Interplanetary Internet (IPN): An Architectural Definition

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Interplanetary Internet (IPN): An Architectural Definition"

Transcription

1 Interplanetary Internet (IPN): An Architectural Definition

2 1. Introduction 2. Inter-Internet Dialogs 3. Building a stable Backbone for the IPN 4. IPN Nodes 5. Security in the IPN 6. Deployed Internets in the IPN 7. Working Conclusions

3 1. Introduction Introduction (1) TCP/IP works well in terrestrial communication TCP/IP will also work well on other planets, on moons and in space crafts Reason: similiar propagation delay, bit error rate and bandwidth like on earth

4 1. Introduction Introduction (2) Differences between intraplanetary and interplanetary Internet: Propagation delay Low and asymmetric bandwidth Intermittent connectivity High bit error rate Problems with permanent power supply

5 1. Introduction Introduction (3) Chatty protocols like TCP/IP are relatively unattractive for an Interplanetary Internet IPNSIG was formed to develop protocols for an Interplanetary Internet

6 1. Introduction 2. Inter-Internet Dialogs 3. Building a stable Backbone for the IPN 4. IPN Nodes 5. Security in the IPN 6. Deployed Internets in the IPN 7. Working Conclusions

7 2. Inter-Internet Dialogs Inter-Internet Dialogs 1 Principles of Design 2 The center of the IPN: the Bundle Layer Concept (store-and-forward overlay network) Reliability at the Bundle Layer 3 Bandwidth Allocation via Market Mechanisms: Starbucks

8 2. Inter-Internet Dialogs Principles of Design - Name Tuples Consisting of Administrative and Routing Parts Internet on Earth: Hierarchical Name Space: host name, [subdomain]+, top level domain, root e.g. www7.informatik. uni-wuerzburg.de Top Level Domains (TLD) geographic split (e.g. de, fr,...) organisational split (e.g. com, org, net, edu,...) Domain Name System (DNS) used mostly to translate between domain names and IP addresses

9 2. Inter-Internet Dialogs Principles of Design - Name Tuples Consisting of Administrative and Routing Parts Problems at the IPN: distributed nature of the DNS database zone transfers solutions?.sol with topological significance.com means.com ON EARTH

10 2. Inter-Internet Dialogs Principles of Design - Name Tuples Consisting of Administrative and Routing Parts Names in the IPN should consist of a tuple: {administrative part, routing part} e.g. { earth.sol} routing part serves purpose of new TLD Advantages: only the routing part must be resolvable everywhere routing part identifies Internet as IPN-Region e.g. earth.sol would be an IPN-Region including the entire Earth administrative part must only be resolvable at the corresponding IPN-Region

11 IPN-REGIONS

12 2. Inter-Internet Dialogs The center of the IPN: the Bundle Layer - Concept (store- and- forward overlay network) 1 Problem: intermittent connectivity reasons: physical, schedule-related, administrative 2 Problem: high priority interrupt traffic 3 Problem: varying communication environments including different transport protocols Information has to be stored for an indefinite period!

13 2. Inter-Internet Dialogs The center of the IPN: the Bundle Layer - Concept (store- and- forward overlay network) Possible solution: BUNDLE LAYER IPN-Nodes terminate the transport-layer protocols in the respective IPN-regions Informations should be stored at a higher layer before forwarded Bundle protocol store-and-forward overlay network

14 2. Inter-Internet Dialogs The center of the IPN: the Bundle Layer - Concept (store- and- forward overlay network) Concept: atomic bundle in the IPN it is the Bundle Layer operates end-to-end, not the transport layer protocol terminating the transport protocols at the IPN nodes, decouples the Internets in different IPN regions ADVANTAGE: modularity & extension aspects

15 2. Inter-Internet Dialogs The center of the IPN: the Bundle Layer - Concept (store- and- forward overlay network) An Example An Internet IPN-Backbone An Internet A B* C* D* E * = Custody Transfers Return Receipt

16 2. Inter-Internet Dialogs The center of the IPN: the Bundle Layer - Concept (store- and- forward overlay network) The Bundle Layer provides a lot of services to applications using it: late binding of destination name s administrative part to an address transmission of user s specification for reliability quality of service security provide error recovery mechanisms

17 2. Inter-Internet Dialogs The center of the IPN: the Bundle Layer - Reliability at the Bundle Layer End-to-end reliability can only be assured at the Bundle Layer each Bundle Layer entity is confident, that the transport layer operates successfully if failures occur: the prior custodian-node re-transmit any missing data Highly optimistic timers (minimize unnecessary Bundle Layer retransmission): give the Transport protocols every opportunity to complete reliable transmission

18 2. Inter-Internet Dialogs Bandwidth Allocation via Market Mechanisms: Starbucks To promote the performance of the IPN some sophisticated and adaptable bandwidth allocation system are required Idea: fare-paying packets source application (bundle sender) specifies total funds allocated, getting the bundle delivered to the destination

19 1. Introduction 2. Inter-Internet Dialogs 3. Building a stable Backbone for the IPN 4. IPN Nodes 5. Security in the IPN 6. Deployed Internets in the IPN 7. Working Conclusions

20 3. Building a stable Backbone Building a stable Backbone for the IPN 1 Common things of IPN & terrestrial Backbones 2 Differences between interplanetary & terrestrial Backbones 3 Backbone Design Considerations

21 3. Building a stable Backbone Common things of IPN & terrestrial Backbones Terrestrial and extraterrestrial Internet: performance and capability are determined by capacity and stability of its backbone backbone links are between the highactivity subnets e.g. on Earth: between Chicago and Houston in the IPN: between Earth and Mars

22 3. Building a stable Backbone Differences between interplanetary & terrestrial Backbones different transmission medias: on earth: copper respectively optical fiber at the IPN: radiation - RF or optical different mode of connectivity between backbone POPs: on earth: connectivity structural & static at the IPN: connectivity operational, directed & highly dynamic

23 3. Building a stable Backbone Differences between interplanetary & terrestrial Backbones much higher costs of deploying, repairing and upgrading infrastructure at the IPN - Backbone higher costs of configuring, operating & managing the IPN - Backbone shortage and costs of electrical power speed of light is the most important constraint on IPN - Backbone operations

24 3. Building a stable Backbone Backbone Design Considerations 2 general constraints on the design of the IPN - Backbone: Bandwidth is not free, or even cheap. Interactive protocols don t work, at least not well.

25 3. Building a stable Backbone Backbone Design Considerations Design constraints must be accomodated at 4 layers of the protocol stack: physical layer: physical infrastructure of the IPN-Backbone consists mainly of antennas problems: accuracy in pointing & transmission scheduling at the backbones antennas all elements of the IPN-Backbone infrastructure must have in common: (a) one another s orbital dynamics (b) current time

26 3. Building a stable Backbone Backbone Design Considerations link layer: link protocols that minimizes overhead CCSDS protocol standards network layer: no interplanetary backbone functionality will be required at this layer transport layer: as discussed before: TCP will not be suitable! But: the Bundle Protocol residing just above the transport layer

27 3. Building a stable Backbone Backbone Design Considerations Bundle Protocol: relatively optimistic about transmission success but it must have transport-layer-like properties: recover from transmission failure at lower layers capacity for timeout detection and custodian-to-custodian retransmission

28 3. Building a stable Backbone Backbone Design Considerations Bundle Protocol: optimism results from the general trustworthiness of lower layers: When the Bundle Protocol runs over TCP in a deployed Internet, TCP s own retransmission regime automatically recovers from errors in the network and link layers, and only a failure in TCP itself will trigger retransmission at the bundle layer.

29 1. Introduction 2. Inter-Internet Dialogs 3. Building a stable Backbone for the IPN 4. IPN Nodes 5. Security in the IPN 6. Deployed Internets in the IPN 7. Working Conclusions

30 4. IPN-Nodes IPN-Nodes - Types of IPN Nodes - Backbone Connectivity - IPN Gateway Routing - The Contact Scheduler - The Route Evaluation - The Dispatcher Algorithm - Example: end-to-end transfer - Possible Errors - Support of existing applications

31 4. IPN-Nodes Types of IPN Nodes Three types of IPN Nodes: - All nodes are bundle agents - Some bundle agents are able to act as IPN Relays - Some IPN Relays are also able to act as IPN Gateways

32 4. IPN-Nodes Backbone Connectivity IPN long-haul communication links are directional, mobile and highly scheduled When a bundle arrives at an IPN Gateway, some or all outbound routes may be down Interplanetary Internet should use store-andforward mechanisms to route bundles

33 4. IPN-Nodes IPN Gateway Routing Routing in IPN Gateways has three distinct parts: - The contact scheduler - The route evaluation algorithm - The dispatcher algorithm

34 4. IPN-Nodes IPN Gateway Routing- The contact scheduler Input: orbital mechanics, resources management Output: schedule for next-hop communication (planned contacts, duration, expected data rate) First centralized, later distributed contact scheduling algorithm

35 4. IPN-Nodes IPN Gateway Routing- The route evaluation Exchange of information with first-hop neighbors to build a picture of the IPN beyond first-hop neighbors Goal: distance-vector representation for routing Metrics are still in development

36 4. IPN-Nodes IPN Gateway Routing- The dispatcher algorithm Input: contact schedule, routing information, policy information, specifications provided by the bundle transport layer Output: Manifest for each next-hop contact

37 4. IPN-Nodes Summary of gateway routing Contact scheduler Policy information Bundle arrives Bundle send to next hop Routing Function Request Transmisson time Dispatcher Manifest

38 4. IPN-Nodes - Example: end-to-end transfer SRC Earth s IPN Region: earth.sol DNS 1 GW 1 DNS2 The Backbone IPN Region: ipn.sol GW 3 GW 4 GW 2 Venus IPN Region: venus.sol Jupiter s IPN Region: jupiter.sol DNS 3 DST Mars IPN Region: mars.sol

39 4. IPN-Nodes Example: end-to-end transfer Host IPN Regions Host name Tuples SRC earth.sol {src.jpl.nasa.gov, earth.sol} IPN GW1 IPN GW 2 earth.sol ipn.sol ipn.sol mars.sol {ipngw1.jpl.nasa.gov, earth.sol} {ipngw1.jpl.nasa.gov, ipn.sol} {ipngw2.nasa.mars.org, ipn.sol} {ipngw2.nasa.mars.org, mars.sol} DST mars.sol {dst.jpl.nasa.gov, mars.sol} Table 1: Host name Tuples

40 4. IPN-Nodes Example: end-to-end transfer Step 1: Bundle creation and first-hop transmission - Source host on earth has data that it wants to send to a destination host to mars - Bundle agent creates a bundle and stores it in persistent storage - Information in Bundle header: Bundle Idendifier, Source Host name Tuple, Custodian name Tuple, Time to live

41 4. IPN-Nodes Example: end-to-end transfer Item Value Description Destination Host name Destination application instance handle Source application instance handle Handling instructions Data {dst.jpl.nasa.gov, mars.sol} 0x x A Reliable delivery, priority IPN Name tuple of the destination Similiar to port number used to identify the source application instance for response processing The services requested from the bundle Table 2: Information passed from source application to bundle agent

42 4. IPN-Nodes Example: end-to-end transfer - Dispatcher finds, that next-hop neighbor is {ipngw1.jpl.nasa.com, earth.sol} - Bundle is sent via TCP

43 4. IPN-Nodes Example: end-to-end transfer Step 2: Bundle processing at first-hop destination: - IPN Gateway receives bundle via TCP and stores it in persistent storage - Bundle agent accepts custody of bundle, updates the bundleheader and informs the source - Source bundle agent deletes its copy of the bundle

44 4. IPN-Nodes Example: end-to-end transfer - Dispatcher checks time to live in the bundle - Dispatcher finds that next-hop neighbor is in the ipn.sol region {ipngw2.nasa.mars.org, ipn.sol} - Dispatcher provides time at which the bundle should be send to ipngw2 via Long Haul Transport Protocol (LTP) - Bundle is transmitted at the given time

45 4. IPN-Nodes Example: end-to-end transfer Step 3: Bundle processing at gateway to destination IPN region - Mars gateway receives bundle via LTP - Mars gateway stores bundle on persistant storage, accepts custody of the bundle and signalises success back to earth - Dispatcher returns, that the next-hop is the destination, that the proper protocol is TCP and that the destination is accessible immediately - Mars gateway forwards bundle to destination

46 4. IPN-Nodes Example: end-to-end transfer Step 4: Bundle processing at destination - Destination bundle agent receives bundle via TCP, stores it in persistant storage and accepts the custody of the bundle from ipngw2 - Bundle agent awakens destination application process identified by the Destination Application Instance Handle - Bundleagent deletesthe copy of the bundlewhen the application received it

47 4. IPN-Nodes - Possible Errors Possible Errors Unknowndestination region Invalid Source Application Bundle Parameter Syntax Error Bundle Parameter Semantic Error Invalid Node Name Insufficient buffer space DNS unreachable

48 4. IPN-Nodes - Possible Errors Possible Errors Time exceeded Source Entity Access denied Invalid Administrative Destination Name Invalid Destination Application End-to-end Access denied

49 4. IPN-Nodes - Support of existing applications Support of existing applications There is no clean way to support applications in the IPN SMTP is perhaps the only application that could possibly be tuned to work over interplanetary distances

50 1. Introduction 2. Inter-Internet Dialogs 3. Building a stable Backbone for the IPN 4. IPN Nodes 5. Security in the IPN 6. Deployed Internets in the IPN 7. Working Conclusions

51 1. Introduction 2. Inter-Internet Dialogs 3. Building a stable Backbone for the IPN 4. IPN Nodes 5. Security in the IPN 6. Deployed Internets in the IPN 7. Working Conclusions

5. Security in the IPN

5. Security in the IPN 1. Introduction 2. Inter-Internet Dialogs 3. Building a stable Backbone for the IPN 4. IPN Nodes 5. Security in the IPN 6. Deployed Internets in the IPN 7. Working conclusions 5. Security 5.1. Introduction

More information

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet Basic Networking Concepts 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet 1 1. Introduction -A network can be defined as a group of computers and other devices connected

More information

The Internet. The Internet. The Internet. What is the internet, and how does it work?

The Internet. The Internet. The Internet. What is the internet, and how does it work? ECS 15; Lectures 17 and 18 Final paper: The Abstract 1-2 sentences defining the research problem. What is the internet, and how does it work? 1-2 sentences explaining your approach. 1-2 sentences describing

More information

Computer Networks CS321

Computer Networks CS321 Computer Networks CS321 Dr. Ramana I.I.T Jodhpur Dr. Ramana ( I.I.T Jodhpur ) Computer Networks CS321 1 / 22 Outline of the Lectures 1 Introduction OSI Reference Model Internet Protocol Performance Metrics

More information

TCP/IP Protocol Architecture. The Need For Protocol Architecture

TCP/IP Protocol Architecture. The Need For Protocol Architecture TCP/IP Protocol Architecture CSE 3213 Fall 2011 1 The Need For Protocol Architecture 1.) the source must activate communications path or inform network of destination 2.) the source must make sure that

More information

Architecture of distributed network processors: specifics of application in information security systems

Architecture of distributed network processors: specifics of application in information security systems Architecture of distributed network processors: specifics of application in information security systems V.Zaborovsky, Politechnical University, Sait-Petersburg, Russia vlad@neva.ru 1. Introduction Modern

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.

More information

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

More information

Module 11: TCP/IP Transport and Application Layers

Module 11: TCP/IP Transport and Application Layers Module 11: TCP/IP Transport and Application Layers 11.1 TCP/IP Transport Layer 11.1.1 Introduction to the TCP/IP transport layer The primary duties of the transport layer are to transport and regulate

More information

Protocols and Architecture. Protocol Architecture.

Protocols and Architecture. Protocol Architecture. Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

CS 457 Lecture 19 Global Internet - BGP. Fall 2011

CS 457 Lecture 19 Global Internet - BGP. Fall 2011 CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with

More information

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

Routing Protocols (RIP, OSPF, BGP)

Routing Protocols (RIP, OSPF, BGP) Chapter 13 Routing Protocols (RIP, OSPF, BGP) INTERIOR AND EXTERIOR ROUTING RIP OSPF BGP 1 The McGraw-Hill Companies, Inc., 2000 1 Introduction Packets may pass through several networks on their way to

More information

CS335 Sample Questions for Exam #2

CS335 Sample Questions for Exam #2 CS335 Sample Questions for Exam #2.) Compare connection-oriented with connectionless protocols. What type of protocol is IP? How about TCP and UDP? Connection-oriented protocols Require a setup time to

More information

Route Discovery Protocols

Route Discovery Protocols Route Discovery Protocols Columbus, OH 43210 Jain@cse.ohio-State.Edu http://www.cse.ohio-state.edu/~jain/ 1 Overview Building Routing Tables Routing Information Protocol Version 1 (RIP V1) RIP V2 OSPF

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

Advanced Networking Routing: RIP, OSPF, Hierarchical routing, BGP

Advanced Networking Routing: RIP, OSPF, Hierarchical routing, BGP Advanced Networking Routing: RIP, OSPF, Hierarchical routing, BGP Renato Lo Cigno Routing Algorithms: One or Many? Is there a single routing protocol in the Internet? How can different protocols and algorithms

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------

Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------ Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 2 Deadline : April 25 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------

More information

The OSI and TCP/IP Models. Lesson 2

The OSI and TCP/IP Models. Lesson 2 The OSI and TCP/IP Models Lesson 2 Objectives Exam Objective Matrix Technology Skill Covered Exam Objective Exam Objective Number Introduction to the OSI Model Compare the layers of the OSI and TCP/IP

More information

The OSI Model and the TCP/IP Protocol Suite PROTOCOL LAYERS. Hierarchy. Services THE OSI MODEL

The OSI Model and the TCP/IP Protocol Suite PROTOCOL LAYERS. Hierarchy. Services THE OSI MODEL The OSI Model and the TCP/IP Protocol Suite - the OSI model was never fully implemented. - The TCP/IP protocol suite became the dominant commercial architecture because it was used and tested extensively

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Agenda. Distributed System Structures. Why Distributed Systems? Motivation

Agenda. Distributed System Structures. Why Distributed Systems? Motivation Agenda Distributed System Structures CSCI 444/544 Operating Systems Fall 2008 Motivation Network structure Fundamental network services Sockets and ports Client/server model Remote Procedure Call (RPC)

More information

What is CSG150 about? Fundamentals of Computer Networking. Course Outline. Lecture 1 Outline. Guevara Noubir noubir@ccs.neu.

What is CSG150 about? Fundamentals of Computer Networking. Course Outline. Lecture 1 Outline. Guevara Noubir noubir@ccs.neu. What is CSG150 about? Fundamentals of Computer Networking Guevara Noubir noubir@ccs.neu.edu CSG150 Understand the basic principles of networking: Description of existing networks, and networking mechanisms

More information

EECS 489 Winter 2010 Midterm Exam

EECS 489 Winter 2010 Midterm Exam EECS 489 Winter 2010 Midterm Exam Name: This is an open-book, open-resources exam. Explain or show your work for each question. Your grade will be severely deducted if you don t show your work, even if

More information

Communication Systems Internetworking (Bridges & Co)

Communication Systems Internetworking (Bridges & Co) Communication Systems Internetworking (Bridges & Co) Prof. Dr.-Ing. Lars Wolf TU Braunschweig Institut für Betriebssysteme und Rechnerverbund Mühlenpfordtstraße 23, 38106 Braunschweig, Germany Email: wolf@ibr.cs.tu-bs.de

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

Objectives of Lecture. Network Architecture. Protocols. Contents

Objectives of Lecture. Network Architecture. Protocols. Contents Objectives of Lecture Network Architecture Show how network architecture can be understood using a layered approach. Introduce the OSI seven layer reference model. Introduce the concepts of internetworking

More information

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories:

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories: Due to the number of hardware possibilities for a network, there must be a set of rules for how data should be transmitted across the connection media. A protocol defines how the network devices and computers

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls

More information

Internet Packets. Forwarding Datagrams

Internet Packets. Forwarding Datagrams Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed

More information

Distance Vector Routing Protocols. Routing Protocols and Concepts Ola Lundh

Distance Vector Routing Protocols. Routing Protocols and Concepts Ola Lundh Distance Vector Routing Protocols Routing Protocols and Concepts Ola Lundh Objectives The characteristics of distance vector routing protocols. The network discovery process of distance vector routing

More information

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1 Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4

More information

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility

More information

OSI Network Layer OSI Layer 3

OSI Network Layer OSI Layer 3 OSI Network Layer OSI Layer 3 Network Fundamentals Chapter 5 ١ Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device Examine the most

More information

1.264 Lecture 37. Telecom: Enterprise networks, VPN

1.264 Lecture 37. Telecom: Enterprise networks, VPN 1.264 Lecture 37 Telecom: Enterprise networks, VPN 1 Enterprise networks Connections within enterprise External connections Remote offices Employees Customers Business partners, supply chain partners Patients

More information

How the Internet Works? ( TCP/IP, DNS, HKIX )

How the Internet Works? ( TCP/IP, DNS, HKIX ) How the Internet Works? ( TCP/IP, DNS, HKIX ) CSC1720 Introduction to Internet Essential Materials How computers send data? Channel Protocol Connection method Address CSC1720 Introduction to Internet 2

More information

SwiftBroadband and IP data connections

SwiftBroadband and IP data connections SwiftBroadband and IP data connections Version 01 30.01.08 inmarsat.com/swiftbroadband Whilst the information has been prepared by Inmarsat in good faith, and all reasonable efforts have been made to ensure

More information

Network Architecture and the OSI Reference Model

Network Architecture and the OSI Reference Model Network Architecture and the OSI Reference Model Advanced Computer Networks D12 Architecture Outline The Internet and IP Network Architecture Protocols and s Encapsulation The OSI Reference Model The Seven

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

524 Computer Networks

524 Computer Networks 524 Computer Networks Section 1: Introduction to Course Dr. E.C. Kulasekere Sri Lanka Institute of Information Technology - 2005 Course Outline The Aim The course is design to establish the terminology

More information

Computer Networks & Security 2014/2015

Computer Networks & Security 2014/2015 Computer Networks & Security 2014/2015 IP Protocol Stack & Application Layer (02a) Security and Embedded Networked Systems time Protocols A human analogy All Internet communication is governed by protocols!

More information

Computer Networks Vs. Distributed Systems

Computer Networks Vs. Distributed Systems Computer Networks Vs. Distributed Systems Computer Networks: A computer network is an interconnected collection of autonomous computers able to exchange information. A computer network usually require

More information

Multihoming and Multi-path Routing. CS 7260 Nick Feamster January 29. 2007

Multihoming and Multi-path Routing. CS 7260 Nick Feamster January 29. 2007 Multihoming and Multi-path Routing CS 7260 Nick Feamster January 29. 2007 Today s Topic IP-Based Multihoming What is it? What problem is it solving? (Why multihome?) How is it implemented today (in IP)?

More information

Giving life to today s media distribution services

Giving life to today s media distribution services Giving life to today s media distribution services FIA - Future Internet Assembly Athens, 17 March 2014 Presenter: Nikolaos Efthymiopoulos Network architecture & Management Group Copyright University of

More information

Delay / Disruption Tolerant Networking (DTN) Security Key Management Fred L. Templin fred.l.templin@boeing.com

Delay / Disruption Tolerant Networking (DTN) Security Key Management Fred L. Templin fred.l.templin@boeing.com Delay / Disruption Tolerant Networking (DTN) Security Key Management Fred L. Templin fred.l.templin@boeing.com Mark Anderson, L2 Background The Internet Protocols (TCP/IP) are ubiquitous: Most widely-deployed

More information

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst Data communication in reality In reality, the source and destination hosts are very seldom on the same network, for

More information

Neighbour Discovery in IPv6

Neighbour Discovery in IPv6 Neighbour Discovery in IPv6 Andrew Hines Topic No: 17 Email: hines@zitmail.uni-paderborn.de Organiser: Christian Schindelhauer University of Paderborn Immatriculation No: 6225220 August 4, 2004 1 Abstract

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

1 Introduction to mobile telecommunications

1 Introduction to mobile telecommunications 1 Introduction to mobile telecommunications Mobile phones were first introduced in the early 1980s. In the succeeding years, the underlying technology has gone through three phases, known as generations.

More information

The OSI Model and the TCP/IP Protocol Suite. Pritee Parwekar ANITS 1

The OSI Model and the TCP/IP Protocol Suite. Pritee Parwekar ANITS 1 The OSI Model and the TCP/IP Protocol Suite Pritee Parwekar ANITS 1 To study To discuss the idea of multiple layering in data communication and networking and the interrelationship between layers. To discuss

More information

Architecture and Performance of the Internet

Architecture and Performance of the Internet SC250 Computer Networking I Architecture and Performance of the Internet Prof. Matthias Grossglauser School of Computer and Communication Sciences EPFL http://lcawww.epfl.ch 1 Today's Objectives Understanding

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List

More information

Network layer" 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! goals: "

Network layer 1DT066! Distributed Information Systems!! Chapter 4 Network Layer!! goals: 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! Network layer" goals: "! understand principles behind layer services:" " layer service models" " forwarding versus routing" " how a

More information

Troubleshooting Tools

Troubleshooting Tools Troubleshooting Tools An overview of the main tools for verifying network operation from a host Fulvio Risso Mario Baldi Politecnico di Torino (Technical University of Turin) see page 2 Notes n The commands/programs

More information

The ISO/OSI Reference Model

The ISO/OSI Reference Model The ISO/OSI Reference Model The Model Functionality of Layers Example Networks The OSI Model Basic principles of layered architecture: Each layer means different layer of abstraction Each layer should

More information

DG Forwarding Algorithm

DG Forwarding Algorithm DG Forwarding Algorithm Host or Router first check if destination on same Network Router multiple interfaces Match found deliver to that Network If not found default router for every router a default router

More information

2.1.2.2.2 Variable length subnetting

2.1.2.2.2 Variable length subnetting 2.1.2.2.2 Variable length subnetting Variable length subnetting or variable length subnet masks (VLSM) allocated subnets within the same network can use different subnet masks. Advantage: conserves the

More information

Protocols. Packets. What's in an IP packet

Protocols. Packets. What's in an IP packet Protocols Precise rules that govern communication between two parties TCP/IP: the basic Internet protocols IP: Internet Protocol (bottom level) all packets shipped from network to network as IP packets

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

Chapter 7. Local Area Network Communications Protocols

Chapter 7. Local Area Network Communications Protocols Chapter 7 Local Area Network Communications Protocols IP Version 4 The most commonly used network layer protocol is IP, or the Internet Protocol. As its name would indicate, IP is the protocol used on

More information

IP addressing. Interface: Connection between host, router and physical link. IP address: 32-bit identifier for host, router interface

IP addressing. Interface: Connection between host, router and physical link. IP address: 32-bit identifier for host, router interface IP addressing IP address: 32-bit identifier for host, router interface Interface: Connection between host, router and physical link routers typically have multiple interfaces host may have multiple interfaces

More information

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of

More information

Integration Guide. EMC Data Domain and Silver Peak VXOA 4.4.10 Integration Guide

Integration Guide. EMC Data Domain and Silver Peak VXOA 4.4.10 Integration Guide Integration Guide EMC Data Domain and Silver Peak VXOA 4.4.10 Integration Guide August 2013 Copyright 2013 EMC Corporation. All Rights Reserved. EMC believes the information in this publication is accurate

More information

Dynamic Congestion-Based Load Balanced Routing in Optical Burst-Switched Networks

Dynamic Congestion-Based Load Balanced Routing in Optical Burst-Switched Networks Dynamic Congestion-Based Load Balanced Routing in Optical Burst-Switched Networks Guru P.V. Thodime, Vinod M. Vokkarane, and Jason P. Jue The University of Texas at Dallas, Richardson, TX 75083-0688 vgt015000,

More information

Security Design. thm@informatik.uni-rostock.de http://wwwiuk.informatik.uni-rostock.de/

Security Design. thm@informatik.uni-rostock.de http://wwwiuk.informatik.uni-rostock.de/ Security Design thm@informatik.uni-rostock.de http://wwwiuk.informatik.uni-rostock.de/ Content Security Design Analysing Design Requirements Resource Separation a Security Zones VLANs Tuning Load Balancing

More information

CSE 3461 / 5461: Computer Networking & Internet Technologies

CSE 3461 / 5461: Computer Networking & Internet Technologies Autumn Semester 2014 CSE 3461 / 5461: Computer Networking & Internet Technologies Instructor: Prof. Kannan Srinivasan 08/28/2014 Announcement Drop before Friday evening! k. srinivasan Presentation A 2

More information

Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks

Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Introduction Issues Design Goals Classifications TCP Over Ad Hoc Wireless Networks Other Transport Layer Protocols Security

More information

Computer Networking Networks

Computer Networking Networks Page 1 of 8 Computer Networking Networks 9.1 Local area network A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as a home, school, office

More information

ΕΠΛ 674: Εργαστήριο 5 Firewalls

ΕΠΛ 674: Εργαστήριο 5 Firewalls ΕΠΛ 674: Εργαστήριο 5 Firewalls Παύλος Αντωνίου Εαρινό Εξάμηνο 2011 Department of Computer Science Firewalls A firewall is hardware, software, or a combination of both that is used to prevent unauthorized

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

1.1 Prior Knowledge and Revision

1.1 Prior Knowledge and Revision 1.1. PRIOR KNOWLEDGE AND REVISION 3 1.1 Prior Knowledge and Revision This topic assumes you already have some background knowledge of the Internet. You may have studied The Internet unit of Intermediate

More information

Configuring Network Address Translation (NAT)

Configuring Network Address Translation (NAT) 8 Configuring Network Address Translation (NAT) Contents Overview...................................................... 8-3 Translating Between an Inside and an Outside Network........... 8-3 Local and

More information

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet

CCNA R&S: Introduction to Networks. Chapter 5: Ethernet CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

IP Networking. Overview. Networks Impact Daily Life. IP Networking - Part 1. How Networks Impact Daily Life. How Networks Impact Daily Life

IP Networking. Overview. Networks Impact Daily Life. IP Networking - Part 1. How Networks Impact Daily Life. How Networks Impact Daily Life Overview Dipl.-Ing. Peter Schrotter Institute of Communication Networks and Satellite Communications Graz University of Technology, Austria Fundamentals of Communicating over the Network Application Layer

More information

Tomás P. de Miguel DIT-UPM. dit UPM

Tomás P. de Miguel DIT-UPM. dit UPM Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability

More information

University of Uppsala. IT3 (Datorsystem II : Networks) Data Communication and Networks INSTRUCTIONS TO CANDIDATES

University of Uppsala. IT3 (Datorsystem II : Networks) Data Communication and Networks INSTRUCTIONS TO CANDIDATES University of Uppsala Department of Computer Systems (DoCS) Final Examination IT3 (Datorsystem II : Networks) Data Communication and Networks INSTRUCTIONS TO CANDIDATES This is a FIVE (5) hour examination

More information

Understanding TCP/IP. Introduction. What is an Architectural Model? APPENDIX

Understanding TCP/IP. Introduction. What is an Architectural Model? APPENDIX APPENDIX A Introduction Understanding TCP/IP To fully understand the architecture of Cisco Centri Firewall, you need to understand the TCP/IP architecture on which the Internet is based. This appendix

More information

Management Information Systems

Management Information Systems Management Information Systems Basics of the Internet Dr. Shankar Sundaresan (Adapted from Introduction to IS, Rainer and Turban) Internet Basics Outline Internet History Internet Structure Switching Methods

More information

Chapter 1: Introduction. Chapter 1: roadmap. Our goal: Overview:

Chapter 1: Introduction. Chapter 1: roadmap. Our goal: Overview: Chapter 1: Introduction Our goal: get feel and terminology more depth, detail later in course approach: use Internet as example Overview: what s the Internet what s a protocol? network edge network core

More information

Facility Usage Scenarios

Facility Usage Scenarios Facility Usage Scenarios GDD-06-41 GENI: Global Environment for Network Innovations December 22, 2006 Status: Draft (Version 0.1) Note to the reader: this document is a work in progress and continues to

More information

A NOVEL RESOURCE EFFICIENT DMMS APPROACH

A NOVEL RESOURCE EFFICIENT DMMS APPROACH A NOVEL RESOURCE EFFICIENT DMMS APPROACH FOR NETWORK MONITORING AND CONTROLLING FUNCTIONS Golam R. Khan 1, Sharmistha Khan 2, Dhadesugoor R. Vaman 3, and Suxia Cui 4 Department of Electrical and Computer

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Exercises TCP/IP Networking. Solution. With Solutions

Exercises TCP/IP Networking. Solution. With Solutions Exercises TCP/IP Networking Solution. With Solutions Jean-Yves Le Boudec Fall 2010 Exercises marked with a were given at exams in the past. 1 Module 1: TCP/IP Architecture Exercise 1.1 Elaine is setting

More information

What is a Firewall? A choke point of control and monitoring Interconnects networks with differing trust Imposes restrictions on network services

What is a Firewall? A choke point of control and monitoring Interconnects networks with differing trust Imposes restrictions on network services Firewalls What is a Firewall? A choke point of control and monitoring Interconnects networks with differing trust Imposes restrictions on network services only authorized traffic is allowed Auditing and

More information

Understand the OSI Model

Understand the OSI Model Understand the OSI Model Part 2 Lesson Overview In this lesson, you will learn information about: Frames Packets Segments TCP TCP/IP Model Well-known ports for most-used purposes Anticipatory Set Review

More information

MPLS L2VPN (VLL) Technology White Paper

MPLS L2VPN (VLL) Technology White Paper MPLS L2VPN (VLL) Technology White Paper Issue 1.0 Date 2012-10-30 HUAWEI TECHNOLOGIES CO., LTD. 2012. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any

More information

MINIMUM NETWORK REQUIREMENTS 1. REQUIREMENTS SUMMARY... 1

MINIMUM NETWORK REQUIREMENTS 1. REQUIREMENTS SUMMARY... 1 Table of Contents 1. REQUIREMENTS SUMMARY... 1 2. REQUIREMENTS DETAIL... 2 2.1 DHCP SERVER... 2 2.2 DNS SERVER... 2 2.3 FIREWALLS... 3 2.4 NETWORK ADDRESS TRANSLATION... 4 2.5 APPLICATION LAYER GATEWAY...

More information

A Survey: High Speed TCP Variants in Wireless Networks

A Survey: High Speed TCP Variants in Wireless Networks ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:

More information

Oct 15, 2004 www.dcs.bbk.ac.uk/~gmagoulas/teaching.html 3. Internet : the vast collection of interconnected networks that all use the TCP/IP protocols

Oct 15, 2004 www.dcs.bbk.ac.uk/~gmagoulas/teaching.html 3. Internet : the vast collection of interconnected networks that all use the TCP/IP protocols E-Commerce Infrastructure II: the World Wide Web The Internet and the World Wide Web are two separate but related things Oct 15, 2004 www.dcs.bbk.ac.uk/~gmagoulas/teaching.html 1 Outline The Internet and

More information

Application Layer. CMPT371 12-1 Application Layer 1. Required Reading: Chapter 2 of the text book. Outline of Chapter 2

Application Layer. CMPT371 12-1 Application Layer 1. Required Reading: Chapter 2 of the text book. Outline of Chapter 2 CMPT371 12-1 Application Layer 1 Application Layer Required Reading: Chapter 2 of the text book. Outline of Chapter 2 Network applications HTTP, protocol for web application FTP, file transfer protocol

More information

Proxy Server, Network Address Translator, Firewall. Proxy Server

Proxy Server, Network Address Translator, Firewall. Proxy Server Proxy Server, Network Address Translator, Firewall 1 Proxy Server 2 1 Introduction What is a proxy server? Acts on behalf of other clients, and presents requests from other clients to a server. Acts as

More information

Chapter 5. Data Communication And Internet Technology

Chapter 5. Data Communication And Internet Technology Chapter 5 Data Communication And Internet Technology Purpose Understand the fundamental networking concepts Agenda Network Concepts Communication Protocol TCP/IP-OSI Architecture Network Types LAN WAN

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

Networking Basics for Automation Engineers

Networking Basics for Automation Engineers Networking Basics for Automation Engineers Page 1 of 10 mac-solutions.co.uk v1.0 Oct 2014 1. What is Transmission Control Protocol/Internet Protocol (TCP/IP)------------------------------------------------------------

More information