How To Prevent Network Attacks
|
|
|
- Darrell Hutchinson
- 5 years ago
- Views:
Transcription
1 Ali A. Ghorbani Wei Lu Mahbod Tavallaee Network Intrusion Detection and Prevention Concepts and Techniques )Spri inger
2 Contents 1 Network Attacks Attack Taxonomies Probes IPSweep and PortSweep NMap MScan SAINT Satan Privilege Escalation Attacks Buffer Overflow Attacks Misconfiguration Attacks Race-condition Attacks Man-in-the-Middle Attacks Social Engineering Attacks Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks Detection Approaches for DoS and DDoS Attacks Prevention and Response for DoS and DDoS Attacks Examples of DoS and DDoS Attacks Worms Attacks Modeling and Analysis of Worm Behaviors Detection and Monitoring of Worm Attacks Worms Containment Examples of Well Known Worm Attacks Routing Attacks OSPF Attacks BGP Attacks 21 References 22 XV
3 xvi Contents 2 Detection Approaches Misuse Detection Pattern Matching Rule-based Techniques State-based Techniques Techniques based on Data Mining Anomaly Detection Advanced Statistical Models Rule based Techniques Biological Models Learning Models Specification-based Detection Hybrid Detection 46 References 49 3 Data Collection Data Collection for Host-Based IDSs Audit Logs System Call Sequences Data Collection for Network-Based IDSs SNMP Packets Limitations of Network-Based IDSs Data Collection for Application-Based IDSs Data Collection for Application-Integrated IDSs Hybrid Data Collection 69 References 69 4 Theoretical Foundation of Detection Taxonomy of Anomaly Detection Systems Fuzzy Logic Fuzzy Logic in Anomaly Detection Bayes Theory Naive Bayes Classifier Bayes Theory in Anomaly Detection Artificial Neural Networks Processing Elements Connections Network Architectures Learning Process Artificial Neural Networks in Anomaly Detection Support Vector Machine (SVM) Support Vector Machine in Anomaly Detection Evolutionary Computation Evolutionary Computation in Anomaly Detection 91
4 Contents xvii 4.7 Association Rules The Apriori Algorithm Association Rules in Anomaly Detection Clustering Taxonomy of Clustering Algorithms K-Means Clustering Y-Means Clustering Maximum-Likelihood Estimates Unsupervised Learning of Gaussian Data Clustering Based on Density Distribution Functions Clustering in Anomaly Detection Signal Processing Techniques Based Models Comparative Study of Anomaly Detection Techniques 109 References Architecture and Implementation Centralized Distributed Intelligent Agents Mobile Agents Cooperative Intrusion Detection 125 References Alert Management and Correlation Data Fusion Alert Correlation Preprocess Correlation Techniques Postprocess Alert Correlation Architectures Validation of Alert Correlation Systems Cooperative Intrusion Detection Basic Principles of Information Sharing Cooperation Based on Goal-tree Representation of Attack Strategies Cooperative Discovery of Intrusion Chain Abstraction-Based Intrusion Detection Interest-Based Communication and Cooperation Agent-Based Cooperation Secure Communication Using Public-key Encryption 157 References 157
5 xviii Contents 7 Evaluation Criteria Accuracy False Positive and Negative Confusion Matrix Precision, Recall, and F-Measure ROC Curves The Base-Rate Fallacy Performance Completeness Timely Response Adaptation and Cost-Sensitivity Intrusion Tolerance and Attack Resistance Redundant and Fault Tolerance Design Obstructing Methods Test, Evaluation and Data Sets 180 References Intrusion Response Response Type Passive Alerting and Manual Response Active Response Response Approach Decision Analysis Control Theory Game theory Fuzzy theory Survivability and Intrusion Tolerance 194 References 197 A Examples of Commercial and Open Source IDSs 199 A.l Bro Intrusion Detection System 199 A.2 Prelude Intrusion Detection System 199 A.3 Snort Intrusion Detection System 200 A.4 Ethereal Application - Network Protocol Analyzer 200 A.5 Multi Router Traffic Grapher (MRTG) 201 A.6 Tamandua Network Intrusion Detection System 202 A.7 Other Commercial IDSs 202 Index 209
Detection. Perspective. Network Anomaly. Bhattacharyya. Jugal. A Machine Learning »C) Dhruba Kumar. Kumar KaKta. CRC Press J Taylor & Francis Croup
Network Anomaly Detection A Machine Learning Perspective Dhruba Kumar Bhattacharyya Jugal Kumar KaKta»C) CRC Press J Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor
CSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Intrusion Detection System 1 Intrusion Definitions A set of actions aimed to compromise the security
A Survey on Intrusion Detection System with Data Mining Techniques
A Survey on Intrusion Detection System with Data Mining Techniques Ms. Ruth D 1, Mrs. Lovelin Ponn Felciah M 2 1 M.Phil Scholar, Department of Computer Science, Bishop Heber College (Autonomous), Trichirappalli,
CS 356 Lecture 17 and 18 Intrusion Detection. Spring 2013
CS 356 Lecture 17 and 18 Intrusion Detection Spring 2013 Review Chapter 1: Basic Concepts and Terminology Chapter 2: Basic Cryptographic Tools Chapter 3 User Authentication Chapter 4 Access Control Lists
A Review of Anomaly Detection Techniques in Network Intrusion Detection System
A Review of Anomaly Detection Techniques in Network Intrusion Detection System Dr.D.V.S.S.Subrahmanyam Professor, Dept. of CSE, Sreyas Institute of Engineering & Technology, Hyderabad, India ABSTRACT:In
The Integration of SNORT with K-Means Clustering Algorithm to Detect New Attack
The Integration of SNORT with K-Means Clustering Algorithm to Detect New Attack Asnita Hashim, University of Technology MARA, Malaysia April 14-15, 2011 The Integration of SNORT with K-Means Clustering
Development of a Network Intrusion Detection System
Development of a Network Intrusion Detection System (I): Agent-based Design (FLC1) (ii): Detection Algorithm (FLC2) Supervisor: Dr. Korris Chung Please visit my personal homepage www.comp.polyu.edu.hk/~cskchung/fyp04-05/
Data Mining for Network Intrusion Detection
Data Mining for Network Intrusion Detection S Terry Brugger UC Davis Department of Computer Science Data Mining for Network Intrusion Detection p.1/55 Overview This is important for defense in depth Much
A survey on Data Mining based Intrusion Detection Systems
International Journal of Computer Networks and Communications Security VOL. 2, NO. 12, DECEMBER 2014, 485 490 Available online at: www.ijcncs.org ISSN 2308-9830 A survey on Data Mining based Intrusion
Examples of Commercial and Open Source IDSs
Appendix A Examples of Commercial and Open Source IDSs We introduce in this appendix some examples of existing available commercial and open source IDSs. In particular, we briefly describe some typical
Salvatore J. Stolfo 606 CEPSR 646.775.6043. Email: [email protected]
CSW6998 Topics in Computer Science: Intrusion and Anomaly Detection Systems Fall 2004 Monday 4:10pm 6:00pm 13 September 13 December 253 Engineering Terrace Salvatore J. Stolfo
STUDY OF IMPLEMENTATION OF INTRUSION DETECTION SYSTEM (IDS) VIA DIFFERENT APPROACHS
STUDY OF IMPLEMENTATION OF INTRUSION DETECTION SYSTEM (IDS) VIA DIFFERENT APPROACHS SACHIN MALVIYA Student, Department of Information Technology, Medicaps Institute of Science & Technology, INDORE (M.P.)
CSCI 4250/6250 Fall 2015 Computer and Networks Security
CSCI 4250/6250 Fall 2015 Computer and Networks Security Network Security Goodrich, Chapter 5-6 Tunnels } The contents of TCP packets are not normally encrypted, so if someone is eavesdropping on a TCP
Intrusion Detection. Jeffrey J.P. Tsai. Imperial College Press. A Machine Learning Approach. Zhenwei Yu. University of Illinois, Chicago, USA
SERIES IN ELECTRICAL AND COMPUTER ENGINEERING Intrusion Detection A Machine Learning Approach Zhenwei Yu University of Illinois, Chicago, USA Jeffrey J.P. Tsai Asia University, University of Illinois,
Name. Description. Rationale
Complliiance Componentt Description DEEFFI INITION Network-Based Intrusion Detection Systems (NIDS) Network-Based Intrusion Detection Systems (NIDS) detect attacks by capturing and analyzing network traffic.
Role of Anomaly IDS in Network
Role of Anomaly IDS in Network SumathyMurugan 1, Dr.M.Sundara Rajan 2 1 Asst. Prof, Department of Computer Science, Thiruthangal Nadar College, Chennai -51. 2 Asst. Prof, Department of Computer Science,
Survey of Data Mining Approach using IDS
Survey of Data Mining Approach using IDS 1 Raman kamboj, 2 Kamal Kumar Research Scholar, Assistant Professor SDDIET, Department of Computer Science & Engineering, Kurukshetra Universty Abstract - In our
KEITH LEHNERT AND ERIC FRIEDRICH
MACHINE LEARNING CLASSIFICATION OF MALICIOUS NETWORK TRAFFIC KEITH LEHNERT AND ERIC FRIEDRICH 1. Introduction 1.1. Intrusion Detection Systems. In our society, information systems are everywhere. They
Hybrid Intrusion Detection System Model using Clustering, Classification and Decision Table
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 9, Issue 4 (Mar. - Apr. 2013), PP 103-107 Hybrid Intrusion Detection System Model using Clustering, Classification
Intrusion Detection: Game Theory, Stochastic Processes and Data Mining
Intrusion Detection: Game Theory, Stochastic Processes and Data Mining Joseph Spring 7COM1028 Secure Systems Programming 1 Discussion Points Introduction Firewalls Intrusion Detection Schemes Models Stochastic
Network Monitoring On Large Networks. Yao Chuan Han (TWCERT/CC) [email protected]
Network Monitoring On Large Networks Yao Chuan Han (TWCERT/CC) [email protected] 1 Introduction Related Studies Overview SNMP-based Monitoring Tools Packet-Sniffing Monitoring Tools Flow-based Monitoring
IDS / IPS. James E. Thiel S.W.A.T.
IDS / IPS An introduction to intrusion detection and intrusion prevention systems James E. Thiel January 14, 2005 S.W.A.T. Drexel University Overview Intrusion Detection Purpose Types Detection Methods
Data Mining For Intrusion Detection Systems. Monique Wooten. Professor Robila
Data Mining For Intrusion Detection Systems Monique Wooten Professor Robila December 15, 2008 Wooten 2 ABSTRACT The paper discusses the use of data mining techniques applied to intrusion detection systems.
INTRUSION DETECTION SYSTEMS and Network Security
INTRUSION DETECTION SYSTEMS and Network Security Intrusion Detection System IDS A layered network security approach starts with : A well secured system which starts with: Up-to-date application and OS
International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2163 Volume 1 Issue 11 (November 2014)
Denial-of-Service Attack Detection Mangesh D. Salunke * Prof. Ruhi Kabra G.H.Raisoni CEM, SPPU, Ahmednagar HOD, G.H.Raisoni CEM, SPPU,Ahmednagar Abstract: A DoS (Denial of Service) attack as name indicates
Hybrid Model For Intrusion Detection System Chapke Prajkta P., Raut A. B.
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume1 Issue 3 Dec 2012 Page No. 151-155 Hybrid Model For Intrusion Detection System Chapke Prajkta P., Raut A. B.
An analysis of suitable parameters for efficiently applying K-means clustering to large TCPdump data set using Hadoop framework
An analysis of suitable parameters for efficiently applying K-means clustering to large TCPdump data set using Hadoop framework Jakrarin Therdphapiyanak Dept. of Computer Engineering Chulalongkorn University
Using Rough Set and Support Vector Machine for Network Intrusion Detection System Rung-Ching Chen and Kai-Fan Cheng
2009 First Asian Conference on Intelligent Information and Database Systems Using Rough Set and Support Vector Machine for Network Intrusion Detection System Rung-Ching Chen and Kai-Fan Cheng Ying-Hao
Performance Evaluation of Intrusion Detection Systems
Performance Evaluation of Intrusion Detection Systems Waleed Farag & Sanwar Ali Department of Computer Science at Indiana University of Pennsylvania ABIT 2006 Outline Introduction: Intrusion Detection
Intrusion Detection Systems and Supporting Tools. Ian Welch NWEN 405 Week 12
Intrusion Detection Systems and Supporting Tools Ian Welch NWEN 405 Week 12 IDS CONCEPTS Firewalls. Intrusion detection systems. Anderson publishes paper outlining security problems 1972 DNS created 1984
CHAPTER 1 INTRODUCTION
21 CHAPTER 1 INTRODUCTION 1.1 PREAMBLE Wireless ad-hoc network is an autonomous system of wireless nodes connected by wireless links. Wireless ad-hoc network provides a communication over the shared wireless
Performance Evaluation of Intrusion Detection Systems using ANN
Performance Evaluation of Intrusion Detection Systems using ANN Khaled Ahmed Abood Omer 1, Fadwa Abdulbari Awn 2 1 Computer Science and Engineering Department, Faculty of Engineering, University of Aden,
Efficient Security Alert Management System
Efficient Security Alert Management System Minoo Deljavan Anvary IT Department School of e-learning Shiraz University Shiraz, Fars, Iran Majid Ghonji Feshki Department of Computer Science Qzvin Branch,
Intrusion Detection for Mobile Ad Hoc Networks
Intrusion Detection for Mobile Ad Hoc Networks Tom Chen SMU, Dept of Electrical Engineering [email protected] http://www.engr.smu.edu/~tchen TC/Rockwell/5-20-04 SMU Engineering p. 1 Outline Security problems
Using Artificial Intelligence in Intrusion Detection Systems
Using Artificial Intelligence in Intrusion Detection Systems Matti Manninen Helsinki University of Technology [email protected] Abstract Artificial Intelligence could make the use of Intrusion Detection
Intrusion Detection using Artificial Neural Networks with Best Set of Features
728 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015 Intrusion Detection using Artificial Neural Networks with Best Set of Features Kaliappan Jayakumar 1, Thiagarajan Revathi
FUZZY DATA MINING AND GENETIC ALGORITHMS APPLIED TO INTRUSION DETECTION
FUZZY DATA MINING AND GENETIC ALGORITHMS APPLIED TO INTRUSION DETECTION Susan M. Bridges [email protected] Rayford B. Vaughn [email protected] 23 rd National Information Systems Security Conference
An Approach for Detecting and Preventing DoS Attacks in LAN
An Approach for Detecting and Preventing DoS Attacks in LAN Majed Tabash 1, Tawfiq Barhoom 2. 1 Faculty of Information Technology, Islamic University Gazs, Palestine. 2 Faculty of Information Technology,
An Efficient Way of Denial of Service Attack Detection Based on Triangle Map Generation
An Efficient Way of Denial of Service Attack Detection Based on Triangle Map Generation Shanofer. S Master of Engineering, Department of Computer Science and Engineering, Veerammal Engineering College,
STANDARDISATION AND CLASSIFICATION OF ALERTS GENERATED BY INTRUSION DETECTION SYSTEMS
STANDARDISATION AND CLASSIFICATION OF ALERTS GENERATED BY INTRUSION DETECTION SYSTEMS Athira A B 1 and Vinod Pathari 2 1 Department of Computer Engineering,National Institute Of Technology Calicut, India
Demystifying the Myth of Passive Network Discovery and Monitoring Systems
Demystifying the Myth of Passive Network Discovery and Monitoring Systems Ofir Arkin Chief Technology Officer Insightix Copyright 2012 - All Rights Reserved. This material is proprietary of Insightix.
Neural networks vs. decision trees for intrusion detection
Neural networks vs. decision trees for intrusion detection Yacine Bouzida Mitsubishi Electric ITE-TCL 1, allée de Beaulieu CS 186 3578, Rennes, France [email protected] Frédéric Cuppens Département
Intrusion Detection System for Cloud Network Using FC-ANN Algorithm
Intrusion Detection System for Cloud Network Using FC-ANN Algorithm Swati Ramteke 1, Rajesh Dongare 2, Komal Ramteke 3 Student, Department of Information Technology, VIIT, Pune, India 1 Student, Department
Chapter 1 Hybrid Intelligent Intrusion Detection Scheme
Chapter 1 Hybrid Intelligent Intrusion Detection Scheme Mostafa A. Salama, Heba F. Eid, Rabie A. Ramadan, Ashraf Darwish, and Aboul Ella Hassanien Abstract This paper introduces a hybrid scheme that combines
How To Detect Denial Of Service Attack On A Network With A Network Traffic Characterization Scheme
Efficient Detection for DOS Attacks by Multivariate Correlation Analysis and Trace Back Method for Prevention Thivya. T 1, Karthika.M 2 Student, Department of computer science and engineering, Dhanalakshmi
A Survey of Intrusion Detection System Using Different Data Mining Techniques
A Survey of Intrusion Detection System Using Different Data Mining Techniques Trupti Phutane, Apashabi Pathan Dept. of Computer Engineering, G.H.Raisoni College of Engineering & Management, Wagholi, India
Practical Applications of DATA MINING. Sang C Suh Texas A&M University Commerce JONES & BARTLETT LEARNING
Practical Applications of DATA MINING Sang C Suh Texas A&M University Commerce r 3 JONES & BARTLETT LEARNING Contents Preface xi Foreword by Murat M.Tanik xvii Foreword by John Kocur xix Chapter 1 Introduction
City Research Online. Permanent City Research Online URL: http://openaccess.city.ac.uk/1737/
Modi, C., Patel, D., Patel, H., Borisaniya, B., Patel, A. & Rajarajan, M. (2013). A survey of intrusion detection techniques in Cloud. Journal of Network and Computer Applications, 36(1), pp. 42-57. doi:
NETWORK INTRUSION DETECTION SYSTEM USING HYBRID CLASSIFICATION MODEL
NETWORK INTRUSION DETECTION SYSTEM USING HYBRID CLASSIFICATION MODEL Prof. Santosh T. Waghmode 1, Prof. Vinod S. Wadne 2 Department of Computer Engineering, 1, 2 JSPM s Imperial College of Engineering
Intrusion Detection Systems
Intrusion Detection Systems Sebastian Abt Selected Topics in IT-Security Lecture 05 Summer term 2012 Motivation STITS, Lecture 05: Intrusion Detec4on Systems 04.06.12 2 Motivation» Why do we need intrusion
A new Approach for Intrusion Detection in Computer Networks Using Data Mining Technique
A new Approach for Intrusion Detection in Computer Networks Using Data Mining Technique Aida Parbaleh 1, Dr. Heirsh Soltanpanah 2* 1 Department of Computer Engineering, Islamic Azad University, Sanandaj
Layered Approach of Intrusion Detection System with Efficient Alert Aggregation for Heterogeneous Networks
Layered Approach of Intrusion Detection System with Efficient Alert Aggregation for Heterogeneous Networks Lohith Raj S N, Shanthi M B, Jitendranath Mungara Abstract Protecting data from the intruders
Intrusion Detection Systems
Intrusion Detection Systems Advanced Computer Networks 2007 Reinhard Wallner [email protected] Outline Introduction Types of IDS How works an IDS Attacks to IDS Intrusion Prevention Systems
False Positives Reduction Techniques in Intrusion Detection Systems-A Review
128 False Positives Reduction Techniques in Intrusion Detection Systems-A Review Asieh Mokarian, Ahmad Faraahi, Arash Ghorbannia Delavar, Payame Noor University, Tehran, IRAN Summary During the last decade
Contents. Intrusion Detection Systems (IDS) Intrusion Detection. Why Intrusion Detection? What is Intrusion Detection?
Contents Intrusion Detection Systems (IDS) Presented by Erland Jonsson Department of Computer Science and Engineering Motivation and basics (Why and what?) IDS types and principles Key Data Problems with
Network Intrusion Detection Using a HNB Binary Classifier
2015 17th UKSIM-AMSS International Conference on Modelling and Simulation Network Intrusion Detection Using a HNB Binary Classifier Levent Koc and Alan D. Carswell Center for Security Studies, University
Management Tools, Systems and Applications. Network Management
Management Tools, Systems and Applications Network Management 13.5.2013 1 Lectures Schedule Week Week 1 Topic Computer Networks - Network Management Architectures & Applications Week 2 Network Management
CS 5410 - Computer and Network Security: Intrusion Detection
CS 5410 - Computer and Network Security: Intrusion Detection Professor Kevin Butler Fall 2015 Locked Down You re using all the techniques we will talk about over the course of the semester: Strong access
IDS Categories. Sensor Types Host-based (HIDS) sensors collect data from hosts for
Intrusion Detection Intrusion Detection Security Intrusion: a security event, or a combination of multiple security events, that constitutes a security incident in which an intruder gains, or attempts
Application of Data Mining Techniques in Intrusion Detection
Application of Data Mining Techniques in Intrusion Detection LI Min An Yang Institute of Technology [email protected] Abstract: The article introduced the importance of intrusion detection, as well as
CSC574 - Computer and Network Security Module: Intrusion Detection
CSC574 - Computer and Network Security Module: Intrusion Detection Prof. William Enck Spring 2013 1 Intrusion An authorized action... that exploits a vulnerability... that causes a compromise... and thus
A SURVEY ON GENETIC ALGORITHM FOR INTRUSION DETECTION SYSTEM
A SURVEY ON GENETIC ALGORITHM FOR INTRUSION DETECTION SYSTEM MS. DIMPI K PATEL Department of Computer Science and Engineering, Hasmukh Goswami college of Engineering, Ahmedabad, Gujarat ABSTRACT The Internet
Security Intrusion & Detection. Intrusion Detection Systems (IDSs)
Security Intrusion & Detection Security Intrusion One or combination of security events in which an intruder gains (or attempts) to gain access to a system without having authorization to do so Intrusion
SURVEY OF INTRUSION DETECTION SYSTEM
SURVEY OF INTRUSION DETECTION SYSTEM PRAJAPATI VAIBHAVI S. SHARMA DIPIKA V. ASST. PROF. ASST. PROF. MANISH INSTITUTE OF COMPUTER STUDIES MANISH INSTITUTE OF COMPUTER STUDIES VISNAGAR VISNAGAR GUJARAT GUJARAT
Integration Misuse and Anomaly Detection Techniques on Distributed Sensors
Integration Misuse and Anomaly Detection Techniques on Distributed Sensors Shih-Yi Tu Chung-Huang Yang Kouichi Sakurai Graduate Institute of Information and Computer Education, National Kaohsiung Normal
Module II. Internet Security. Chapter 7. Intrusion Detection. Web Security: Theory & Applications. School of Software, Sun Yat-sen University
Module II. Internet Security Chapter 7 Intrusion Detection Web Security: Theory & Applications School of Software, Sun Yat-sen University Outline 7.1 Threats to Computer System 7.2 Process of Intrusions
CLASSIFYING NETWORK TRAFFIC IN THE BIG DATA ERA
CLASSIFYING NETWORK TRAFFIC IN THE BIG DATA ERA Professor Yang Xiang Network Security and Computing Laboratory (NSCLab) School of Information Technology Deakin University, Melbourne, Australia http://anss.org.au/nsclab
Intrusion Detection for Grid and Cloud Computing
Intrusion Detection for Grid and Cloud Computing Author Kleber Vieira, Alexandre Schulter, Carlos Becker Westphall, and Carla Merkle Westphall Federal University of Santa Catarina, Brazil Content Type
HYBRID INTRUSION DETECTION FOR CLUSTER BASED WIRELESS SENSOR NETWORK
HYBRID INTRUSION DETECTION FOR CLUSTER BASED WIRELESS SENSOR NETWORK 1 K.RANJITH SINGH 1 Dept. of Computer Science, Periyar University, TamilNadu, India 2 T.HEMA 2 Dept. of Computer Science, Periyar University,
Network Intrusion Detection Using an Improved Competitive Learning Neural Network
Network Intrusion Detection Using an Improved Competitive Learning Neural Network John Zhong Lei and Ali Ghorbani Faculty of Computer Science University of New Brunswick Fredericton, NB, E3B 5A3, Canada
Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer
Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next
Network Intrusion Detection System Using Genetic Algorithm and Fuzzy Logic
Network Intrusion Detection System Using Genetic Algorithm and Fuzzy Logic Mostaque Md. Morshedur Hassan Assistant Professor, Department of Computer Science and IT, Lalit Chandra Bharali College, Guwahati,
CISCO INFORMATION TECHNOLOGY AT WORK CASE STUDY: CISCO IOS NETFLOW TECHNOLOGY
CISCO INFORMATION TECHNOLOGY AT WORK CASE STUDY: CISCO IOS NETFLOW TECHNOLOGY CISCO INFORMATION TECHNOLOGY SEPTEMBER 2004 1 Overview Challenge To troubleshoot capacity and quality problems and to understand
Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin
Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)
INTRUSION DETECTION SYSTEM (IDS) by Kilausuria Abdullah (GCIH) Cyberspace Security Lab, MIMOS Berhad
INTRUSION DETECTION SYSTEM (IDS) by Kilausuria Abdullah (GCIH) Cyberspace Security Lab, MIMOS Berhad OUTLINE Security incident Attack scenario Intrusion detection system Issues and challenges Conclusion
Taxonomy of Intrusion Detection System
Taxonomy of Intrusion Detection System Monika Sharma, Sumit Sharma Abstract During the past years, security of computer networks has become main stream in most of everyone's lives. Nowadays as the use
Segurança Redes e Dados
Segurança Redes e Dados I N T R U S Õ E S 2 0 1 2 / 2 0 1 2 M A N U E L E D U A R D O C O R R E I A P E D R O B R A N D Ã O Slides are based on slides by Dr Lawrie Brown (UNSW@ADFA) for Computer Security:
Contents. Dedication List of Figures List of Tables. Acknowledgments
Contents Dedication List of Figures List of Tables Foreword Preface Acknowledgments v xiii xvii xix xxi xxv Part I Concepts and Techniques 1. INTRODUCTION 3 1 The Quest for Knowledge 3 2 Problem Description
Course Syllabus For Operations Management. Management Information Systems
For Operations Management and Management Information Systems Department School Year First Year First Year First Year Second year Second year Second year Third year Third year Third year Third year Third
Applying Data Mining of Fuzzy Association Rules to Network Intrusion Detection
Applying Data Mining of Fuzzy Association Rules to Network Intrusion Detection Authors: Aly El-Semary, Janica Edmonds, Jesús González-Pino, and Mauricio Papa Center for Information Security Department
Conclusions and Future Directions
Chapter 9 This chapter summarizes the thesis with discussion of (a) the findings and the contributions to the state-of-the-art in the disciplines covered by this work, and (b) future work, those directions
Intrusion Detection Systems. (slides courtesy Prof. Stolfo)
Intrusion Detection Systems (slides courtesy Prof. Stolfo) Motivation We can't prevent all break-ins There will always be new holes, new attacks, and new attackers We need some way to cope Defense in Depth
Adaptive Network Intrusion Detection System using a Hybrid Approach
Adaptive Network Intrusion Detection System using a Hybrid Approach R Rangadurai Karthick Department of Computer Science and Engineering IIT Madras, India [email protected] Vipul P. Hattiwale Department
USING GENETIC ALGORITHM IN NETWORK SECURITY
USING GENETIC ALGORITHM IN NETWORK SECURITY Ehab Talal Abdel-Ra'of Bader 1 & Hebah H. O. Nasereddin 2 1 Amman Arab University. 2 Middle East University, P.O. Box: 144378, Code 11814, Amman-Jordan Email:
NSC 93-2213-E-110-045
NSC93-2213-E-110-045 2004 8 1 2005 731 94 830 Introduction 1 Nowadays the Internet has become an important part of people s daily life. People receive emails, surf the web sites, and chat with friends
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Review Article Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks
Distributed Sensor Networks, Article ID 351047, 6 pages http://dx.doi.org/10.1155/2013/351047 Review Article Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks
