Name service. Domain Name System (DNS) Name : identifier computers, services, remote objects, files, users,

Size: px
Start display at page:

Download "Name service. Domain Name System (DNS) Name : identifier computers, services, remote objects, files, users,"

Transcription

1 Name service Name : identifier computers, services, remote objects, files, users,. a fundamental component in distributed systems helps communication and resource sharing. URL-form name to access a specific web page. The resources shared among several processes have consistent name used by these processes. Users can communicate with each other by their addresses. Another way: attributes Name service stores a collection of bindings between name and attributes. Major operation: resolve a name General requirement: handle an arbitrary number of names and serve an arbitrary number of organizations; a long lifetime; high availability; fault isolation; tolerance of mistrust Name space: collection of all valid names. Domain Name System (DNS) Need a system: Name IP address When the size of Internet was small, a host file: two columns. Every host store one copy and update it periodically from a master host file. Impossible for today s Internet One simple solution: server Disadvantages: inefficient; unreliable. Another solution: distribution & replication. client/server group model Names are unique Two ways to organize name space Flat: a name is a sequence of characters without structure cannot be used in a large system such as the Internet. 2

2 Domain Name System (DNS) Hierarchy: each name is composed of several parts. called domain name space each organization can choose the prefix name for its host independently. In domain name space, names are defined in an inverted-tree structure. Each node in the tree has a label, and a domain name. Label is a string with a maximum of 63 characters. Root label is an empty string Children of a node have different labels Domain name is a sequence of labels from the current node up to the root, separated by dots. Fully Qualified Domain Name (FQDN): a complete domain name Partially Qualified Domain Name (PQDN): a domain name is ended at some node except the 3 root DNS in the Internet DNS can be used in different platforms. generic domains com: commercial organizations edu: universities and other educational institutions gov: US governmental agencies mil:us military organizations net: major network support centers org: organizations not mentioned above int: international organizations country domains ca: Canada; us: United States; Use their own domains to distinguish their organizations, except USA. i.e. co.uk, ac.uk inverse domain map an address to a name Example: a server has a list of authorized clients, but only IP address from packet. the server may ask its resolver to send a query to the DNS server and ask for a mapping of address to name. inverse query (or pointer query) inverse-ip.in-addr.arpa 4 2

3 DNS queries Domain Name System (DNS) Host name resolution Get IP addresses from host names Looking up host Reverse resolution Name server replies only if the IP address is in its own domain. Others in the textbook URL ARP lookup DNS lookup (Ethernet) Network address 2:60:8c:2:b0:5a Resource ID (IP number, port number, pathname) WebExamples/earth.html Socket file Web server 5 Distribution of name space DNS servers: organized in the same way as the hierarchy of names. Each server contains part of the naming database data for the local domain. Also, each server records the domain names and addresses of other servers. DNS data are divided into zones, and each DNS server is responsible for zero or more zones. Zones vs. domains Each zone must be hold by at least two servers. A master file for a zone (zone file): entered by system administrator. Root server: a server whose domain consists of the whole tree. no detailed information, just maintains references to lower-level servers. Currently, there are more than 3 root servers distributed all around the world, each covering the whole domain name space. 6 3

4 Domain Name System (DNS) Primary servers Read zone data directly from a local master file creating, maintaining, and updating the zone file Secondary servers Download zone data from other servers (primary or other secondary) Communicate periodically with the primary server to check the match Both of them are authorities for the zone they serve: redundancy Zone transfer: secondary server primary server A server can be primary server for a specific zone, and a secondary server for another zone. Domain Name System (DNS) Name-Address Resolution Process calls a DNS client, called a resolver The resolver accesses the closest DNS server with a mapping request. Either server replies with the information, or tells the resolver that other servers have this information. the resolver delivers the result to the request process. Most of requests are Mapping Names to Addresses Mapping Addresses to Names: DNS client (resolver) reverses the IP address, and appends it with.in-addr.arpa. to create a domain name. Two approaches Recursive resolution: the resolver expects the server to supply the final answer Iterative Resolution it returns to the client the IP address of the server that it thinks can resolve the query. The client is responsible to repeat the query to this second server

5 Domain Name System (DNS) Caching technique in DNS recursive resolution Store the mapping before send it to client One problem: cache some mapping for a long time. So the client receives an out-of-date mapping. two simple techniques: time-to-live (TTL) Original server binds a mapping with a TTL value. It defines the time in seconds that the other servers can cache the mapping information. Receiving server sets a TTL for each mapping in its cache. DNS Messages Two types: query and response A query message consists of a header and the question records A response message consists of a header, question records, answer records, authority records, and additional records. 9 DNS Messages The header is 2 bytes Identification: 6-bit, match the response (used by client) Flags: 6-bit QR (query/response): -bit, defines the type of message OpCode: 4-bit, defines type of query or response (0: standard, : inverse, etc.) AA (authoritative answer): -bit, used in caching technique (: original server) TC (truncated):-bit, means the response was more than 52 bytes and reduced to 52. RD (recursion desired):-bit, means the client desires a recursive answer. (set in query message, repeated in response message) RA (recursion available):-bit, means that a recursive response is available. (set in the response message) Reserved: 3-bit, 000 rcode: 4-bit, error code in the response (only original server can set it) Number of question records: 6-bit Number of answer records: 6-bit, all 0s in query message Number of authority records: 6-bit, all 0s in query Number of additional records: 6-bit, all 0s in query 0 5

6 DNS Messages: types of records Time Question Record Used by client to get information from a server Query name: domain name, variable-length field Query type: 6-bit, i.e., : 32-bit IPv4 address, 28: An IPv6 address, Query class: 6-bit, defines specific protocol using DNS, i.e., : Internet; 2: CSNET network; Resource Record Domain name Domain type Domain class Time-to-live: 32-bit, number of seconds Resource data length: 6-bit Resource data: answer to the query in answer section; domain name of server in authoriy section Additional information (IP address) in additional section important information in distributed systems. Precise time: e-commerce transaction; authentication protocols; Check if the call message is a duplicated message and check if the call message is valid, in Sun RPC message, the order of events is important: Situation in distributed systems no global clock in distributed systems Each computer has its own internal clock, and each clock has its own physical properties. clock drift rate: difference between a computer clock and the perfect reference clock Two approaches to correct Time server, Cristian in 989 logical clock Synchronizing physical clocks External synchronization: clock-draft-rate is bounded by some constant. Time server: Cristian s method, the Network Time Protocol Internal synchronization: the difference between any two computer clocks is bounded by some constant. Master/slaves: the Berkeley s algorithm 2 6

7 Cristian s method: time server. Client process sends a time request to time server. 2. After receiving a request, the server replies with the time according to its clock. Analysis no upper bound on message transmission delays. Its success is based on that the round-trip times for messages exchange are short compared with the required accuracy. a group of synchronized time servers multicast its request to all the time servers in the LAN, and use the first replied time. Better performance: server failure, reply message omission failure; the first replied time has smaller value (more close to the perfect time). 3 The Berkeley s algorithm One computer is chosen to be a master The master computer periodically selects the other computers to synchronize their clocks, called slaves. The slaves send back their clock values to master. The master estimates their clock times, and computes the average values of all the clock times T + (round-trip time/2). The master sends the adjustment amount for each individual slave. The reason for not sending the updated current time to avoid the further uncertainty introduced by message transmission time One possible problem: readings from faulty clocks One simple fix: select a subset of clocks whose mutual difference is bounded by some specified value 4 7

8 The Network Time Protocol (NTP) Cristian s method, the Berkeley algorithm: intranets. The Network Time Protocol is a protocol to distribute time information over the Internet. External synchronization: synchronize time to agree on coordinated universal time (UTC), with some fixed bound The NTP system consists of a network of primary and secondary time servers, clients, and interconnecting transmission paths. (synchronization subnet) A primary time server is directly synchronized to a primary reference source, usually a timecode receiver A secondary time server is synchronized, possibly via other secondary servers, from a primary server over network paths. A hierarchy: primary reference source at the root Stratum: reference level Primary time server: level (stratum ) The Network Time Protocol (NTP) The minimum-weight spanning trees: the Bellman- Ford distributed routing algorithm stratum numbers heavy lines: the active synchronization paths Light lines: backup synchronization paths Used for exchanging timing information, not necessarily for synchronizing local clocks Direction: timing information flow If x is out of service, reconfigure with backup paths. increasing levels with decreasing accuracy

9 Modes of operation Multicast mode: high speed LANs with numerous computers and not require highest accuracies. procedure-call mode: higher accuracy, or Multicast mode is not available. Symmetric mode Used in distributed environment Pairs of servers exchange messages containing time information Symmetric active mode used by servers operating near the leaves (high stratum levels) of the synchronization subnet and with preconfigured peer addresses. Symmetric passive mode used by servers operating near the root (low stratum levels) and with a relatively large number of peers 7 NTP message After IP, UDP header Timestamp: 64bits, 32-bit integer part for seconds + 32-bit fraction part, from January, 900 Leap Indicator; Version number; operating mode; stratum number; local-clock precision Poll Interval (Poll): the maximum interval between successive NTP messages. 8 9

10 NTP message Synchronization Distance, Synchronization Dispersion: Indicate the roundtrip delay and dispersion, to the primary reference source. Reference Clock Identifier, Reference Timestamp Identifies particular reference source and the time of its last update; used for management. Originate Timestamp The transmit timestamp in the last received NTP message (T i-3 ). Receive Timestamp The local time when the latest NTP message was received (T i-2 ). Transmit Timestamp The local time when this NTP message was transmitted (T i- ). Authenticator (optional) The key identifier and encrypted checksum of the message contents. 9 Filtering, and peer-selection algorithms Filtering algorithm: improve the offset estimate for a single peer clock Minimum filter: for a given peer clock, selects the sample with lowest delay from the n (i.e., 8) most recent samples These samples are sorted (delay d value). filter dispersion: quality indicator Peer-selection algorithm: find the best clocks from a population as synchronization source, to maintain high reliability. adjust the local-clock, stratum number Observation highest reliability is usually associated with the lowest stratum number and the lowest synchronization dispersion (accuracy) 2 0 0

19 Domain Name System (DNS)

19 Domain Name System (DNS) CHAPTER 9 Domain Name System (DNS) I n this chapter, we discuss the second application program, Domain Name System (DNS). DNS is a client/server application program used to help other application programs.

More information

Chapter 25 Domain Name System. 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 25 Domain Name System. 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 25 Domain Name System 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 25.2 Figure 25.1 Example of using the DNS service 25-1 NAME SPACE To be unambiguous,

More information

Forouzan: Chapter 17. Domain Name System (DNS)

Forouzan: Chapter 17. Domain Name System (DNS) Forouzan: Chapter 17 Domain Name System (DNS) Domain Name System (DNS) Need System to map name to an IP address and vice versa We have used a host file in our Linux laboratory. Not feasible for the entire

More information

Motivation. Domain Name System (DNS) Flat Namespace. Hierarchical Namespace

Motivation. Domain Name System (DNS) Flat Namespace. Hierarchical Namespace Motivation Domain Name System (DNS) IP addresses hard to remember Meaningful names easier to use Assign names to IP addresses Name resolution map names to IP addresses when needed Namespace set of all

More information

Domain Name System (DNS)

Domain Name System (DNS) Chapter 18 CSC465 Computer Networks Spring 2004 Dr. J. Harrison These slides are based on the text TCP/IP Protocol Suite (2 nd Edition) Domain Name System (DNS) CONTENTS NAME SPACE DOMAIN NAME SPACE DISTRIBUTION

More information

1. Domain Name System

1. Domain Name System 1.1 Domain Name System (DNS) 1. Domain Name System To identify an entity, the Internet uses the IP address, which uniquely identifies the connection of a host to the Internet. However, people prefer to

More information

Synchronization in. Distributed Systems. Cooperation and Coordination in. Distributed Systems. Kinds of Synchronization.

Synchronization in. Distributed Systems. Cooperation and Coordination in. Distributed Systems. Kinds of Synchronization. Cooperation and Coordination in Distributed Systems Communication Mechanisms for the communication between processes Naming for searching communication partners Synchronization in Distributed Systems But...

More information

Domain Name System. DNS is an example of a large scale client-server application. Copyright 2014 Jim Martin

Domain Name System. DNS is an example of a large scale client-server application. Copyright 2014 Jim Martin Domain Name System: DNS Objective: map names to IP addresses (i.e., high level names to low level names) Original namespace was flat, didn t scale.. Hierarchical naming permits decentralization by delegating

More information

More Internet Support Protocols

More Internet Support Protocols Domain Name System (DNS) Ch 2.5 More Internet Support Protocols Problem statement: Average brain can easily remember 7 digits On average, IP addresses have 10.28 digits We need an easier way to remember

More information

Teldat Router. DNS Client

Teldat Router. DNS Client Teldat Router DNS Client Doc. DM723-I Rev. 10.00 March, 2003 INDEX Chapter 1 Domain Name System...1 1. Introduction...2 2. Resolution of domains...3 2.1. Domain names resolver functionality...4 2.2. Functionality

More information

DNS : Domain Name System

DNS : Domain Name System 1/30 DNS : Domain Name System Surasak Sanguanpong nguan@.ac.th http://www...ac.th/~nguan Last updated: May 24, 1999 Outline 2/30 DNS basic name space name resolution process protocol configurations Why

More information

Internetworking with TCP/IP Unit 10. Domain Name System

Internetworking with TCP/IP Unit 10. Domain Name System Unit 10 Domain Name System Structure 10.1 Introduction 10.2 Fully Qualified Domain Names (FQDNs) Generic Domains Country Domains 10.3 Mapping domain names to IP addresses 10.4 Mapping IP Addresses to Domain

More information

Application Protocols in the TCP/IP Reference Model

Application Protocols in the TCP/IP Reference Model Application Protocols in the TCP/IP Reference Model File Transfer E-Mail Network Management WWW Virtual Terminal Name Service File Transfer HTTP FTP Telnet SMTP DNS SNMP TFTP Internet protocols TCP UDP

More information

THE DOMAIN NAME SYSTEM DNS

THE DOMAIN NAME SYSTEM DNS Announcements THE DOMAIN NAME SYSTEM DNS Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University copyright 2005 Douglas S. Reeves 2 Today s Lecture I. Names vs. Addresses II. III. IV. The Namespace

More information

Chapter 9: Name Services. 9.1 Introduction 9.2 Name services and the DNS 9.3 Directory services 9.6 Summary

Chapter 9: Name Services. 9.1 Introduction 9.2 Name services and the DNS 9.3 Directory services 9.6 Summary Chapter 9: Name Services 9.1 Introduction 9.2 Name services and the DNS 9.3 Directory services 9.6 Summary Learning objectives To understand the need for naming systems in distributed systems To be familiar

More information

Domain Name System. CS 571 Fall 2006. 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved

Domain Name System. CS 571 Fall 2006. 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved Domain Name System CS 571 Fall 2006 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved DNS Specifications Domain Names Concepts and Facilities RFC 1034, November 1987 Introduction

More information

Applications and Services. DNS (Domain Name System)

Applications and Services. DNS (Domain Name System) Applications and Services DNS (Domain Name Service) File Transfer Protocol (FTP) Simple Mail Transfer Protocol (SMTP) Malathi Veeraraghavan Distributed database used to: DNS (Domain Name System) map between

More information

Application Protocols in the TCP/IP Reference Model. Application Protocols in the TCP/IP Reference Model. DNS - Domain Name System

Application Protocols in the TCP/IP Reference Model. Application Protocols in the TCP/IP Reference Model. DNS - Domain Name System Application Protocols in the TCP/IP Reference Model Application Protocols in the TCP/IP Reference Model File Transfer E-Mail Network Management Protocols of the application layer are common communication

More information

Application Protocols in the TCP/IP Reference Model. Application Protocols in the TCP/IP Reference Model. DNS - Concept. DNS - Domain Name System

Application Protocols in the TCP/IP Reference Model. Application Protocols in the TCP/IP Reference Model. DNS - Concept. DNS - Domain Name System Application Protocols in the TCP/IP Reference Model Application Protocols in the TCP/IP Reference Model File Transfer E-Mail Network Management Protocols of the application layer are common communication

More information

NET0183 Networks and Communications

NET0183 Networks and Communications NET0183 Networks and Communications Lecture 25 DNS Domain Name System 8/25/2009 1 NET0183 Networks and Communications by Dr Andy Brooks DNS is a distributed database implemented in a hierarchy of many

More information

CS 348: Computer Networks. - DNS; 22 nd Oct 2012. Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - DNS; 22 nd Oct 2012. Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - DNS; 22 nd Oct 2012 Instructor: Sridhar Iyer IIT Bombay Domain Name System Map between host names and IP addresses People: many identifiers: name, Passport #, Internet hosts:

More information

3.7. Clock Synch hronisation

3.7. Clock Synch hronisation Chapter 3.7 Clock-Synchronisation hronisation 3.7. Clock Synch 1 Content Introduction Physical Clocks - How to measure time? - Synchronisation - Cristian s Algorithm - Berkeley Algorithm - NTP / SNTP -

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

The Domain Name System

The Domain Name System DNS " This is the means by which we can convert names like news.bbc.co.uk into IP addresses like 212.59.226.30 " Purely for the benefit of human users: we can remember numbers (e.g., telephone numbers),

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

Computer Networks: Domain Name System

Computer Networks: Domain Name System Computer Networks: Domain Name System Domain Name System The domain name system (DNS) is an application-layer protocol for mapping domain names to IP addresses DNS www.example.com 208.77.188.166 http://www.example.com

More information

DNS Domain Name System

DNS Domain Name System Domain Name System DNS Domain Name System The domain name system is usually used to translate a host name into an IP address Domain names comprise a hierarchy so that names are unique, yet easy to remember.

More information

Lecture 2 CS 3311. An example of a middleware service: DNS Domain Name System

Lecture 2 CS 3311. An example of a middleware service: DNS Domain Name System Lecture 2 CS 3311 An example of a middleware service: DNS Domain Name System The problem Networked computers have names and IP addresses. Applications use names; IP uses for routing purposes IP addresses.

More information

Introduction to Network Operating Systems

Introduction to Network Operating Systems As mentioned earlier, different layers of the protocol stack use different kinds of addresses. We can now see that the Transport Layer (TCP) uses port addresses to route data to the correct process, the

More information

Table of Contents DNS. How to package DNS messages. Wire? DNS on the wire. Some advanced topics. Encoding of domain names.

Table of Contents DNS. How to package DNS messages. Wire? DNS on the wire. Some advanced topics. Encoding of domain names. Table of Contents DNS Some advanced topics Karst Koymans Informatics Institute University of Amsterdam (version 154, 2015/09/14 10:44:10) Friday, September 11, 2015 DNS on the wire Encoding of domain names

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

Names & Addresses. Names & Addresses. Names vs. Addresses. Identity. Names vs. Addresses. CS 194: Distributed Systems: Naming

Names & Addresses. Names & Addresses. Names vs. Addresses. Identity. Names vs. Addresses. CS 194: Distributed Systems: Naming Names & Addresses CS 9: Distributed Systems: Naming Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 970-77 What is a?

More information

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA)

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA) Lecture 15 IP Address Each host and router on the Internet has an IP address, which consist of a combination of network number and host number. The combination is unique; no two machines have the same

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Domain Name System (DNS) Fundamentals

Domain Name System (DNS) Fundamentals Domain Name System (DNS) Fundamentals Mike Jager Network Startup Resource Center mike.jager@synack.co.nz These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

1 DNS Packet Structure

1 DNS Packet Structure Fundamentals of Computer Networking Project 1 Primer: DNS Overview CS4700/CS5700 Fall 2009 17 September 2009 The DNS protocol is well-documented online, however, we describe the salient pieces here for

More information

Network layer: Overview. Network layer functions IP Routing and forwarding

Network layer: Overview. Network layer functions IP Routing and forwarding Network layer: Overview Network layer functions IP Routing and forwarding 1 Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

DNS at NLnet Labs. Matthijs Mekking

DNS at NLnet Labs. Matthijs Mekking DNS at NLnet Labs Matthijs Mekking Topics NLnet Labs DNS DNSSEC Recent events NLnet Internet Provider until 1997 The first internet backbone in Holland Funding research and software projects that aid the

More information

Naming and the DNS. Focus. How do we name hosts etc.? Application Presentation Topics. Session Domain Name System (DNS) Email/URLs

Naming and the DNS. Focus. How do we name hosts etc.? Application Presentation Topics. Session Domain Name System (DNS) Email/URLs Naming and the DNS Focus How do we name hosts etc.? Application Presentation Topics Session Domain Name System (DNS) Email/URLs Transport Network Data Link Physical Ldns.1 Names and Addresses 43 name address

More information

Chapter 23 The Domain Name System (DNS)

Chapter 23 The Domain Name System (DNS) CSC521 Communication Protocols 網 路 通 訊 協 定 Chapter 23 The Domain Name System (DNS) 吳 俊 興 國 立 高 雄 大 學 資 訊 工 程 學 系 Outline 1. Introduction 2. Names For Machines 3. Flat Namespace 4. Hierarchical Names 5.

More information

Networking Test 4 Study Guide

Networking Test 4 Study Guide Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.

More information

INTERNET DOMAIN NAME SYSTEM

INTERNET DOMAIN NAME SYSTEM INTERNET DOMAIN NAME SYSTEM http://www.tutorialspoint.com/internet_technologies/internet_domain_name_system.htm Copyright tutorialspoint.com Overview When DNS was not into existence, one had to download

More information

Network Programming TDC 561

Network Programming TDC 561 Network Programming TDC 561 Lecture # 1 Dr. Ehab S. Al-Shaer School of Computer Science & Telecommunication DePaul University Chicago, IL 1 Network Programming Goals of this Course: Studying, evaluating

More information

Domain Name System Submitted in partial fulfillment of the requirement for the award of degree of Computer Science

Domain Name System Submitted in partial fulfillment of the requirement for the award of degree of Computer Science A Seminar report On Domain Name System Submitted in partial fulfillment of the requirement for the award of degree of Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org

More information

CS3250 Distributed Systems

CS3250 Distributed Systems CS3250 Distributed Systems Lecture 4 More on Network Addresses Domain Name System DNS Human beings (apart from network administrators and hackers) rarely use IP addresses even in their human-readable dotted

More information

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci. Chapter 3: Review of Important Networking Concepts Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.edu/~magda 1 Networking Concepts Protocol Architecture Protocol Layers Encapsulation

More information

Visio Enabled Solution: One-Click Switched Network Vision

Visio Enabled Solution: One-Click Switched Network Vision Visio Enabled Solution: One-Click Switched Network Vision Tim Wittwer, Senior Software Engineer Alan Delwiche, Senior Software Engineer March 2001 Applies to: All Microsoft Visio 2002 Editions All Microsoft

More information

Domain Name System (DNS) Session-1: Fundamentals. Ayitey Bulley abulley@ghana.com

Domain Name System (DNS) Session-1: Fundamentals. Ayitey Bulley abulley@ghana.com Domain Name System (DNS) Session-1: Fundamentals Ayitey Bulley abulley@ghana.com Computers use IP addresses. Why do we need names? Names are easier for people to remember Computers may be moved between

More information

The Domain Name System (DNS) Jason Hermance Nerces Kazandjian Long-Quan Nguyen

The Domain Name System (DNS) Jason Hermance Nerces Kazandjian Long-Quan Nguyen The Domain Name System (DNS) Jason Hermance Nerces Kazandjian Long-Quan Nguyen Introduction Machines find 32-bit IP addresses just peachy. Some Computer Science majors don t seem to mind either Normal

More information

Objectives of Lecture. Network Architecture. Protocols. Contents

Objectives of Lecture. Network Architecture. Protocols. Contents Objectives of Lecture Network Architecture Show how network architecture can be understood using a layered approach. Introduce the OSI seven layer reference model. Introduce the concepts of internetworking

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

03 Internet Addressing

03 Internet Addressing SE 4C03 Winter 2007 03 Internet Addressing William M. Farmer Department of Computing and Software McMaster University 13 January 2007 IP Addresses There are two Internet naming systems: 1. The primary

More information

Chapter 9. IP Secure

Chapter 9. IP Secure Chapter 9 IP Secure 1 Network architecture is usually explained as a stack of different layers. Figure 1 explains the OSI (Open System Interconnect) model stack and IP (Internet Protocol) model stack.

More information

Naming. Name Service. Why Name Services? Mappings. and related concepts

Naming. Name Service. Why Name Services? Mappings. and related concepts Service Processes and Threads: execution of applications or services Communication: information exchange for coordination of processes But: how can client processes (or human users) find the right server

More information

DNS Conformance Test Specification For Client

DNS Conformance Test Specification For Client DNS Conformance Test Specification For Client Revision 1.0 Yokogawa Electric Corporation References This test specification focus on following DNS related RFCs. RFC 1034 DOMAIN NAMES - CONCEPTS AND FACILITIES

More information

Some advanced topics. Karst Koymans. Friday, September 11, 2015

Some advanced topics. Karst Koymans. Friday, September 11, 2015 DNS Some advanced topics Karst Koymans Informatics Institute University of Amsterdam (version 154, 2015/09/14 10:44:10) Friday, September 11, 2015 Karst Koymans (UvA) DNS Friday, September 11, 2015 1 /

More information

Domain Name System Richard T. B. Ma

Domain Name System Richard T. B. Ma Domain Name System Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Names Vs. Addresses Names are easier for human to remember www.comp.nus.edu.sg

More information

Domain Name Resolver (DNR) Configuration

Domain Name Resolver (DNR) Configuration CHAPTER 7 Domain Name Resolver (DNR) Configuration This chapter provides an overview of the information required to customize Cisco IOS for S/390. It includes these sections: Introducing the Domain Name

More information

2. IP Networks, IP Hosts and IP Ports

2. IP Networks, IP Hosts and IP Ports 1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3

More information

Distributed Systems. 09. Naming. Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 09. Naming. Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 09. Naming Paul Krzyzanowski Rutgers University Fall 2015 October 7, 2015 2014-2015 Paul Krzyzanowski 1 Naming things Naming: map names to objects Helps with using, sharing, and communicating

More information

ITEC310 Computer Networks II

ITEC310 Computer Networks II ITEC310 Computer Networks II Chapter 28 Network Management: Department of Information Technology Eastern Mediterranean University Objectives 2/60 After completing this chapter you should be able to do

More information

Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol

Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol 1 TCP/IP protocol suite A suite of protocols for networking for the Internet Transmission control protocol (TCP) or User Datagram protocol

More information

Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer

Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer CPSC 360 Network Programming Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer Systems Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

Basic DNS Course. Module 1. DNS Theory. Ron Aitchison ZYTRAX, Inc. Page 1 of 24

Basic DNS Course. Module 1. DNS Theory. Ron Aitchison ZYTRAX, Inc. Page 1 of 24 Basic DNS Course Module 1 Ron Aitchison ZYTRAX, Inc. Page 1 of 24 The following are the slides used in this Module of the course. Some but not all slides have additional notes that you may find useful.

More information

Network Layer: Network Layer and IP Protocol

Network Layer: Network Layer and IP Protocol 1 Network Layer: Network Layer and IP Protocol Required reading: Garcia 7.3.3, 8.1, 8.2.1 CSE 3213, Winter 2010 Instructor: N. Vlajic 2 1. Introduction 2. Router Architecture 3. Network Layer Protocols

More information

Computer Networks Prof. S. Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 34 DNS & Directory

Computer Networks Prof. S. Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 34 DNS & Directory Computer Networks Prof. S. Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 34 DNS & Directory Good day. Today we will take up two topics, DNS and

More information

Understanding DNS (the Domain Name System)

Understanding DNS (the Domain Name System) Understanding DNS (the Domain Name System) A white paper by Incognito Software January, 2007 2007 Incognito Software Inc. All rights reserved. Understanding DNS (the Domain Name System) Introduction...2

More information

Internetworking and Internet-1. Global Addresses

Internetworking and Internet-1. Global Addresses Internetworking and Internet Global Addresses IP servcie model has two parts Datagram (connectionless) packet delivery model Global addressing scheme awaytoidentifyall H in the internetwork Properties

More information

DNS. Some advanced topics. Karst Koymans. (with Niels Sijm) Informatics Institute University of Amsterdam. (version 2.6, 2013/09/19 10:55:30)

DNS. Some advanced topics. Karst Koymans. (with Niels Sijm) Informatics Institute University of Amsterdam. (version 2.6, 2013/09/19 10:55:30) DNS Some advanced topics Karst Koymans (with Niels Sijm) Informatics Institute University of Amsterdam (version 2.6, 2013/09/19 10:55:30) Friday, September 13, 2013 Karst Koymans (with Niels Sijm) (UvA)

More information

The Domain Name System

The Domain Name System Internet Engineering 241-461 Robert Elz kre@munnari.oz.au kre@coe.psu.ac.th http://fivedots.coe.psu.ac.th/~kre DNS The Domain Name System Kurose & Ross: Computer Networking Chapter 2 (2.5) James F. Kurose

More information

Introduction to the Domain Name System

Introduction to the Domain Name System CHAPTER 14 The Domain Name System (DNS) handles the growing number of Internet users. DNS translates names, such as www.cisco.com, into IP addresses, such as 192.168.40.0 (or the more extended IPv6 addresses),

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

Measurement of the Usage of Several Secure Internet Protocols from Internet Traces

Measurement of the Usage of Several Secure Internet Protocols from Internet Traces Measurement of the Usage of Several Secure Internet Protocols from Internet Traces Yunfeng Fei, John Jones, Kyriakos Lakkas, Yuhong Zheng Abstract: In recent years many common applications have been modified

More information

The Domain Name System (DNS)

The Domain Name System (DNS) The Domain Name System (DNS) Columbus, OH 43210 Jain@CIS.Ohio-State.Edu http://www.cis.ohio-state.edu/~jain/ 24-1 Overview Naming hierarchy hierarchy Name resolution Other information in name servers 24-2

More information

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address Objectives University of Jordan Faculty of Engineering & Technology Computer Engineering Department Computer Networks Laboratory 907528 Lab.4 Basic Network Operation and Troubleshooting 1. To become familiar

More information

The Domain Name System (DNS)

The Domain Name System (DNS) The Domain Name System (DNS) Each Internet host is assigned a host name and an IP address Host names are structured character strings, e.g., www.cs.iastate.edu IP addresses are 32 bit integers, e.g., 129.186.3.6

More information

Hands On Activities: TCP/IP Network Monitoring and Management

Hands On Activities: TCP/IP Network Monitoring and Management Hands On Activities: TCP/IP Network Monitoring and Management 1. TCP/IP Network Management Tasks TCP/IP network management tasks include Examine your physical and IP network address Traffic monitoring

More information

IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy. and of course there can be sub-sub-!!

IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy. and of course there can be sub-sub-!! The Domain Hierarchy IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy the general form for a fully qualified name is and of course there can be sub-sub-!! -sub-domains

More information

Table of Contents. Cisco Network Time Protocol: Best Practices White Paper

Table of Contents. Cisco Network Time Protocol: Best Practices White Paper Table of Contents Network Time Protocol: Best Practices White Paper...1 Introduction...1 Background Information...1 Terminology...2 Overview...3 Device Overview...3 NTP Overview...4 NTP Design Criteria...5

More information

Managing Users and Identity Stores

Managing Users and Identity Stores CHAPTER 8 Overview ACS manages your network devices and other ACS clients by using the ACS network resource repositories and identity stores. When a host connects to the network through ACS requesting

More information

Part 5 DNS Security. SAST01 An Introduction to Information Security 2015-09-21. Martin Hell Department of Electrical and Information Technology

Part 5 DNS Security. SAST01 An Introduction to Information Security 2015-09-21. Martin Hell Department of Electrical and Information Technology SAST01 An Introduction to Information Security Part 5 DNS Security Martin Hell Department of Electrical and Information Technology How DNS works Amplification attacks Cache poisoning attacks DNSSEC 1 2

More information

CSE 127: Computer Security. Network Security. Kirill Levchenko

CSE 127: Computer Security. Network Security. Kirill Levchenko CSE 127: Computer Security Network Security Kirill Levchenko December 4, 2014 Network Security Original TCP/IP design: Trusted network and hosts Hosts and networks administered by mutually trusted parties

More information

Applies To: Windows Server 2003, Windows Server 2003 R2, Windows Server 2003 with SP1, Windows Server 2003 with SP2

Applies To: Windows Server 2003, Windows Server 2003 R2, Windows Server 2003 with SP1, Windows Server 2003 with SP2 How DNS Works 210 out of 241 rated this helpful Updated: March 28, 2003 Applies To: Windows Server 2003, Windows Server 2003 R2, Windows Server 2003 with SP1, Windows Server 2003 with SP2 How DNS Works

More information

Hostnames. HOSTS.TXT was a bottleneck. Once there was HOSTS.TXT. CSCE515 Computer Network Programming. Hierarchical Organization of DNS

Hostnames. HOSTS.TXT was a bottleneck. Once there was HOSTS.TXT. CSCE515 Computer Network Programming. Hierarchical Organization of DNS Hostnames CSCE 515: Computer Network Programming ------ Address Conversion Function and DNS RFC 1034, RFC 1035 Wenyuan Xu http://www.cse..edu/~wyxu/ce515f07.html Department of Computer Science and Engineering

More information

Distributed Systems. 22. Naming. 2013 Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 22. Naming. 2013 Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 22. Naming Paul Krzyzanowski Rutgers University Fall 2013 November 21, 2013 2013 Paul Krzyzanowski 1 My 15 MacBook Pro The rightmost computer on my desk Paul s aluminum laptop, but

More information

Cisco Expressway Basic Configuration

Cisco Expressway Basic Configuration Cisco Expressway Basic Configuration Deployment Guide Cisco Expressway X8.1 D15060.03 August 2014 Contents Introduction 4 Example network deployment 5 Network elements 6 Internal network elements 6 DMZ

More information

Application Layer. CMPT371 12-1 Application Layer 1. Required Reading: Chapter 2 of the text book. Outline of Chapter 2

Application Layer. CMPT371 12-1 Application Layer 1. Required Reading: Chapter 2 of the text book. Outline of Chapter 2 CMPT371 12-1 Application Layer 1 Application Layer Required Reading: Chapter 2 of the text book. Outline of Chapter 2 Network applications HTTP, protocol for web application FTP, file transfer protocol

More information

ETSF10 Part 3 Lect 2

ETSF10 Part 3 Lect 2 ETSF10 Part 3 Lect 2 DHCP, DNS, Security Jens A Andersson Electrical and Information Technology DHCP Dynamic Host Configuration Protocol bootp is predecessor Alternative: manual configuration IP address

More information

Understanding TCP/IP. Introduction. What is an Architectural Model? APPENDIX

Understanding TCP/IP. Introduction. What is an Architectural Model? APPENDIX APPENDIX A Introduction Understanding TCP/IP To fully understand the architecture of Cisco Centri Firewall, you need to understand the TCP/IP architecture on which the Internet is based. This appendix

More information

Introduction to DNS CHAPTER 5. In This Chapter

Introduction to DNS CHAPTER 5. In This Chapter 297 CHAPTER 5 Introduction to DNS Domain Name System (DNS) enables you to use hierarchical, friendly names to easily locate computers and other resources on an IP network. The following sections describe

More information

Local DNS Attack Lab. 1 Lab Overview. 2 Lab Environment. SEED Labs Local DNS Attack Lab 1

Local DNS Attack Lab. 1 Lab Overview. 2 Lab Environment. SEED Labs Local DNS Attack Lab 1 SEED Labs Local DNS Attack Lab 1 Local DNS Attack Lab Copyright c 2006 Wenliang Du, Syracuse University. The development of this document was partially funded by the National Science Foundation s Course,

More information

netkit lab dns Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group Version Author(s)

netkit lab dns Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group Version Author(s) Università degli Studi Roma Tre Dipartimento di Informatica e Automazione Computer Networks Research Group netkit lab dns Version Author(s) E-mail Web Description 2.2 G. Di Battista, M. Patrignani, M.

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 7: Network Layer in the Internet Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall,

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information