1T 2L) Covers the basic theory of, transformers, DC motors/generators and AC polyphase machines, including synchronous and induction machines. This material is augmented with the application and design of such machines utilized in Sustainable Energy systems. Prerequisites: ENGG 1082, MATH 2513, ECE 2711 or EE ECE 3812 Data Communications and Networking (O) Data transmission fundamentals including signal encoding, error control, flow controls, multiplexing, switching. Protocol architectures (OS, TCP/IP). Network protocols peer to peer, medium access control, routing. Local area networks: Ethernet, wireless. Prerequisites: ECE 3221 or CMPE 3221., and ECE 3232 and CMPE ECE 3821 Electromagnetics I (4 ch 3C 1T 1.5L) Transmission lines, wave equation, Maxwell s equations, uniform plane waves, radiated waves, safety standards, introduction to antennas and propagation. Prerequisites: MATH 3503, MATH 2513, ECE 2711 or EE ECE 3832 Electromagnetics II (4 ch 3C 1T 1.5L) Electrostatics, magnetostatics, material properties, Smith chart, waveguides (including optical), antennas, and radar. Prerequisite: ECE 3821 or EE ECE 4040 Electrical and Computer Engineering Design Project 7 ch (1*C 6L) [W] Working in teams, students will complete an electrical engineering design project that draws on their knowledge and skills obtained in previous courses. Student teams will design a structure, system, or process to meet a broad range of specified constraints. The development process should consider a broad range of constraints including health and safety, sustainable development and environmental stewardship. Students will manage their projects professionally, prepare a comprehensive written report, and present their design

4 work orally. Prerequisites: ECE 3111 or EE 3111, ECE 3312 or EE 3312, ECE 2412 or CMPE 2412, ECE 3221 or CMPE 3221, CMPE 3312, ECE 2213 or CMPE 2213, CS 1023 or CS 1083, and one of ECE 3511 or EE 3511, or ECE 3612, or ECE 3821 or EE 3821, or ECE 3242 or CMPE ECE 4133 Instrumentation Design This course considers the design of a general-purpose data acquisition system. The electronic design engineer of today can no longer be thought of as a digital or analog designer. Consequently, this course melds the analog and digital electronics areas with a unified engineering approach emphasizing the practical aspects involved. Computer aided design tools are used wherever possible. Prerequisites: EE 3122 or EE 3122, ECE 3221 or CMPE ECE 4143 Electronic Circuit Design (O) Considers the philosophy and practice of the design of semiconductor circuits. Prerequisite: ECE 3122 or EE ECE 4173 Devices and Circuits for VLSI ) Introduction to circuit design and layout. Basic digital gates and clocked systems. Basic RF circuits and components and devices for RF. CAD tools for simulation and layout. Prerequisites: ECE 2213 or CMPE 2213 and ECE 3122 or EE ECE 4251 Real Time Systems (O) 4 ch (3C 2L) Real time system design and implementation: basic concurrency theory including scheduling, mutual exclusion and process management, task synchronization and communication, operating system kernels, real time system hardware, software for real time embedded systems. Prerequisite: ECE 3232 or CMPE ECE 4253 Digital Communications (O) Covers the fundamentals of digital communications, coding and modulation techniques, telecommunications, modems and modern applications, and current international standards. Prerequisites: ECE 3221 or CMPE 3221 ; ECE 3511 or ECE ECE 4261 Digital Systems Design (O) Advanced study of the digital system design methodology. Design methods, models and approaches including: RTL Design, SOC design, and testing methodologies, Intellectual Property (IP), reuse, software-hardware co-design, hardware description languages (HDL), structural and behavioral models, design for low power. One or more design projects. Prerequisites: ECE 3232 or CMPE ECE 4273 VLSI Systems Design (O) Methods and tools for the design of FPGA-based digital circuits with focus on large-scale systems, i.e. digital signal and arithmetic processors, microcomputers. VLSI design process, standards, constraints, implementation, technology-dependent optimization, simulation, testing, and verification. Multi-FPGA systems. FGPA-based peripheral devices. One or more design projects. Prerequisites: ECE 4261 or CMPE ECE 4323 Industrial Control Systems Introduces the industrial context for the application of control theory, including system modeling and problem definition, determining system components and architectures, dealing with limitations and constraints (nonlinearity, disturbances), standard and advanced controls design and tuning methods. Computer-aided controls engineering is emphasized

5 (algorithms/matlab). Prerequisites: ECE 3312 or EE 3312 or CHE 4601 or ME ECE 4333 Robotics (O) This is a project based course where students design a variety of subsystems that are integrated and tested on a mobile robot. Topics include: actuators, PWM, H-bridges, position and range sensors, velocity sensors, optical sensors and switches, strain gauges, position and velocity control, electro-mechanical subsystems, planning and trajectory generation, computer software and hardware interfacing. Prerequisites: ECE 3221 or CMPE 3221 or equivalent, ECE 3312 or EE 3312or equivalent. ECE 4433 Safety Critical System Design (O) This elective covers the reliability, availability and fault tolerance of computer systems. It introduces topics related to fault-tolerant computing reliability of hardware and software implementation of engineering systems. It includes fail-safe and fail-operate computer systems design, qualitative analysis of safety-critical systems, risk analysis, fault tolerance techniques, repairability, and redundancy. Prerequisite: STAT 2593 and ECE 3312 or EE ECE 4523 Communication Systems Introduces analog and digital communication in the presence of noise. Techniques and application of basic information theory. Prerequisite: ECE 3511 or EE ECE 4531 Digital Signal Processing I Network function specifications, sampling, z-transforms. Digital filters; representation, types, realizations, functions from impulse and frequency responses. Prerequisites: ECE 2213 or CMPE 2213, ECE 3511 or EE ECE 4542 Digital Signal Processing II Fourier Methods, Fast Fourier Transform, Filter design, Windows, State Variable Methods, Estimation. Prerequisite: ECE 4531 or EE ECE 4623 Advanced Electrical Machines (O) Covers principles of operation, controls and applications of single phase induction motors, permanent magnet machines including permanent magnet synchronous machines and brushless DC motors, servo motors, and other special electrical machines. Prerequisite: ECE 3612 or EE ECE 4633 Power System Analysis (O) Introduces many components of a power system. Prerequisites: ECE 3612 or EE 3612, ECE 2722 or EE 2722 or ECE 3312or EE ECE 4643 Power Electronics (O) Deals with high current rectifiers and inverters. Design parameters and practical firing circuits are analyzed. Prerequisites:ECE 3111 or EE 3111, ECE 3612 or EE ECE 4823 Communications and Network Engineering (O) Advanced network architectures: RSVP, MLPS, RTP. Modeling and simulation of data networks: queing models for media access, error control and traffic management protocols, modeling of traffic and inter-arrival time, performance analysis. Network protocol design. Network management and security. Prerequisites: MATH 2512 ; ECE 3812 or CMPE ECE 4833 Microwave Engineering (O)

6 Topics related to modern microwave systems including design and measurement of passive microwave circuits. Prerequisite: ECE 3822 or EE ECE 4843 Optical Fiber Communications (O) Optical fibers: properties, structure and fabrication. Ray optic and electromagnetic characterizations: modes, waves, power launching and coupling. System design, applications and economics. Prerequisite: ECE 3821 or EE 3821 or ECE 3832 or EE ECE 4913 Independent Project (O) 4 ch (8L) [W] An independent project. Students work under the supervision of a chosen faculty member. Students are responsible for finding a supervisor and initiating the project. Deliverables include a comprehensive report detailing the work. Prerequisite: successful completion of 110 ch in the engineering program. ECE 4923 Introduction to Biomedical Engineering (O) Application of electrical engineering to living systems and to health care. Prerequisite: ECE 3111 or EE ECE 4933 Special Studies in Electrical Engineering With the approval of the Department Chair and under the guidance of a member of the faculty, a student may perform special studies and investigations related to the undergraduate program. Restricted to students in their final year of study. 1ch ECE 4943 Topics in Computer Engineering (O) A selected area of computer engineering with a unifying theme will be explored in depth. The topics covered are selected from one or more of the following areas: parallel processing, operating systems, concurrent system performance, network based parallel computing, embedded system issues, algorithms in real-time, computer system modeling analysis. Prerequisite: ECE 3232 or CMPE 3232.

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite

More information

BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16

BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 Freshman Year ENG 1003 Composition I 3 ENG 1013 Composition II 3 ENGR 1402 Concepts of Engineering 2 PHYS 2034 University Physics

More information

SECOND YEAR. Major Subject 3 Thesis (EE 300) 3 Thesis (EE 300) 3 TOTAL 3 TOTAL 6. MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING (MEng EE) FIRST YEAR

SECOND YEAR. Major Subject 3 Thesis (EE 300) 3 Thesis (EE 300) 3 TOTAL 3 TOTAL 6. MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING (MEng EE) FIRST YEAR MASTER OF SCIENCE IN ELECTRICAL ENGINEERING (MS EE) FIRST YEAR Elective 3 Elective 3 Elective 3 Seminar Course (EE 296) 1 TOTAL 12 TOTAL 10 SECOND YEAR Major Subject 3 Thesis (EE 300) 3 Thesis (EE 300)

More information

Electrical Engineering

Electrical Engineering 306 Electrical Engineering Paul Neudorfer, Ph.D., Chair Objectives Electrical engineering is concerned with the use of electrical energy for the benefit of society. The profession of electrical engineering

More information

DISTANCE DEGREE PROGRAM CURRICULUM NOTE:

DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall

More information

CSEN301 Embedded Systems Trimester 1

CSEN301 Embedded Systems Trimester 1 Victoria University of Wellington (VUW) course offering for NZ-EU Joint Mobility Project Novel Sensing Technologies and Instrumentation in Environmental Climate Change Monitoring 1. General The Victoria

More information

Coursework for MS leading to PhD in Electrical Engineering. 1 Courses for Digital Systems and Signal Processing

Coursework for MS leading to PhD in Electrical Engineering. 1 Courses for Digital Systems and Signal Processing work for MS leading to PhD in Electrical Engineering 1 s for Digital Systems and Signal Processing EE 801 Analysis of Stochastic Systems EE 802 Advanced Digital Signal Processing EE 80 Advanced Digital

More information

Metropolitan State University of Denver

Metropolitan State University of Denver ELECTRICAL ENGINEERING TECHNOLOGY Electrical Engineering Technology (EET) graduates have much of the know-why of the engineer and much of the knowhow of the technician. The EET curriculum combines theory

More information

NATIONAL SUN YAT-SEN UNIVERSITY

NATIONAL SUN YAT-SEN UNIVERSITY NATIONAL SUN YAT-SEN UNIVERSITY Department of Electrical Engineering (Master s Degree, Doctoral Program Course, International Master's Program in Electric Power Engineering) Course Structure Course Structures

More information

The syllabus applies to students admitted in the academic year 2014-15 and thereafter under the fouryear

The syllabus applies to students admitted in the academic year 2014-15 and thereafter under the fouryear COMPUTER ENGINEERING SYLLABUS The syllabus applies to students admitted in the academic year 2014-15 and thereafter under the fouryear curriculum. Definition and Terminology Each course offered by the

More information

M.S. in Electrical Engineering

M.S. in Electrical Engineering 1 M.S. in Electrical Engineering Degree Requirements Bridge Program Students who have earned a Bachelor of Science in Engineering Technology (B.S.E.T.) degree, or who lack an appropriate background may

More information

ENEE Electrical & Computer Engineering Summer 2015

ENEE Electrical & Computer Engineering Summer 2015 This printed version of the Schedule of Classes is current as of 12/14/15 10:19 PM. ENEE Electrical & Computer Engineering Summer 2015 ENEE200 Social and Ethical Dimensions of Engineering Technology Credits:

More information

A bachelor of science degree in electrical engineering with a cumulative undergraduate GPA of at least 3.0 on a 4.0 scale

A bachelor of science degree in electrical engineering with a cumulative undergraduate GPA of at least 3.0 on a 4.0 scale What is the University of Florida EDGE Program? EDGE enables engineering professional, military members, and students worldwide to participate in courses, certificates, and degree programs from the UF

More information

2. EXPLAIN CHANGE TO DEGREE PROGRAM AND GIVE A DETAILED RATIONALE FOR EACH INDIVIDUAL CHANGE:

2. EXPLAIN CHANGE TO DEGREE PROGRAM AND GIVE A DETAILED RATIONALE FOR EACH INDIVIDUAL CHANGE: PROPOSED CHANGES TO THE BACHELOR OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING DEGREE PROGRAM IN THE COCKRELL SCHOOL OF ENGINEERING CHAPTER IN THE UNDERGRADUATE CATALOG 2016-2018 or LAW SCHOOL CATALOG

More information

Depth and Excluded Courses

Depth and Excluded Courses Depth and Excluded Courses Depth Courses for Communication, Control, and Signal Processing EECE 5576 Wireless Communication Systems 4 SH EECE 5580 Classical Control Systems 4 SH EECE 5610 Digital Control

More information

Computer Science and Electrical Engineering

Computer Science and Electrical Engineering Department of Computer Science & Electrical Engineering Computer Science and Electrical Engineering Computer Science As a computer scientist, imagine creating the next search engine, the next social web

More information

MECE 102 Mechatronics Engineering Orientation

MECE 102 Mechatronics Engineering Orientation MECE 102 Mechatronics Engineering Orientation Mechatronic System Components Associate Prof. Dr. of Mechatronics Engineering Çankaya University Compulsory Course in Mechatronics Engineering Credits (2/0/2)

More information

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.

More information

The Emerging Trends in Electrical and Computer Engineering

The Emerging Trends in Electrical and Computer Engineering 18-200 Fall 2006 The Emerging Trends in Electrical and Computer Engineering Hosting instructor: Prof. Jimmy Zhu; Time: Thursdays 3:30-4:20pm; Location: DH 2210 Date Lecturer Lecture Contents L01 08/31

More information

ELECTRONICS AND COMMUNICATIONS ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis)

ELECTRONICS AND COMMUNICATIONS ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) ELECTRONICS AND COMMUNICATIONS ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) PREPARATORY PROGRAM* CEE 201 Electrical Circuits 3+0 4 6 CEE 202 Introduction to Control Systems 2+2 3 5 CEE

More information

Computer Engineering as a Discipline

Computer Engineering as a Discipline Computing Curriculum Computer Engineering Curriculum Report Chapter 2 Computer Engineering as a Discipline T his chapter presents some of the characteristics that distinguish computer engineering from

More information

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

What will I learn as an Electrical Engineering student?

What will I learn as an Electrical Engineering student? What will I learn as an Electrical Engineering student? Department of Electrical and Computer Engineering Tu5s School of Engineering Trying to decide on a major? Most college course descrip>ons are full

More information

List of courses MEngg (Computer Systems)

List of courses MEngg (Computer Systems) List of courses MEngg (Computer Systems) Course No. Course Title Non-Credit Courses CS-401 CS-402 CS-403 CS-404 CS-405 CS-406 Introduction to Programming Systems Design System Design using Microprocessors

More information

Computer Science. Master of Science

Computer Science. Master of Science Computer Science Master of Science The Master of Science in Computer Science program at UALR reflects current trends in the computer science discipline and provides students with a solid theoretical and

More information

Master of Science (Electrical Engineering) MS(EE)

Master of Science (Electrical Engineering) MS(EE) Master of Science (Electrical Engineering) MS(EE) 1. Mission Statement: The mission of the Electrical Engineering Department is to provide quality education to prepare students who will play a significant

More information

COURSE DESCRIPTION OF COMPUTER ENGINEERING SUBJECTS

COURSE DESCRIPTION OF COMPUTER ENGINEERING SUBJECTS SUMMARY OF COURSE DESCRIPTIONS BACHELOR OF SCIENCE IN COMPUTER ENGINEERING A. MATHEMATICS COURSE DESCRIPTION OF COMPUTER ENGINEERING SUBJECTS COLLEGE ALGEBRA - A course in algebra covering such topics

More information

Curriculum of Electronics Engineering Program

Curriculum of Electronics Engineering Program Curriculum of Electronics Engineering Program FIRST ACADEMIC SEMESTER EB 0101 Workshop on Methods of University Studies 2 -- -- -- 4 EB 0102 Workshop on Oral and Written Communications 2 -- -- -- 4 EB

More information

How To Learn To Understand And Understand The Physics Of Chemistry

How To Learn To Understand And Understand The Physics Of Chemistry What will I learn as an Electrical Engineering student? Department of Electrical and Computer Engineering Tufts School of Engineering Trying to decide on a major? Most college course descriptions are full

More information

PROPOSED CHANGES TO THE ELECTRICAL ENGINEERING DEGREE PROGRAM IN THE COLLEGE OF ENGINEERING SECTION IN THE UNDERGRADUATE CATALOG 2014-2016

PROPOSED CHANGES TO THE ELECTRICAL ENGINEERING DEGREE PROGRAM IN THE COLLEGE OF ENGINEERING SECTION IN THE UNDERGRADUATE CATALOG 2014-2016 PROPOSED CHANGES TO THE ELECTRICAL ENGINEERING DEGREE PROGRAM IN THE COLLEGE OF ENGINEERING SECTION IN THE UNDERGRADUATE CATALOG 2014-2016 Type of Change Academic Change 1. IF THE ANSWER TO ANY OF THE

More information

Meeting TeTech. Version: 1.8, 15-July-2013, Author: Wim Telkamp, language: English

Meeting TeTech. Version: 1.8, 15-July-2013, Author: Wim Telkamp, language: English Meeting TeTech, English version TeTech M.H. Trompstraat 6 3601 HT Maarssen The Netherlands Tel: + 31 (0) 346 284004 Fax: + 31 (0) 346 283691 Email: info@tetech.nl Web: www.tetech.nl CoC: 30169033 VAT:

More information

Undergraduate Major in Computer Science and Engineering

Undergraduate Major in Computer Science and Engineering University of California, Irvine 2015-2016 1 Undergraduate Major in Computer Science and Engineering On This Page: Overview Admissions Requirements for the B.S. in Computer Science and Engineering Sample

More information

The mission of the School of Electronic and Computing Systems 3 is to provide:

The mission of the School of Electronic and Computing Systems 3 is to provide: BSCOMPE-COMP Computer Engineering Assessment Plan Missions and Outcomes Three mission statements are provided below for the University of Cincinnati, the College of Engineering and Applied Science, and

More information

Bachelor of Science in Information Technology. Course Descriptions

Bachelor of Science in Information Technology. Course Descriptions Bachelor of Science in Information Technology Course Descriptions Year 1 Course Title: Calculus I Course Code: MATH 101 Pre- Requisite(s): This course introduces higher mathematics by examining the fundamental

More information

Degree programme in Automation Engineering

Degree programme in Automation Engineering Degree programme in Automation Engineering Course descriptions of the courses for exchange students, 2014-2015 Autumn 2014 21727630 Application Programming Students know the basis of systems application

More information

Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications

Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications The Master Degree in Electrical Engineering/Wireless Communications, is awarded by the Faculty of Graduate Studies

More information

COMPUTER SCIENCE. FACULTY: Jennifer Bowen, Chair Denise Byrnes, Associate Chair Sofia Visa

COMPUTER SCIENCE. FACULTY: Jennifer Bowen, Chair Denise Byrnes, Associate Chair Sofia Visa FACULTY: Jennifer Bowen, Chair Denise Byrnes, Associate Chair Sofia Visa COMPUTER SCIENCE Computer Science is the study of computer programs, abstract models of computers, and applications of computing.

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional

More information

Electrical Engineering Definition of Tuning

Electrical Engineering Definition of Tuning Electrical Engineering Definition of Tuning Tuning is a faculty-led pilot project designed to define what students must know, understand, and be able to demonstrate after completing a degree in a specific

More information

7a. System-on-chip design and prototyping platforms

7a. System-on-chip design and prototyping platforms 7a. System-on-chip design and prototyping platforms Labros Bisdounis, Ph.D. Department of Computer and Communication Engineering 1 What is System-on-Chip (SoC)? System-on-chip is an integrated circuit

More information

Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview

Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview Prof. Charles Zukowski (caz@columbia.edu) Interim Chair, September 3, 2015 MS Requirements: Overview (see bulletin for

More information

ELECTRICAL AND COMPUTER ENGINEERING (EGRE)

ELECTRICAL AND COMPUTER ENGINEERING (EGRE) VCU 1 ELECTRICAL AND COMPUTER ENGINEERING (EGRE) EGRE 101. Introduction to Engineering. 4 Hours. Course open to first-year students majoring in electrical or computer engineering. Introduction to engineering

More information

Master of Science in Computer Science

Master of Science in Computer Science Master of Science in Computer Science Background/Rationale The MSCS program aims to provide both breadth and depth of knowledge in the concepts and techniques related to the theory, design, implementation,

More information

CS/Computer Engineering Dual Degree Curriculum Content

CS/Computer Engineering Dual Degree Curriculum Content CS/Computer Engineering Dual Degree Curriculum Content General Education (41 credits) COMM 101: Written and Oral Communication I COMM 301: Written and Oral Communication II ECON 201: Economics Principles

More information

School of Technology Field of study Electrical Engineering (0714)

School of Technology Field of study Electrical Engineering (0714) AUTUMN SEMESTER 2016 NOTE! Period Study level ECTS cr Course number Course Attendance required in both semesters Attendance required in both semesters M1 = 1 st year Master M2 = 2 nd year Master 1 M1 6

More information

School of Science and Engineering Department of Electrical and Computer Engineering Resnick Engineering Hall

School of Science and Engineering Department of Electrical and Computer Engineering Resnick Engineering Hall School of Science and Engineering Department of Electrical and Computer Engineering Resnick Engineering Hall Daniel Jelski, Dean REH 114 845 257 3728 Julio Gonzalez, Associate Dean REH 114 845 257 3724

More information

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

ELECTRICAL ENGINEERING Electrical Engineering

ELECTRICAL ENGINEERING Electrical Engineering ELECTRICAL ENGINEERING Electrical Engineering Electrical Engineering Major - Required Courses and Recommended Course Sequence First Semester MTH- Calculus I CHM- Introductory Chemistry Lab for Engineers

More information

Master of Science in Electrical Engineering Graduate Program:

Master of Science in Electrical Engineering Graduate Program: Master of Science in Electrical Engineering Graduate Program: A student may pursue a Master of Science in Electrical Engineering (M.Sc. EE) via one of the following three options: (i) M.Sc. with thesis,

More information

Electronics Technology

Electronics Technology Degree: A.S. - Electronic Systems Technology Certificates: Electronic Systems Technology Certificates offered by the department: Basic Electronic Assembly and Repair Advanced Electronic Assembly & Repair

More information

Study Guide for the Electronics Technician Pre-Employment Examination

Study Guide for the Electronics Technician Pre-Employment Examination Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology

More information

COURSE DESCRIPTION OF ELECTRICAL ENGINEERING

COURSE DESCRIPTION OF ELECTRICAL ENGINEERING SUMMARY OF COURSE DESCRIPTIONS BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING A. MATHEMATICS COURSE DESCRIPTION OF ELECTRICAL ENGINEERING ALGEBRA (MATH 115) - Set theory; real numbers; algebraic expressions

More information

T146 Electro Mechanical Engineering Technician MTCU Code 51021 Program Learning Outcomes

T146 Electro Mechanical Engineering Technician MTCU Code 51021 Program Learning Outcomes T146 Electro Mechanical Engineering Technician MTCU Code 51021 Program Learning Outcomes Synopsis of the Vocational Learning Outcomes* The graduate has reliably demonstrated the ability to: 1. fabricate

More information

Electronic Engineering

Electronic Engineering Electronic Engineering Electronic engineering is concerned with the generation, transmission and utilization of electrical energy and with the transmitting and processing of information. Electronic engineers

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Microcontroller-based experiments for a control systems course in electrical engineering technology

Microcontroller-based experiments for a control systems course in electrical engineering technology Microcontroller-based experiments for a control systems course in electrical engineering technology Albert Lozano-Nieto Penn State University, Wilkes-Barre Campus, Lehman, PA, USA E-mail: AXL17@psu.edu

More information

MsC in Advanced Electronics Systems Engineering

MsC in Advanced Electronics Systems Engineering MsC in Advanced Electronics Systems Engineering 1 2 General overview Location: Dijon, University of Burgundy, France Tuition Fees : 475 / year Course Language: English Course duration: 1 year Level: Second

More information

Combined BS/MS Degree Program in the Department of Electrical Engineering at Wright State University

Combined BS/MS Degree Program in the Department of Electrical Engineering at Wright State University Combined BS/MS Degree Program in the Department of Electrical Engineering at Wright State University Approved by: Dept Graduate Studies Committee January 20, 2011 Approved by: EE Dept Faculty February

More information

The Department of Electrical and Computer Engineering (ECE) offers the following graduate degree programs:

The Department of Electrical and Computer Engineering (ECE) offers the following graduate degree programs: Note that these pages are extracted from the full Graduate Catalog, please refer to it for complete details. College of 1 ELECTRICAL AND COMPUTER ENGINEERING www.ece.neu.edu SHEILA S. HEMAMI, PHD Professor

More information

Assessment Processes. Department of Electrical and Computer Engineering. Fall 2014

Assessment Processes. Department of Electrical and Computer Engineering. Fall 2014 Assessment Processes Department of Electrical and Computer Engineering Fall 2014 Introduction The assessment process in the Electrical and Computer Engineering (ECE) Department at Utah State University

More information

School of Engineering Electronics Engineering General Education Requirements Code Title Credits CULT200 Introduction to Arab - Islamic Civilization

School of Engineering Electronics Engineering General Education Requirements Code Title Credits CULT200 Introduction to Arab - Islamic Civilization School Major School of Engineering Electronics Engineering General Education Requirements CULT200 Introduction to Arab - Islamic Civilization The purpose of this course is to acquaint students with the

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING AT UNIVERSITY OF NEVADA, LAS VEGAS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 4505 MARYLAND PARKWAY, BOX 454026 LAS VEGAS, NV 89154-4026 PHONE:

More information

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA. Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.

More information

Electrical Engineering Technology - Process Automation

Electrical Engineering Technology - Process Automation Electrical Engineering Technology - Process Automation Ontario College Advanced Diploma (3 Years - 6 Semesters ) (4029) 705.759.6700 : 1.800.461.2260 : www.saultcollege.ca : Sault Ste. Marie, ON, Canada

More information

Curriculum and Concept Module Development in RF Engineering

Curriculum and Concept Module Development in RF Engineering Introduction Curriculum and Concept Module Development in RF Engineering The increasing number of applications students see that require wireless and other tetherless network solutions has resulted in

More information

MS and PhD Degree Requirements

MS and PhD Degree Requirements MS and PhD Degree Requirements Department of Electrical and Computer Engineering September 1, 2014 General Information on ECE Graduate Courses This document is prepared to assist ECE graduate students

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Digital Signal Processing

Digital Signal Processing School Major School of Engineering Electrical Engineering General Education Requirements ARAB200 Arabic Language and Literature This course is a comprehensive review of Arabic Grammar, Syntax, major literature

More information

Computer Aided Design of Home Medical Alert System

Computer Aided Design of Home Medical Alert System Computer Aided Design of Home Medical Alert System Submitted to The Engineering Honors Committee 119 Hitchcock Hall College of Engineering The Ohio State University Columbus, Ohio 43210 By Pei Chen Kan

More information

CIS 117 DATABASE MANAGEMENT SOFTWARE APPLICATIONS

CIS 117 DATABASE MANAGEMENT SOFTWARE APPLICATIONS CIS 117 DATABASE MANAGEMENT SOFTWARE APPLICATIONS This course provides students with hands-on experience using database management software. Students will develop skills common to most database management

More information

Architectures and Platforms

Architectures and Platforms Hardware/Software Codesign Arch&Platf. - 1 Architectures and Platforms 1. Architecture Selection: The Basic Trade-Offs 2. General Purpose vs. Application-Specific Processors 3. Processor Specialisation

More information

FACULTY OF POSTGRADUATESTUDIES Master of Science in Computer Engineering The Future University

FACULTY OF POSTGRADUATESTUDIES Master of Science in Computer Engineering The Future University FACULTY OF POSTGRADUATESTUDIES Master of Science in Computer Engineering The Future University 2 Table of Contents: Page I. Introduction 1 II. Philosophy of the Program 2 III. Aims of the Program 2 IV.

More information

Teaching optics in electrical engineering curriculums

Teaching optics in electrical engineering curriculums Teaching optics in electrical engineering curriculums by Alexander D Poularikas and Samuel Seely University of Alabama in Huntsville Electrical and Computer Engineering Department Huntsville, Alabama 35899

More information

EE 100 Electrical Engineering Concepts

EE 100 Electrical Engineering Concepts EE 100 Electrical Engineering Concepts Professor K. E. Oughstun 363 Votey Hall The Dunder-Miflin School of Engineering College of Engineering & Mathematical Sciences University of Vermont 656-4301 oughstun@cems.uvm.edu

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

3.2.5.2 Degree Requirements

3.2.5.2 Degree Requirements 3.2.5.2 Degree Requirements Students in the BEng (Electrical Engineering) programme are required to complete a minimum of 160 MCs with a CAP 2.0 to graduate. In the first stage of the programme, students

More information

Computer Science & Electrical Engineering

Computer Science & Electrical Engineering Computer Science and Electrical Engineering Department of A.A.S. in Electrical and Computer Engineering (84) Computer Science & Electrical Engineering The A.A.S. in Electrical and Computer Engineering

More information

Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah

Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah (DSF) Soft Core Prozessor NIOS II Stand Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de jens_onno.krah@fh-koeln.de NIOS II 1 1 What is Nios II? Altera s Second Generation

More information

IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits

IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits SUMMARY CONTENTS 1. CONTEXT 2. TECHNOLOGY TRENDS 3. MOTIVATION 4. WHAT IS IC-EMC 5. SUPPORTED STANDARD 6. EXAMPLES CONTEXT - WHY

More information

Rapid System Prototyping with FPGAs

Rapid System Prototyping with FPGAs Rapid System Prototyping with FPGAs By R.C. Coferand Benjamin F. Harding AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Newnes is an imprint of

More information

COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS

COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS COMPUTER ENGINEERING AT UNIVERSITY OF NEVADA, LAS VEGAS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS 4505 MARYLAND PARKWAY, BOX 454026 LAS VEGAS, NV 89154-4026 PHONE:

More information

Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary

Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at

More information

Technical Elective I 3 0 3 Technical Elective II 3 1 4 Technical Elective III 3 0 3 Technical Elective IV 3 0 3 3 0 3

Technical Elective I 3 0 3 Technical Elective II 3 1 4 Technical Elective III 3 0 3 Technical Elective IV 3 0 3 3 0 3 BE Degree Requirements for Fall 06 Intake (Avionics Majors) Required edit (Minimum ) English-I 3 0 3 English-I (Proficiency) (2+1) English-II 3 0 3 English-II (Written Communication) (2+1) Oral Communication

More information

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent

More information

TEC 327 Electronic Devices Lab (1) Corequisite: TEC 326. Three hours lab per week. Experiments involving basic electronic devices.

TEC 327 Electronic Devices Lab (1) Corequisite: TEC 326. Three hours lab per week. Experiments involving basic electronic devices. TEC 201 Microcomputers Applications and Techniques (3) Two hours lecture and two hours lab per week. An introduction to microcomputer hardware and applications of the microcomputer in industry. Hands-on

More information

The Master s Degree Program in Electrical and Computer Engineering

The Master s Degree Program in Electrical and Computer Engineering The Master s Degree Program in Electrical and Computer Engineering M. Lee Edwards and Dexter G. Smith The Master s of Science in Electrical and Computer Engineering, the first Johns Hopkins degree to be

More information

Electrical/Electronic Engineering Technologist DACUM Facilitated by Craig Edwards and Sandra Sukhan April 15 th and 20 th 2011

Electrical/Electronic Engineering Technologist DACUM Facilitated by Craig Edwards and Sandra Sukhan April 15 th and 20 th 2011 Page 1 of 10 INSTALL EQUIPMENT A Install batteries Select mechanical hardware Assemble connectors Fabricate metal Determine heating/cooling Install motors A1 A2 A3 A4 A5 A6 Review electro/mechanical Terminate

More information

Computer and Systems Engineering (CSE) Master of Science Programs

Computer and Systems Engineering (CSE) Master of Science Programs Computer and Systems Engineering (CSE) Master of Science Programs The Computer and Systems Engineering (CSE) degree offered by the University of Houston (UH) is a graduate level interdisciplinary program

More information

Choosing a Concentration & Electives

Choosing a Concentration & Electives + Choosing a Concentration & Electives Electrical & Computer Engineering March 2015 + ECE Concentration Areas n Signals, Communications, and Controls n Signals n Communications n Controls n Electronics

More information

ELECTRICAL and COMPUTER ENGINEERING

ELECTRICAL and COMPUTER ENGINEERING ELECTRICAL and COMPUTER ENGINEERING Undergraduate Program Guide Bachelor of Science in Electrical Engineering Bachelor of Science in Computer Engineering Supplement to 2013-2014 GMU Catalog Last Updated:

More information

imtech Curriculum Presentation

imtech Curriculum Presentation imtech Curriculum Presentation Effective from Batch 2015 Onwards April, 2015 Course Structure Every course has a fixed number of credits associated with it (e.g., 4 credits) One has to earn 200 credits

More information

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction

More information

Electrical Engineering

Electrical Engineering College of Science, Engineering and Technology Department of Electrical & Computer Engineering and Technology 242 Trafton Science Center N 507-389-5747 Website: www.cset.mnsu.edu/ecet Chair: Vincent Winstead,

More information

Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design

Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design Department of Electrical and Computer Engineering Overview The VLSI Design program is part of two tracks in the department:

More information

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture Course Definition Form This form should be used for both a new elective or compulsory course being proposed and curricula development processes

More information

Department of Electrical and Computer Engineering

Department of Electrical and Computer Engineering The University of Texas at San Antonio 1 Department of Electrical and Computer The Department of (ECE) offers a Bachelor of Science degree in Electrical (B.S. EE) and a Bachelor of Science degree in Computer

More information

System Modeling and Control for Mechanical Engineers

System Modeling and Control for Mechanical Engineers Session 1655 System Modeling and Control for Mechanical Engineers Hugh Jack, Associate Professor Padnos School of Engineering Grand Valley State University Grand Rapids, MI email: jackh@gvsu.edu Abstract

More information

Universidad de Alcalá

Universidad de Alcalá Circuit Electronics Degree in Electronic Communications Engineering Degree in Telecommunications Systems Degree in Technology Telecommunication Telematics Engineering Universidad de Alcalá Academic Year

More information