Mathematical Modelling and Simulation of Magnetostrictive Materials by Comsol Multiphysics
|
|
|
- Jonah Poole
- 9 years ago
- Views:
Transcription
1 Mathematical Modelling and Simulation of Magnetostrictive Materials by Comsol Multiphysics Author: M. Bailoni 1, Y.Wei, L. Norum 3, 1 University of Trieste, guest at Norwegian University of Science and Technology (NTNU Department of Electric Power Engineering, Trondheim, NORWAY, 3 Norwegian University of Science and Technology (NTNU Department of Electric Power Engineering, Trondheim, NORWAY 1 [email protected], [email protected], 3 [email protected], Abstract: This paper presents the mathematical modeling for the analysis of the magnetostrictive materials, which describes the behaviour of the magnetomechanical coupling in a rod of magnetostrictive material and capturing it on Comsol to have a predictive and detailed analysis. The simulation about the behaviour under harmonic excitation is done in this work. Keywords: magnetostrictive, modeling, harmonic analysis, energy conversion. 1. Introduction The magnetostrictive materials will change shape when it is subjected to a magnetic field. This occurs because magnetic domains in the material align with the magnetic field. Similarly, when the material is strained (stretched or compressed, its magnetic energy changes. This phenomenon is reversible and for this matter it can be use to build actuators, sensors or to make energy conversion. It is possible to simplify the processes into two reversible energy conversion steps: - from electric to magnetic; - from magnetic to mechanical. field is not applied (H0, the domains returns at the random alignment (as shown in the Figure 1.1. Figure 1.1 Domains alignment The mechanical strain is very little and the order of magnitude is µm (micro meter, but the force that it produces is very strong. The magnetostrictive materials have very good specifications and show some interesting physical properties such as: a high density of available energy and a life time almost indefinite, that make these materials promising in several technological applications. In the magnetostrictive materials, the magnetic field causes elastic deformation or variation of the Young s modulus, and the mechanical stress modifies the magnetic properties: the magnetisation curve or the hysteresis loop [1]. 1.1 Functional principle The functional principle of the magnetostrictive materials is shown in Figure 1.. The magnetostrictive rod, with length l and cross section A, when the magnetic field H is applied, is able to show the extension in shape such as l + l. Figure 1. Coupling diagram [4] Dimensional change is generated from broadly two different processes: the first is migration of domains walls inside the material and second is the rotation of the domain. When the magnetic
2 Figure 1. S(strain caused by Joule magnetostriction when applied a magnetic field H. [] This phenomenon can be seen when some conditions are satisfied: - All magnetic materials exhibit magnetostriction but if the constitutive materials, are the giant magnetostrictive materials the manifestation is more visible. [] - The magnetic field has to be along the axis of the mechanical extension. - In order to observe the stress or the strain it is necessary to fix the mechanical boundary conditions such an allowing free movement or by lock the part and inhibiting the movement.. Mathematical modelling The main purpose of the mathematic model is to predict the behaviour of the parts involved in the electromagnetic circuit, in the magnetostrictive materials and in the mechanical structure. Magneto-mechanical coupling in the magnetostrictive materials is very strong. The mechanical strain will occur when the magnetic field is applied in addition to the strain that comes from the normal applied stress. (See Eq..1. The magnetization of that material changes due to the changes of the mechanical stress. (See Eq... The constitutive magnetostriction equations are: S η( H T + d H (.1 B d T + ( T H (. Definitions: Δl -strain S is the relative deformation of the l shape, -η( H is the compliance at constant magnetic field (the reciprocal of Young s modulus, - stress T is the forces per unit of area, - t is the time, - d is the piezomagnetic strain constant, - H is the magnetic filed (intensity, - B is the magnetic field (magnetic flux density, induction, - ( T is the permeability at constant stress. Some important mathematical steps to achieve the modelling are the follows: - For the first step the following parameters are assumed to be constants: η η and ( H ( T Considering the mechanical variation only in x direction, the strain result is: u S (.3 x where u f ( x, y, z is the position. - Making time-derivative and the second derivative on the equations (.1 and (.: u T H η + d (.4 x t t t - Consider the second Newton s law: F ma (.5 Then obtaining: F T A F ( m a u ρ a ρ (.6 x x V V t - The second step comes from Maxwell s equation: B E (.7 t E B J ε + (.8 t where: J is the electric current density, E the electric filed, ε the permittivity of free space and the permeability. - By using the Ohm s law: J σ E (.9 where: J is the current density, σ is the conductivity and E is the electric field. Consider the fact B 0. It can be shown that the results of all the mathematical calculating are the follows:
3 σ ( ε ρη σ ( ε ρd T d T H H H d t t t t (.10 T T H ρη + ρd (.11 x t t its generates the magnetic field H inside the material. To create a closed magnetic circuit for the magnetic flux, the model is provided with a part of ferromagnetic with high permeability (iron 000. Considering harmonic analysis, the system must be exposed by the harmonic excitation and the follow equation will be simplified in this manner: H ω kt + ω k H (.1 1 T x ω GT + ω G H (.13 1 where: d k 1 k iσ d + ω ( ρη ε i σ + ω ( ρd ε G G 1 ρσ ρd Now we can consider the parameters used above ( η η( H ( T with some iterative evaluation with H and T. Figure 4.1 Structure of the model Between the coil and the magnetostrictive rod there is a little space constitute of plastic isolation, the same between the coil and the iron. Figure.1 Iterative evaluations 4. Physics Model It is necessary to define a physical model related to the mathematical one just done above. To simulate the model in the right way, it has to provide the magnetic field inside the magnetostrictive rod by a coil around it. The coil is made of copper wires. When the current flows, Figure 4. Induction flux lines 5. Modelling in Comsol Multiphysics By using Comsol Multiphysics it is possible to describe the behaviour of the magnetostrictive material and capturing it on Comsol to have a predictive and detailed analysis of that material. Moreover one advantage of the simulation
4 program is: that it can be programmed to know the values of the variables inside the magnetostrictive material in each condition are needed, for example the response under harmonic excitation. To implement the equations is required the Partial Differential Equation s, called PDEs mode General form in Comsol. The subdomain settings are very important and the simulation depends on these, in particular the equations in the PDEs mode have to be active only in the subdomain constitute of the rod. it is possible to save more time during the simulation. Figure 5. Meshing for D geometry It is also necessary set up the mesh parameters to obtain a good convergence and a good compromise with the time required for the simulation. Figure 5.1 PDE Subdomain settings The 3D draw is useful to set up the value and the direction of the current in the coil. 6. Results The stress under harmonic excitation is time dependent and it is possible to see the stress shown below in the post-processing figures. The direction of the stress is dependent of the direction of the magnetic field. The input into this model is the sinusoidal coil current. The frequency in the follow examples is 50[Hz]. Figure 5.1 Meshing for 3D geometry An additional auxiliary D geometry allows one to solve the PDEs in a more quickly way than the 3D ones because the meshing is more simple and Figure 6. T and H at the peak negative value, time 1.
5 . G. Engdahl, Handbook of Giant Magnetostrictive Materials, ISBN x, Academic Press, San Diego, L. Kvarnsjö, On Characterization, Modelling and Application of Highly Magnetostrictive Materials, TRITA-EEA-9301 ISSN , Royal Institute of Technology, Stockholm, Sweden, Jonathan G.Benatar, Fem implementations of Magnetostrictive-Based applications, University of Maryland, USA, 005. Figure 6.3 T and H at the positive peak value, time 1. It can be note that the stress (represented by the colors surfaces is maximum when the magnetic potential is at the max value. 7. Conclusions Comsol is able to solve the magnetostrictive material modelling with the inputs given by PDE General Mode. From the model, it can be observed that the magnetic potential is dependent on the applied magnetic field, its value and its frequency. In order to show the stress, for the moment one has to use only the surface postplotting setting and it means that is not possible to understand the direction of this type of vector. As a result the stress (T is increasing in relation of H. The tractive or compressive efforts are located on the top and on the bottom of the rod. This happens because the magnetostrictive ones is fixed between the iron. Further research is required to obtain a complete and detailed development in every aspect of the behavior about the magnetostrictive effects and its surrounding. 8. References 1. M. Besbes, Z. Ren, A. Razek, Finite Element Analysis of Magneto-Mechanical Coupled Phenomena in Magnetostrictive Materials, IEEE Trans. Magn., Vol 3, pp , may 1996
2. Permanent Magnet (De-) Magnetization 2.1 Methodology
Permanent Magnet (De-) Magnetization and Soft Iron Hysteresis Effects: A comparison of FE analysis techniques A.M. Michaelides, J. Simkin, P. Kirby and C.P. Riley Cobham Technical Services Vector Fields
Design and Analysis of Switched Reluctance Motors
Design and Analysis of Switched Reluctance Motors İbrahim ŞENGÖR, Abdullah POLAT, and Lale T. ERGENE Electrical and Electronic Faculty, İstanbul Technical University, 34469, Istanbul, TURKEY [email protected],
Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
THE FINITE ELEMENT METHOD IN MAGNETICS
MIKLÓS KUCZMANN AMÁLIA IVÁNYI THE FINITE ELEMENT METHOD IN MAGNETICS AKADÉMIAI KIADÓ, BUDAPEST This book was sponsored by the Széchenyi István University in Győr by the Pollack Mihály Faculty of Engineering,
Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.
2. FEA and ANSYS FEA and ANSYS Overview In this chapter, we will define Finite Element Analysis and also give you an idea of ANSYS capabilities. Topics covered: A. What is FEA? B. About ANSYS FEA and ANSYS
Safakcan Tuncdemir 1, William M. Bradley *2. 1. Introduction
Modeling and Experimental Verification of the Power Transfer and Thermal Characteristics of Piezoelectric Transformers Subjected to Combined Mechanical and Electrical Loading Safakcan Tuncdemir 1, William
Numerical modeling of induction assisted subsurface heating technology
Numerical modeling of induction assisted subsurface heating technology By Lei Zhang A Thesis Submit to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response
FLUX / GOT-It Finite Element Analysis of electromagnetic devices Maccon GmbH
FLUX / GOT-It Finite Element Analysis of electromagnetic devices Maccon GmbH Entwurfswerkzeuge für elektrische Maschinen MACCON GmbH 09/04/2013 1 Flux software Modeling electromagnetic and thermal phenomena
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
Solved with COMSOL Multiphysics 4.3
Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions M. Bianchi Janetti 1, F. Ochs 1 and R. Pfluger 1 1 University of Innsbruck, Unit for Energy Efficient Buildings,
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
SLOT FRINGING EFFECT ON THE MAGNETIC CHARACTERISTICS OF ELECTRICAL MACHINES
Journal of ELECTRICAL ENGINEERING, VOL. 60, NO. 1, 2009, 18 23 SLOT FRINGING EFFECT ON THE MAGNETIC CHARACTERISTICS OF ELECTRICAL MACHINES Mohammad B. B. Sharifian Mohammad R. Feyzi Meysam Farrokhifar
Numerical Analysis of Transient Phenomena in Electromagnetic Forming Processes
Volume 49, Number 3, 8 359 Numerical Analysis of Transient Phenomena in Electromagnetic Forming Processes Sorin PASCA, Tiberiu VESSELENYI, Virgiliu FIRETEANU Pavel MUDURA, Tiberiu TUDORACHE, Marin TOMSE
Rotating Electromagnetic Field for Crack Detection in Railway Tracks
PIERS ONLINE, VOL. 6, NO. 3, 2010 22 Rotating Electromagnetic Field for Crack Detection in Railway Tracks M. Cacciola, G. Megali, D. Pellicanò, S. Calcagno, M. Versaci, and F. C. Morabito DIMET Department,
Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment
Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process
AALTO UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING
AALTO UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING Department of Electrical Engineering Bishal Silwal Computation of eddy currents in a solid rotor induction machine with 2-D and 3-D FEM Thesis supervisor:
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,
DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING
SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2
CONCEPT-II. Overview of demo examples
CONCEPT-II CONCEPT-II is a frequency domain method of moment (MoM) code, under development at the Institute of Electromagnetic Theory at the Technische Universität Hamburg-Harburg (www.tet.tuhh.de). Overview
Magnetic Fields. I. Magnetic Field and Magnetic Field Lines
Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models
Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models Dave Staton, Douglas Hawkins and Mircea Popescu Motor Design Ltd., Ellesmere, Shropshire,
6 J - vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems
Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee
Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic
Adaptation of General Purpose CFD Code for Fusion MHD Applications*
Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA [email protected] Abstract Analysis of many fusion
5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
Electromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2
A Practical Guide to Free Energy Devices
A Practical Guide to Free Energy Devices Part PatD9: Last updated: 28th January 2006 Author: Patrick J. Kelly Please note that this is a re-worded excerpt from this patent. If the content interests you,
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell
Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin
Measuring Impedance and Frequency Response of Guitar Pickups
Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited [email protected] www.syscompdesign.com April 30, 2011 Introduction The CircuitGear
Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet
VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for Non-Isolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite
DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
Frequecy Comparison and Optimization of Forged Steel and Ductile Cast Iron Crankshafts
International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 11ǁ November2013 ǁ PP.38-45 Frequecy Comparison and Optimization of Forged Steel
SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES
SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in
Application Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The
Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory
Insertion Devices Lecture 4 Permanent Magnet Undulators Jim Clarke ASTeC Daresbury Laboratory Introduction to Lecture 4 So far we have discussed at length what the properties of SR are, when it is generated,
Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus
Estimating Acoustic Performance of a Cell Phone Speaker Using Abaqus C. Jackman 1, M. Zampino 1 D. Cadge 2, R. Dravida 2, V. Katiyar 2, J. Lewis 2 1 Foxconn Holdings LLC 2 DS SIMULIA Abstract: Consumers
www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software
www.integratedsoft.com Electromagnetic Sensor Design: Key Considerations when selecting CAE Software Content Executive Summary... 3 Characteristics of Electromagnetic Sensor Systems... 3 Basic Selection
Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014
Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered
Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox
HOME APPLICATION NOTES Iron Powder Cores for Switchmode Power Supply Inductors by: Jim Cox Purpose: The purpose of this application note is to cover the properties of iron powder as a magnetic core material
Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements
K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh
Magnetic Field of a Circular Coil Lab 12
HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current
Summary Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current Joachim Härsjö, Massimo Bongiorno and Ola Carlson Chalmers University of Technology Energi och Miljö,
Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.
Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able
Elasticity Theory Basics
G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
FEM analysis of the forming process of automotive suspension springs
FEM analysis of the forming process of automotive suspension springs Berti G. and Monti M. University of Padua, DTG, Stradella San Nicola 3, I-36100 Vicenza (Italy) [email protected], [email protected].
METHODOLOGICAL CONSIDERATIONS OF DRIVE SYSTEM SIMULATION, WHEN COUPLING FINITE ELEMENT MACHINE MODELS WITH THE CIRCUIT SIMULATOR MODELS OF CONVERTERS.
SEDM 24 June 16th - 18th, CPRI (Italy) METHODOLOGICL CONSIDERTIONS OF DRIVE SYSTEM SIMULTION, WHEN COUPLING FINITE ELEMENT MCHINE MODELS WITH THE CIRCUIT SIMULTOR MODELS OF CONVERTERS. Áron Szûcs BB Electrical
A. Ricci, E. Giuri. Materials and Microsystems Laboratory
Presented at the COMSOL Conference 2009 Milan FSI Analysis of Microcantilevers Vibrating in Fluid Environment Materials and Microsystems Laboratory Politecnico di Torino Outline Brief Presentation of Materials
Reliable World Class Insights Your Silicon Valley Partner in Simulation ANSYS Sales, Consulting, Training & Support
www.ozeninc.com [email protected] (408) 732 4665 1210 E Arques Ave St 207 Sunnyvale, CA 94085 Reliable World Class Insights Your Silicon Valley Partner in Simulation ANSYS Sales, Consulting, Training &
BARE PCB INSPECTION BY MEAN OF ECT TECHNIQUE WITH SPIN-VALVE GMR SENSOR
BARE PCB INSPECTION BY MEAN OF ECT TECHNIQUE WITH SPIN-VALVE GMR SENSOR K. Chomsuwan 1, S. Yamada 1, M. Iwahara 1, H. Wakiwaka 2, T. Taniguchi 3, and S. Shoji 4 1 Kanazawa University, Kanazawa, Japan;
CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR
47 CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 4.1 INTRODUCTION This chapter deals with the design of 24 slots 8 poles, 48 slots 16 poles and 60 slots 16 poles brushless dc
Design Optimization of Printed Circuit Board Embedded Inductors through Genetic Algorithms with Verification by COMSOL
Design Optimization of Printed Circuit Board Embedded Inductors through Genetic Algorithms with Verification by COMSOL Mickey P. Madsen *, Jakob D. Mønster, Arnold Knott and Michael A.E. Andersen Technical
Introduction to COMSOL. The Navier-Stokes Equations
Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following
Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus
Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB-06-RCA-1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures
High-fidelity electromagnetic modeling of large multi-scale naval structures
High-fidelity electromagnetic modeling of large multi-scale naval structures F. Vipiana, M. A. Francavilla, S. Arianos, and G. Vecchi (LACE), and Politecnico di Torino 1 Outline ISMB and Antenna/EMC Lab
4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a
BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive
Monifysikaalisten ongelmien simulointi Elmer-ohjelmistolla. Simulation of Multiphysical Problems with Elmer Software
Monifysikaalisten ongelmien simulointi Elmer-ohjelmistolla Simulation of Multiphysical Problems with Elmer Software Peter Råback Tieteen CSC 25.11.2004 Definitions for this presentation Model Mathematical
The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM
1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different
Full representation of the real transformer
TRASFORMERS EQVALET CRCT OF TWO-WDG TRASFORMER TR- Dots show the points of higher potential. There are applied following conventions of arrow directions: -for primary circuit -the passive sign convention
Co-simulation of Microwave Networks. Sanghoon Shin, Ph.D. RS Microwave
Co-simulation of Microwave Networks Sanghoon Shin, Ph.D. RS Microwave Outline Brief review of EM solvers 2D and 3D EM simulators Technical Tips for EM solvers Co-simulated Examples of RF filters and Diplexer
ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS
ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical
1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS
1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS 12.1 Introduction This chapter is likely to be a short one, not least because it is a subject in which my own knowledge is, to put it charitably, a little
Product Data Bulletin
Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system
An Electromagnetic Micro Power Generator Based on Mechanical Frequency Up-Conversion
International Journal of Materials Science and Engineering Vol. 1, No. December 013 An Electromagnetic Micro Power Generator Based on Mechanical Frequency Up-Conversion Vida Pashaei and Manouchehr Bahrami
Testing and Condition Monitoring of Electromechanical Solenoids
Testing and Condition Monitoring of Electromechanical Solenoids Dipl.-Ing. Andrey Gadyuchko 2012-01-06 Steinbeis Ihr Partner bei der Entwicklung und Optimierung mechatronischer Antriebssysteme Content
Theory of Heating by Induction
CHAPTER 2 Theory of Heating by Induction INDUCTION HEATING was first noted when it was found that heat was produced in transformer and motor windings, as mentioned in the Chapter Heat Treating of Metal
Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves
Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems
Digital Energy ITI. Instrument Transformer Basic Technical Information and Application
g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER
Tutorial One: Calculation of leakage inductance of transformer using FEM. 31.5 MVA, 132 kv/33kv, Y/, Ampere-turns: 135024, No.
Tutorial One: Calculation of leakage inductance of transformer using FEM Consider a transformer with the following rating: 31.5 MVA, 132 kv/33kv, Y/, Ampere-turns: 135024, No. of HV turns = 980 Although
The performance improvement by ferrite loading means - increasing, - increasing of ratio, implicitly related to the input impedance.
3.2.3. Ferrite Loading Magnetic ferrite loading can enhance a transmitting signal as high as 2 to 10 db for MHz [Devore and Bohley, 1977]. There is an optimum frequency range where ferrite loading is beneficial.
Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions
Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Chandresh Shah Cummins, Inc. Abstract Any finite element analysis performed by an engineer is subject to several types of
Deflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
Comparison of Power Título Transmission Line Models with Finite Elements
CEPEL Comparison of Power Título Transmission do trabalho Line Models with Finite Elements Carlos K. C. Arruda, Anny A. Silveira, Fernando C. Dart Autor/apresentador Área Departamento de Linhas e Estações
Slots Geometry Influence on the Air gap Magnetic Field Distribution
Slots Geometry Influence on the Air gap Magnetic Field Distribution BELLAL ZAGHDOUD, ABDALLAH SAADOUN Electrical Engineering Department University of Annaba, ALGERIA [email protected], [email protected]
Finite Element Formulation for Plates - Handout 3 -
Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the
Simulation of Residual Stresses in an Induction Hardened Roll
2.6.4 Simulation of Residual Stresses in an Induction Hardened Roll Ludwig Hellenthal, Clemens Groth Walzen Irle GmbH, Netphen-Deuz, Germany CADFEM GmbH, Burgdorf/Hannover, Germany Summary A heat treatment
Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor
Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor M. Gabalis *1, D. Urbonas 1, and R. Petruškevičius 1 1 Institute of Physics of Center for Physical Sciences and Technology,
Topic Suggested Teaching Suggested Resources
Lesson 1 & 2: DC Networks Learning Outcome: Be able to apply electrical theorems to solve DC network problems Electrical theorems and DC network problems Introduction into the unit contents, aims & objectives
Mutual Inductance and Transformers F3 3. r L = ω o
utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil
Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets
Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear
Prediction of Core Losses of Three-Phase Distribution Transformer
Journal of Energy and Power Engineering 7 (2013) 2347-2353 D DAVID PUBLISHING Prediction of Core Losses of Three-Phase Distribution Transformer Mihail Digalovski, Krste Najdenkoski and Goran Rafajlovski
FATIGUE CONSIDERATION IN DESIGN
FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure
Magnetic electro-mechanical machines
Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity
ElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
Candidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
1150 hp motor design, electromagnetic and thermal analysis
115 hp motor design, electromagnetic and thermal analysis Qasim Al Akayshee 1, and David A Staton 2 1 Mawdsley s Ltd., The Perry Centre, Davey Close, Waterwells, Gloucester GL2 4AD phone: +44 1452 888311
A Strategy for Teaching Finite Element Analysis to Undergraduate Students
A Strategy for Teaching Finite Element Analysis to Undergraduate Students Gordon Smyrell, School of Computing and Mathematics, University of Teesside The analytical power and design flexibility offered
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
TECHNICAL PAPER. Magnetostrictive Level Sensors. Liquid Level Sensors. Theory of Operation. David Nyce and Adrian Totten
l MTS Systems Corporation Sensors Division 3001 Sheldon Drive Cary, NC 27513 Phone 919-677-0100, Fax 919-677-0200 TECHNICAL PAPER Part Number: 08-02 M1166 Revision A Magnetostrictive Level Sensors David
