Don t Fall for Safety System Myths Many misconceptions muddle maneuvers to manage risks. By Angela E. Summers, SIS-TECH Solutions

Size: px
Start display at page:

Download "Don t Fall for Safety System Myths Many misconceptions muddle maneuvers to manage risks. By Angela E. Summers, SIS-TECH Solutions"

Transcription

1 Don t Fall for Safety System Myths Many misconceptions muddle maneuvers to manage risks By Angela E. Summers, SIS-TECH Solutions Safety and productivity at process plants suffer because too many engineers believe myths concerning design, implementation and operation of safety instrumented systems (SISs). So, let s dispel the leading myths. 1. Using certified equipment and personnel ensure a safe system. IEC doesn t even use the word certified. There s no requirement for certified equipment or personnel. However, a lot of companies sell safety certification services for both equipment and personnel. It s important to remember that certification is no substitute for experience, specifically prior-use history for equipment and project background for personnel. Many mistakenly seem to think that taking a certification class makes them an instant expert in the safety lifecycle. Questions and comments on safety discussion lists posted by certified but inexperienced people underscore this fallacy on a weekly basis. Likewise, buying parts with certification to a SIL 3 Claim Limit isn t sufficient to fulfil SIL 3 requirements for a safety function. For field equipment, the selection guidance in ISA-TR Annex L emphasizes the importance of understanding how well equipment works in the operating environment under its specific MI program. Certified equipment may appear acceptable but you can t assume it will perform dependably in the field. Simply put, certification is no substitute for experience. 2. Failure detection is more important than failure prevention. The IEC international standard emphasizes the need to identify and correct dangerous failures that increase the potential for an incident or a near-miss but short-changes failure prevention. While detecting failures is extremely important, a better approach is to design the SIS with a low total failure rate. This minimizes work orders, spurious trips and the effort required to restore normal operation. IEC favors equipment with high diagnostic coverage over equipment with a low failure rate. If Device A has a mean time between failures (MTBF) of 5,000 years with all its failures being dangerous undetected, and Device B has a MTBF of 5 years with 99.9% diagnostic coverage, the IEC Safe Failure Fraction calculation would indicate that Device B as better. Thus, IEC rewards equipment for failing detected rather than working. The failure rate of Device A would meet SIL 3 with minimal spurious trips but, because of its low safe failure fraction, it couldn t be Featherwood Drive Suite 120 Tel: (281) Fax: (281)

2 Page 2 of 8 certified above SIL 1. Device B would generate many work orders and significantly increase the potential for spurious trips but could be certified to SIL 3 due to its high safe failure fraction. Go ahead and use Device A in an SIL 3 function if it is the right device for your process. 3. Vendor-supplied diagnostics can detect all dangerous failures. Often vendor-supplied diagnostics only apply to electronic failure and not to process interfaces. Some diagnostics can detect special conditions like magnetic flow meter probe coating. Unfortunately in most cases, you can t know whether the vendor diagnostics are even working because there re no means to test them. Verification and validation of vendor diagnostic claims and associated data is currently a topic under discussion at the IEC and ISA-TR working group meetings. The best diagnostics are those you implement independently to verify the process connection and field device are working from a total system and application perspective. No matter the diagnostic, the only way to be certain that an SIS device is working is to proof test it. 4. Partial testing is good enough. Partial testing only identifies specific failure modes of equipment. It s not a substitute for a complete function check that proves the equipment does what it needs to do as and when required. Major process industry incidents have shown that what you don t maintain eventually fails. For example, the push-to-test feature on some electronic sensors only checks the electronics and doesn t determine whether the sensing elements are working properly. Partial stroke testing validates the valve actuator but not the ability of the valve to close fully or to meet leak tightness requirements. Partial tests can detect some failure modes. You must perform full proof testing, though, to demonstrate the specified operation of the equipment. 5. The main purpose of proof testing is failure detection. Unfortunately, IEC has encouraged this concept because it defines a proof test as an opportunity to detect dangerous undetected failures. However, detection isn t the primary goal of proof testing its main purpose is finding weaknesses in your mechanical integrity (MI) strategy and triggering root-cause identification with subsequent change in the specification, design, installation or strategy. You should consider any failure found in a proof test as a serious problem, requiring immediate investigation to prevent future failures. Many incident investigations point out that a company had found and repeatedly corrected failures prior to an incident but didn t prevent the failure from re-occurring by determining and addressing the root cause. 6. Proof testing suffices to ensure mechanical integrity. The proof test only validates MI, which depends upon inspection and preventive maintenance.

3 Page 3 of 8 Figure 1. Ensuring Mechanical Integrity Avoiding failure requires inspection, preventive maintenance, periodic repair/replacement of parts, and proof testing to identify problems. You should perform periodic inspections to identify and correct incipient issues and degraded conditions; this often is called proactive or condition-based maintenance. You can conduct some inspections externally during operation but others require more-rigorous internal inspection, such as looking at a valve seat or pulling wires to see if they re loose. Also, perform regular preventive maintenance to replace parts with a shorter life expectancy than the major equipment components. This reduces the failure rate and extends the useful life of the equipment. Proof testing demonstrates the MI plan consisting of inspection and preventive maintenance suffices to sustain the equipment in the as good as new condition. 7. Relay-based safety systems aren t as good as safety programmable logic controllers (PLCs). Relays have extensive prior-use history in many industry sectors, very low failure rates, and readily predictable and well-understood failure modes. Relays can be installed locally with no need for climate-controlled enclosures.

4 Page 4 of 8 Figure 2. Role for Relays Extensive prior-use history coupled with simple and low-cost local installation favor continuing use of relays in safety systems. Safety PLCs are more flexible and easier to modify but this often leads to ad hoc programming. Without a detailed application program specification, a rigorous software development process and extensive testing, safety PLC programs can have significant undetected problems. While safety PLCs have extensive diagnostics, this is largely because they have many components that can fail. Simplex safety PLCs have overall failure rates an order of magnitude greater than those of relays, and so need diagnostics and hardware fault tolerance to offset these higher rates. You can expand a safety PLC to protect an entire facility or implement multiple distributed PLCs. Covering the facility with one does yield the lowest cost per I/O point; however, it also means putting all your eggs in one climate-controlled basket. A safety PLC failure could put the whole plant at risk. In addition, necessary maintenance or testing potentially could impact the entire production unit. Relays support a cost-effective distributed safety system that can be local to the specific equipment being controlled and monitored. Maintenance and testing of distributed safety systems only affect the local equipment these systems are designed to protect. 8. Application programming for modern safety PLCs is so easy that anyone can do it. With drag-and-drop interfaces, function blocks and some training, almost anyone can program a PLC in some fashion. But translating critical safety logic into the PLC application program requires close cooperation among programmers, process control engineers, and operations and maintenance personnel. This cooperation should include an upfront program specification agreed to by all prior to PLC programming. A non-existent or poorly documented application program specification can lead to badly executed programming with a significant negative impact on the risk reduction due to systematic failures.

5 Page 5 of 8 Disorganized and complex programming yields an application program that s difficult to understand, properly test and safely modify. 9. Only process safety must be under a management system that ensures its integrity. Regulations for the protection of workers and the public mandate safety measures. No directives govern equipment protection or overall loss prevention so, companies view such efforts as an optional business decision. However, a major non-safety-related event often can pose potential danger to personnel and equipment just like a safety-related one. Even when a non-safety-related event doesn t result in injury, a company can incur devastating losses from business interruption, equipment damage, repair costs, harm to its reputation, and disruption of supply to customers. Compressors, pumps, heaters and boilers have many shutdown systems intended to prevent losses. While these systems aren t specifically covered by IEC 61511, you still should design and manage them to lower risk of a loss. IEC recognizes this benefit in Clause 1k, stating that it may be applied in non-safety applications such as asset protection. Where the equipment is process-critical, it s best to opt for a conservative design and use low-spurious-trip architectures. Leading companies have found that comprehensively examining all potential losses and following sound loss-prevention practices generate value to their stakeholders. 10. As long as the SIS is designed to fail-safe, the design is optimal. This concept became prevalent after the issuance of IEC 61511, which focuses on the safety aspects of the instrumentation design and management. The standard s concentration on failing safe is appropriate given its underlying purpose to support worldwide process safety regulations but reliability is just as important as safety for many chemical processes. Plant operators need trustworthy and reliable instrumentation. Many incidents have occurred because operators ignored information from instruments they perceived to be untrustworthy or because unreliable instruments had been bypassed to keep a process online. The Center for Chemical Process Safety s Guidelines for Safe and Reliable Instrumented Protective Systems (CCPS IPS) considers reliability a key factor for process safety instrumentation. This book advises treating reliability as equal in importance to IEC s safety integrity for instrumented systems. 11. If the SIS is configured to alarm on detected failure, the process is safe as long as repair is completed within the assumed mean time to repair. An inherently safe design configures detected failure toward the trip condition and uses redundancy to achieve reliability. Configuring an SIS to alarm often increases the risk of loss of containment by at least an order of magnitude, since the SIS is either degraded in the case of a fault tolerant SIS or disabled when no fault tolerance is provided. IEC 61511, ISA-TR , and CCPS IPS discuss the use of compensating measures to temporarily manage the risk. Recognize that the fault repair and compensating measures often results in higher occupancy and a greater likelihood that ignition sources are present. This increases the potential

6 Page 6 of 8 consequence severity should an incident occur during repair so conduct a hazards and risk assessment to review and approve the choice to configure detected faults to alarm. The requirement for safe operation demands that the risk gap be covered from the time of failure discovery until the fault is corrected and the equipment is returned to service. Continued process operation with a degraded or disabled SIS must be addressed with procedures that define the compensating measures sufficient to maintain safe operation. 12. If a process hazard analysis (PHA) indicates that risk criteria have been met, the process is safe. The hazardous events identified during the PHA are limited by the evaluation team s assumptions, which are restricted by their collective experience, knowledge and available information. Any risk estimate is limited by the quality assurance and the feedback process that ensures the data are relevant in the real world; bias potentially can creep in. A 2005 analysis of incident data by the U.K. s Health and Safety Executive determined that more than one in four hazardous events were attributed to poor hazard and risk assessment and follow-up. A 2003 analysis by the U.K. s Health and Safety Laboratory found that more than one in three incidents that occurred due to process deviations from normal operation weren t adequately considered as potential hazards or causes of equipment failure. Quality design and management practices are absolutely essential to achieve real risk reduction and incident prevention. Without continuing efforts, latent conditions appear over time, causing failures in the safety layers like holes in Swiss cheese. Without proactive action, the holes may eventually align to present a challenge to safe operation when process deviation occurs. Figure 3. Dangerous Alignment Without ongoing efforts, latent conditions can defeat layers of protection and present a challenge to safe operation. 13. An acceptable probability of failure on demand average (PFD avg ) is sufficient proof of a safe system. The PFD avg is only as good as the model of the safety system and the data used for calculations. Most safety professionals can perform the calculations with a good tool but in many cases experience and expertise are needed to see the forest for the trees. Failure rate data often come with large associated uncertainty. Correctly modeling the functions and applying the data require good engineering judgment. The usual, almost-exclusive focus on the sensor, logic solver and final element leads many to discount

7 Page 7 of 8 other potentially important contributors to failure. The PFD avg calculation must include all equipment that can cause a failure to function as specified. Vendor data alone don t suffice to determine PFD avg. Vendor failure rates assume perfect operating conditions and perfect MI, ignoring the process and operating environment s contribution to equipment degradation and failure. Actual failure rates highly depend on the operating environment and MI, and can be orders-of-magnitude higher than vendor reported rates. Consequently, you should base reliability data on field feedback the less the feedback, the more the uncertainty in the data. Draft revisions of ISA-TR and ISA-TR encourage development of user databases to formalize actual operating experience and feedback. IEC Clause requires evaluating SIS performance in the operating environment against assumptions made during design. In the absence of detailed feedback data, you should be more conservative when verifying SIL ratings, and shouldn t use the PFD avg calculation to supersede the fault tolerance requirements of IEC or good engineering judgment. 14. The basic process control system (BPCS) and the SIS can be easily and safely combined into one system. It s possible but there are many caveats because sharing BPCS equipment with the SIS violates inherently safer principles. IEC Clause states that unless the BPCS is qualified in accordance with the standard, the SIS must be separate and independent from the BPCS. Qualifying the BPCS to IEC is more detailed than SIL verification, hazard rate analysis or calculations. ISA-TR Annex F and IEC Part 2 provide numerous reasons for not combining the systems. Justifying the sharing of equipment requires carrying out additional failure and security analysis to ensure the overall hazard rate can be met for random failures and to provide adequate fault tolerance for systematic failures. Equipment also must have a prior-use history that demonstrates its dependability in both applications. Independent and separate systems reduce common-cause, common-mode and systematic failures and minimize the impact of BPCS failure on the SIS. Separate systems also ease making changes, performing maintenance, testing and documenting the SIS. Separate systems facilitate identifying and managing the SIS elements and, thus, simplify and clarify validation and functional safety assessment. They support access security and enhance cyber security for the SIS because revisions to BPCS functions or data don t impact it. Finally, separate systems reduce the amount of analysis needed to ensure the SIS and BPCS are properly designed, verified and managed. Common systems can reduce training but ultimately not design, operations and maintenance manpower requirements for the reasons stated above. 15. The BPCS can serve as a process safety defense for risk reduction without a management system. Regulations as well as insurance and industry practices generally demand that all safeguards or protection layers have a management system to ensure proper operation when needed.

8 Page 8 of 8 A safeguard implemented in BPCS hardware is no different than one implemented in the SIS; it must be covered by specification and MI, both with associated management systems. Upcoming publications from CCPS and ISA will provide detailed requirements in this area. 16. BPCS and SIS independence is a simple matter. You must demonstrate independence in the hardware, software, and personnel and management systems. Any hardware or software the BPCS and SIS share could possess dangerous failure modes that make both systems vulnerable. Such modes could affect the ability of the common hardware and software to operate as required for both functions. In terms of personnel and management, you must examine the entire lifecycle to see where shared personnel and management procedures, especially in the areas of design and maintenance, could contribute to systematic failure. 17. Safety systems aren t as important as the BPCS. Many companies spend a great deal of time and effort trying to justify that certain safety instruments, valves and other components aren t required. Such arguments rarely arise when it comes to the BPCS. It s important to remember that the investment in safety systems is very small compared to that in the BPCS, and nearly negligible compared to that in the process equipment. Yet, the safety systems are the most dependable means to protect the total investment. Proper design and management can yield effective and reliable safety systems. Leading companies have found that comprehensively examining their overall BPCS and safety strategy reveals opportunities to reduce unplanned events and emergency work orders, improving safety and productivity. ANGELA E. SUMMERS, P.E., Ph.D., is president of SIS-TECH Solutions, LP, Houston. her at asummers@sis-tech.com.

SOFTWARE-IMPLEMENTED SAFETY LOGIC Angela E. Summers, Ph.D., P.E., President, SIS-TECH Solutions, LP

SOFTWARE-IMPLEMENTED SAFETY LOGIC Angela E. Summers, Ph.D., P.E., President, SIS-TECH Solutions, LP SOFTWARE-IMPLEMENTED SAFETY LOGIC Angela E. Summers, Ph.D., P.E., President, SIS-TECH Solutions, LP Software-Implemented Safety Logic, Loss Prevention Symposium, American Institute of Chemical Engineers,

More information

A PROCESS ENGINEERING VIEW OF SAFE AUTOMATION

A PROCESS ENGINEERING VIEW OF SAFE AUTOMATION A PROCESS ENGINEERING VIEW OF SAFE AUTOMATION Published in Chemical Engineering Progress, December 2008. Angela E. Summers, SIS-TECH Solutions, LP This step-by-step procedure applies instrumented safety

More information

Viewpoint on ISA TR84.0.02 Simplified Methods and Fault Tree Analysis Angela E. Summers, Ph.D., P.E., President

Viewpoint on ISA TR84.0.02 Simplified Methods and Fault Tree Analysis Angela E. Summers, Ph.D., P.E., President Viewpoint on ISA TR84.0.0 Simplified Methods and Fault Tree Analysis Angela E. Summers, Ph.D., P.E., President Presented at Interkama, Dusseldorf, Germany, October 1999, Published in ISA Transactions,

More information

Safety controls, alarms, and interlocks as IPLs

Safety controls, alarms, and interlocks as IPLs Safety controls, alarms, and interlocks as IPLs Angela E. Summers, Ph.D., P.E. SIS-TECH Solutions 12621 Featherwood Dr. Suite 120, Houston, TX 77034 Keywords: safety controls, alarms, interlocks, SIS,

More information

SAFETY LIFE-CYCLE HOW TO IMPLEMENT A

SAFETY LIFE-CYCLE HOW TO IMPLEMENT A AS SEEN IN THE SUMMER 2007 ISSUE OF... HOW TO IMPLEMENT A SAFETY LIFE-CYCLE A SAFER PLANT, DECREASED ENGINEERING, OPERATION AND MAINTENANCE COSTS, AND INCREASED PROCESS UP-TIME ARE ALL ACHIEVABLE WITH

More information

Version: 1.0 Latest Edition: 2006-08-24. Guideline

Version: 1.0 Latest Edition: 2006-08-24. Guideline Management of Comments on this report are gratefully received by Johan Hedberg at SP Swedish National Testing and Research Institute mailto:johan.hedberg@sp.se Quoting of this report is allowed but please

More information

WELLHEAD FLOWLINE PRESSURE PROTECTION USING HIGH INTEGRITY PROTECTIVE SYSTEMS (HIPS)

WELLHEAD FLOWLINE PRESSURE PROTECTION USING HIGH INTEGRITY PROTECTIVE SYSTEMS (HIPS) WELLHEAD FLOWLINE PRESSURE PROTECTION USING HIGH INTEGRITY PROTECTIVE SYSTEMS (HIPS) Angela E. Summers, Ph.D., P.E., President, SIS-Tech Solutions, LP Bryan A. Zachary, Director, Product & Application

More information

Understanding Safety Integrity Levels (SIL) and its Effects for Field Instruments

Understanding Safety Integrity Levels (SIL) and its Effects for Field Instruments Understanding Safety Integrity Levels (SIL) and its Effects for Field Instruments Introduction The Industrial process industry is experiencing a dynamic growth in Functional Process Safety applications.

More information

ESTIMATION AND EVALUATION OF COMMON CAUSE FAILURES IN SIS

ESTIMATION AND EVALUATION OF COMMON CAUSE FAILURES IN SIS ESTIMATION AND EVALUATION OF COMMON CAUSE FAILURES IN SIS Angela E. Summers, Ph.D., Director Kimberly A. Ford, Senior Risk Analyst, and Glenn Raney, Technical Specialist Premier Consulting + Engineering,

More information

Selecting Sensors for Safety Instrumented Systems per IEC 61511 (ISA 84.00.01 2004)

Selecting Sensors for Safety Instrumented Systems per IEC 61511 (ISA 84.00.01 2004) Selecting Sensors for Safety Instrumented Systems per IEC 61511 (ISA 84.00.01 2004) Dale Perry Worldwide Pressure Marketing Manager Emerson Process Management Rosemount Division Chanhassen, MN 55317 USA

More information

Hardware safety integrity Guideline

Hardware safety integrity Guideline Hardware safety integrity Comments on this report are gratefully received by Johan Hedberg at SP Swedish National Testing and Research Institute mailto:johan.hedberg@sp.se Quoting of this report is allowed

More information

Basic Fundamentals Of Safety Instrumented Systems

Basic Fundamentals Of Safety Instrumented Systems September 2005 DVC6000 SIS Training Course 1 Basic Fundamentals Of Safety Instrumented Systems Overview Definitions of basic terms Basics of safety and layers of protection Basics of Safety Instrumented

More information

DeltaV SIS for Burner Management Systems

DeltaV SIS for Burner Management Systems January 2011 Page 1 DeltaV SIS for Burner Management Systems RESULTS Inhibit startup when unsafe conditions exist Protect against unsafe operating conditions, including improper fuel quantities Provide

More information

Functional Safety Management: As Easy As (SIL) 1, 2, 3

Functional Safety Management: As Easy As (SIL) 1, 2, 3 Functional Safety Management: As Easy As (SIL) 1, 2, 3 Abstract This paper outlines the need for planning in functional safety management. Recent events such as the Montara blowout and the Deepwater Horizon

More information

USING INSTRUMENTED SYSTEMS FOR OVERPRESSURE PROTECTION. Dr. Angela E. Summers, PE. SIS-TECH Solutions, LLC Houston, TX

USING INSTRUMENTED SYSTEMS FOR OVERPRESSURE PROTECTION. Dr. Angela E. Summers, PE. SIS-TECH Solutions, LLC Houston, TX USING INSTRUMENTED SYSTEMS FOR OVERPRESSURE PROTECTION By Dr. Angela E. Summers, PE SIS-TECH Solutions, LLC Houston, TX Prepared for Presentation at the 34 th Annual Loss Prevention Symposium, March 6-8,

More information

SAFETY LIFECYCLE WORKBOOK FOR THE PROCESS INDUSTRY SECTOR

SAFETY LIFECYCLE WORKBOOK FOR THE PROCESS INDUSTRY SECTOR SAFETY LIFECYCLE WORKBOOK FOR THE PROCESS INDUSTRY SECTOR SAFETY LIFECYCLE WORKBOOK FOR THE PROCESS INDUSTRY SECTOR The information and any recommendations that may be provided herein are not intended

More information

Fisher FIELDVUE Instrumentation Improving Safety Instrumented System Reliability

Fisher FIELDVUE Instrumentation Improving Safety Instrumented System Reliability Fisher FIELDVUE Instrumentation Improving Safety Instrumented System Reliability 2 Improving Safety Instrumented System Reliability Improving Safety Instrumented System Reliability 3 Safety Instrumented

More information

Value Paper Author: Edgar C. Ramirez. Diverse redundancy used in SIS technology to achieve higher safety integrity

Value Paper Author: Edgar C. Ramirez. Diverse redundancy used in SIS technology to achieve higher safety integrity Value Paper Author: Edgar C. Ramirez Diverse redundancy used in SIS technology to achieve higher safety integrity Diverse redundancy used in SIS technology to achieve higher safety integrity Abstract SIS

More information

Is your current safety system compliant to today's safety standard?

Is your current safety system compliant to today's safety standard? Is your current safety system compliant to today's safety standard? Abstract It is estimated that about 66% of the Programmable Electronic Systems (PES) running in the process industry were installed before

More information

Safety Requirements Specification Guideline

Safety Requirements Specification Guideline Safety Requirements Specification Comments on this report are gratefully received by Johan Hedberg at SP Swedish National Testing and Research Institute mailto:johan.hedberg@sp.se -1- Summary Safety Requirement

More information

Overview of IEC 61508 - Design of electrical / electronic / programmable electronic safety-related systems

Overview of IEC 61508 - Design of electrical / electronic / programmable electronic safety-related systems Overview of IEC 61508 - Design of electrical / electronic / programmable electronic safety-related systems Simon Brown The author is with the Health & Safety Executive, Magdalen House, Bootle, Merseyside,

More information

Effective Compliance. Selecting Solenoid Valves for Safety Systems. A White Paper From ASCO Valve, Inc. by David Park and George Wahlers

Effective Compliance. Selecting Solenoid Valves for Safety Systems. A White Paper From ASCO Valve, Inc. by David Park and George Wahlers Effective Compliance with IEC 61508 When Selecting Solenoid Valves for Safety Systems by David Park and George Wahlers A White Paper From ASCO Valve, Inc. Introduction Regulatory modifications in 2010

More information

A methodology For the achievement of Target SIL

A methodology For the achievement of Target SIL A methodology For the achievement of Target SIL Contents 1.0 Methodology... 3 1.1 SIL Achievement - A Definition... 4 1.2 Responsibilities... 6 1.3 Identification of Hazards and SIL Determination... 8

More information

Reduce Risk with a State-of-the-Art Safety Instrumented System. Executive Overview... 3. Risk Reduction Is the Highest Priority...

Reduce Risk with a State-of-the-Art Safety Instrumented System. Executive Overview... 3. Risk Reduction Is the Highest Priority... ARC WHITE PAPER By ARC Advisory Group SEPTEMBER 2004 Reduce Risk with a State-of-the-Art Safety Instrumented System Executive Overview... 3 Risk Reduction Is the Highest Priority... 4 Safety Standards

More information

Designing an Effective Risk Matrix

Designing an Effective Risk Matrix Designing an Effective Risk Matrix HENRY OZOG INTRODUCTION Risk assessment is an effective means of identifying process safety risks and determining the most cost-effective means to reduce risk. Many organizations

More information

Final Element Architecture Comparison

Final Element Architecture Comparison Final Element Architecture Comparison 2oo2 with diagnostics: Lower False Trip Rate and High Safety Project: Safety Cycling Systems Architecture Review Customer: Safety Cycling Systems, L.L.C. 1018 Laurel

More information

Michael A. Mitchell, Cameron Flow Control, DYNATORQUE Product Manager

Michael A. Mitchell, Cameron Flow Control, DYNATORQUE Product Manager SIL Made Simple Michael A. Mitchell, Cameron Flow Control, DYNATORQUE Product Manager KEY WORDS: Safety Integrity Level (SIL) Safety Instrumented Systems (SIS) ISA 84.01, IEC 61511 Partial Stroke Test

More information

Safety manual for Fisherr ED,ES,ET,EZ, HP, or HPA Valves with 657 / 667 Actuator

Safety manual for Fisherr ED,ES,ET,EZ, HP, or HPA Valves with 657 / 667 Actuator Instruction Manual Supplement ED, ES, ET, EZ, HP, HPA Valves with 657/667 Actuator Safety manual for Fisherr ED,ES,ET,EZ, HP, or HPA Valves with 657 / 667 Actuator Purpose This safety manual provides information

More information

What is CFSE? What is a CFSE Endorsement?

What is CFSE? What is a CFSE Endorsement? ENDORSEMENT PROGRAM The CFSE endorsement program helps current holders of CFSE and CFSP certification build /demonstrate expertise and knowledge in specific focus areas of functional safety. What is CFSE?

More information

Safety Integrated. SIMATIC Safety Matrix. The Management Tool for all Phases of the Safety Lifecycle. Brochure September 2010. Answers for industry.

Safety Integrated. SIMATIC Safety Matrix. The Management Tool for all Phases of the Safety Lifecycle. Brochure September 2010. Answers for industry. SIMATIC Safety Matrix The Management Tool for all Phases of the Safety Lifecycle Brochure September 2010 Safety Integrated Answers for industry. Functional safety and Safety Lifecycle Management Hazard

More information

IEC 61508 Functional Safety Assessment. ASCO Numatics Scherpenzeel, The Netherlands

IEC 61508 Functional Safety Assessment. ASCO Numatics Scherpenzeel, The Netherlands IEC 61508 Functional Safety Assessment Project: Series 327 Solenoid Valves Customer: ASCO Numatics Scherpenzeel, The Netherlands Contract No.: Q09/04-59 Report No.: ASC 09-04-59 R003 V1 R3 61508 Assessment

More information

S a f e t y & s e c u r i t y a l i g n m e n t b e n e f i t s f o r h i g h e r o p e r a t i o n a l i n t e g r i t y R A H U L G U P TA

S a f e t y & s e c u r i t y a l i g n m e n t b e n e f i t s f o r h i g h e r o p e r a t i o n a l i n t e g r i t y R A H U L G U P TA Unraveling the Jargon Between Functional Safety & Cyber Security Related to Industrial Control Systems ( ICS) S a f e t y & s e c u r i t y a l i g n m e n t b e n e f i t s f o r h i g h e r o p e r a

More information

MXa SIL Guidance and Certification

MXa SIL Guidance and Certification MXa SIL Guidance and Certification SIL 3 capable for critical applications Experience In Motion Functional Safety in Plants Safety and instrumentation engineers demand that a functional safety system s

More information

IEC 61508 Functional Safety Assessment. Project: K-TEK Corporation AT100, AT100S, AT200 Magnetostrictive Level Transmitter.

IEC 61508 Functional Safety Assessment. Project: K-TEK Corporation AT100, AT100S, AT200 Magnetostrictive Level Transmitter. 61508 SIL 3 CAPABLE IEC 61508 Functional Safety Assessment Project: K-TEK Corporation AT100, AT100S, AT200 Magnetostrictive Level Transmitter Customer: K-TEK Corporation Prairieville, LA USA Contract No.:

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Plant-STOP 9475 Company: R. STAHL Schaltgeräte GmbH Waldenburg Germany Contract No.: STAHL 13/04-027 Report No.: STAHL 13/04-027 R024 Version V1,

More information

Mitigating safety risk and maintaining operational reliability

Mitigating safety risk and maintaining operational reliability Mitigating safety risk and maintaining operational reliability Date 03/29/2010 Assessment and cost-effective reduction of process risks are critical to protecting the safety of employees and the public,

More information

FMEDA and Proven-in-use Assessment. Pepperl+Fuchs GmbH Mannheim Germany

FMEDA and Proven-in-use Assessment. Pepperl+Fuchs GmbH Mannheim Germany FMEDA and Proven-in-use Assessment Project: Inductive NAMUR sensors Customer: Pepperl+Fuchs GmbH Mannheim Germany Contract No.: P+F 03/11-10 Report No.: P+F 03/11-10 R015 Version V1, Revision R1.1, July

More information

SIS 401 - Smart SIS 15 minutes

SIS 401 - Smart SIS 15 minutes 2005 Emerson Process Management. All rights reserved. View this and other courses online at www.plantwebuniversity.com. SIS 401 - Smart SIS 15 minutes In this course: 1 Overview 2 Why It Matters 3 What

More information

What Now? More Standards for Safety and Regulatory Compliance

What Now? More Standards for Safety and Regulatory Compliance What Now? More Standards for Safety and Regulatory Compliance Mike Schmidt, P.E., CFSE Bluefield Process Safety Chuck Miller, CFSP Emerson Process Management Presenters Mike Schmidt, P.E., CFSE Bluefield

More information

SAFETY MANUAL SIL SMART Transmitter Power Supply

SAFETY MANUAL SIL SMART Transmitter Power Supply PROCESS AUTOMATION SAFETY MANUAL SIL SMART Transmitter Power Supply KFD2-STC4-(Ex)*, KFD2-STV4-(Ex)*, KFD2-CR4-(Ex)* ISO9001 2 3 With regard to the supply of products, the current issue of the following

More information

FUNCTIONAL SAFETY CERTIFICATE

FUNCTIONAL SAFETY CERTIFICATE FUNCTIONAL SAFETY CERTIFICATE This is to certify that the hardware safety integrity of the Valvetop ESD Valve Controller manufactured by TopWorx Inc. 3300 Fern Valley Road Louisville Kentucky 40213 USA

More information

Take a modern approach to increase safety integrity while improving process availability. DeltaV SIS Process Safety System

Take a modern approach to increase safety integrity while improving process availability. DeltaV SIS Process Safety System Take a modern approach to increase safety integrity while improving process availability. DeltaV SIS Process Safety System Whether standalone or integrated, choose a smart, modern safety system designed

More information

Logic solver application software and operator interface

Logic solver application software and operator interface Logic solver application software and operator interface By RJ Perry, Control Systems Consultant Correctly implemented and structured functional logic, together with operator interface displays, can improve

More information

SIL in de praktijk (Functional Safety) 23.04.2015 - Antwerpen. 61508 Compliance of Actuators and Life Cycle Considerations. SAMSON AG Dr.

SIL in de praktijk (Functional Safety) 23.04.2015 - Antwerpen. 61508 Compliance of Actuators and Life Cycle Considerations. SAMSON AG Dr. SIL in de praktijk (Functional Safety) 23.04.2015 - Antwerpen SAMSON AG Dr. Thomas Karte 61508 Compliance of Actuators and Life Cycle Considerations 2015-04-23 SAMSON AG Dr. Karte - 61508 Compliance of

More information

Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons

Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons Methods of Determining Safety Integrity Level (SIL) Requirements - Pros and Cons 1 Introduction by W G Gulland (4-sight Consulting) The concept of safety integrity levels (SILs) was introduced during the

More information

University of Paderborn Software Engineering Group II-25. Dr. Holger Giese. University of Paderborn Software Engineering Group. External facilities

University of Paderborn Software Engineering Group II-25. Dr. Holger Giese. University of Paderborn Software Engineering Group. External facilities II.2 Life Cycle and Safety Safety Life Cycle: The necessary activities involving safety-related systems, occurring during a period of time that starts at the concept phase of a project and finishes when

More information

IEC 61508 Overview Report

IEC 61508 Overview Report IEC 61508 Overview Report A Summary of the IEC 61508 Standard for Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems exida Sellersville, PA 18960, USA +1-215-453-1720

More information

SAFETY MANUAL SIL RELAY MODULE

SAFETY MANUAL SIL RELAY MODULE PROCESS AUTOMATION SAFETY MANUAL SIL RELAY MODULE KFD0-RSH-1.4S.PS2 ISO9001 3 With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery

More information

INSIDE THIS ISSUE KUWAIT SECTION. December NEWSLETTER 2009 FROM SECTION PRESIDENT S DESK TECHNICAL WINDOW MEMBERS AREA PRODUCT REVIEW

INSIDE THIS ISSUE KUWAIT SECTION. December NEWSLETTER 2009 FROM SECTION PRESIDENT S DESK TECHNICAL WINDOW MEMBERS AREA PRODUCT REVIEW KUWAIT SECTION December NEWSLETTER 2009 INSIDE THIS ISSUE TECHNICAL WINDOW MEMBERS AREA PRODUCT REVIEW FROM SECTION PRESIDENT S DESK I am pleased to release the December 2009 Newsletter of ISA- Kuwait

More information

SIL manual. Structure. Structure

SIL manual. Structure. Structure With regard to the supply of products, the current issue of the following document is applicable: The General Terms of Delivery for Products and Services of the Electrical Industry, published by the Central

More information

Guidelines. Safety Integrity Level - SIL - Valves and valve actuators. March 2009. Valves

Guidelines. Safety Integrity Level - SIL - Valves and valve actuators. March 2009. Valves Valves Guidelines Safety Integrity Level - SIL - Valves and valve actuators March 2009 VDMA German Engineering Federation Valves Manufacturers Association Chairman: Prof.-Dr.-Ing. Heinfried Hoffmann Managing

More information

Planning Your Safety Instrumented System

Planning Your Safety Instrumented System Planning Your Safety Instrumented System Executive Summary Industrial processes today involve innate risks due to the presence of gases, chemicals and other dangerous materials. Each year catastrophes

More information

Mary Ann Lundteigen. Doctoral theses at NTNU, 2009:9 Mary Ann Lundteigen. Doctoral theses at NTNU, 2009:9

Mary Ann Lundteigen. Doctoral theses at NTNU, 2009:9 Mary Ann Lundteigen. Doctoral theses at NTNU, 2009:9 Mary Ann Lundteigen Doctoral theses at NTNU, 2009:9 Mary Ann Lundteigen Safety instrumented systems in the oil and gas industry: Concepts and methods for safety and reliability assessments in design and

More information

A holistic approach to Automation Safety

A holistic approach to Automation Safety A holistic approach to Automation Safety Mark Eitzman - Manager, Safety Business Development How technology, global standards and open systems help increase productivity and overall equipment effectiveness.

More information

Why SIL3? Josse Brys TUV Engineer j.brys@hima.com

Why SIL3? Josse Brys TUV Engineer j.brys@hima.com Why SIL3? Josse Brys TUV Engineer j.brys@hima.com Agenda Functional Safety Good planning if specifications are not right? What is the difference between a normal safety and SIL3 loop? How do systems achieve

More information

Hydraulic/pneumatic drive Cylinder (machine actuator) Optoelectronics Light curtain (sensor) Electronics Control system Danger! Hydraulics/pneumatics Valves (actuators) Safety control SRP/CS subsystem

More information

Safety Integrity Level (SIL) Assessment as key element within the plant design

Safety Integrity Level (SIL) Assessment as key element within the plant design Safety Integrity Level (SIL) Assessment as key element within the plant design Tobias WALK ILF Consulting Engineers GmbH Germany Abstract Special attention has to be provide to safety instrumented functions

More information

ISA CERTIFIED AUTOMATION PROFESSIONAL (CAP ) CLASSIFICATION SYSTEM

ISA CERTIFIED AUTOMATION PROFESSIONAL (CAP ) CLASSIFICATION SYSTEM ISA CERTIFIED AUTOMATION PROFESSIONAL (CAP ) CLASSIFICATION SYSTEM Domain I: Feasibility Study - identify, scope and justify the automation project Task 1: Define the preliminary scope through currently

More information

Safety Integrity Level (SIL) Studies Germanischer Lloyd Service/Product Description

Safety Integrity Level (SIL) Studies Germanischer Lloyd Service/Product Description Safety & Risk Management Services Safety Integrity Level (SIL) Studies Germanischer Lloyd Service/Product Description Germanischer Lloyd Service/Product Description Safety Integrity Level (SIL) Studies

More information

Medical Device Software Standards for Safety and Regulatory Compliance

Medical Device Software Standards for Safety and Regulatory Compliance Medical Device Software Standards for Safety and Regulatory Compliance Sherman Eagles +1 612-865-0107 seagles@softwarecpr.com www.softwarecpr.com Assuring safe software SAFE All hazards have been addressed

More information

ThinkReliability. Six Common Errors when Solving Problems. Solve Problems. Prevent Problems.

ThinkReliability. Six Common Errors when Solving Problems. Solve Problems. Prevent Problems. Six Common Errors when Solving Problems Mark Galley Organizations apply a variety of tools to solve problems, improve operations and increase reliability many times without success. Why? More than likely,

More information

Systems Assurance Management in Railway through the Project Life Cycle

Systems Assurance Management in Railway through the Project Life Cycle Systems Assurance Management in Railway through the Project Life Cycle Vivian Papen Ronald Harvey Hamid Qaasim Peregrin Spielholz ABSTRACT Systems assurance management is essential for transit agencies

More information

Functional safety. Essential to overall safety

Functional safety. Essential to overall safety Functional safety Essential to overall safety What is Functional safety? In public spaces, factories, offi ces or homes; we are surrounded by an increasing number of electric and electronic devices and

More information

Safety and functional safety A general guide

Safety and functional safety A general guide Safety and functional safety A general guide This document is an informative aid only. The information and examples given are for general use only. They do not describe all the necessary details for implementing

More information

SAFETY MANUAL SIL Switch Amplifier

SAFETY MANUAL SIL Switch Amplifier PROCESS AUTOMATION SAFETY MANUAL SIL Switch Amplifier KCD2-SR-(Ex)*(.LB)(.SP), HiC282* ISO9001 2 With regard to the supply of products, the current issue of the following document is applicable: The General

More information

Controlling Risks Safety Lifecycle

Controlling Risks Safety Lifecycle Controlling Risks Safety Lifecycle Objective Introduce the concept of a safety lifecycle and the applicability and context in safety systems. Lifecycle Management A risk based management plan for a system

More information

CASS TEMPLATES FOR SOFTWARE REQUIREMENTS IN RELATION TO IEC 61508 PART 3 SAFETY FUNCTION ASSESSMENT Version 1.0 (5128)

CASS TEMPLATES FOR SOFTWARE REQUIREMENTS IN RELATION TO IEC 61508 PART 3 SAFETY FUNCTION ASSESSMENT Version 1.0 (5128) CASS TEMPLATES FOR SOFTWARE REQUIREMENTS IN RELATION TO PART 3 SAFETY FUNCTION ASSESSMENT Version 1.0 (5128) Report No. T6A01 Prepared for: The CASS Scheme Ltd By: The 61508 Association All comment or

More information

Information Technology Engineers Examination. Information Technology Service Manager Examination. (Level 4) Syllabus

Information Technology Engineers Examination. Information Technology Service Manager Examination. (Level 4) Syllabus Information Technology Engineers Examination Information Technology Service Manager Examination (Level 4) Syllabus Details of Knowledge and Skills Required for the Information Technology Engineers Examination

More information

ASSESSMENT OF THE ISO 26262 STANDARD, ROAD VEHICLES FUNCTIONAL SAFETY

ASSESSMENT OF THE ISO 26262 STANDARD, ROAD VEHICLES FUNCTIONAL SAFETY ASSESSMENT OF THE ISO 26262 STANDARD, ROAD VEHICLES FUNCTIONAL SAFETY Dr. Qi Van Eikema Hommes SAE 2012 Government/Industry Meeting January 25, 2012 1 Outline ISO 26262 Overview Scope of the Assessment

More information

Announcement of a new IAEA Co-ordinated Research Programme (CRP)

Announcement of a new IAEA Co-ordinated Research Programme (CRP) Announcement of a new IAEA Co-ordinated Research Programme (CRP) 1. Title of Co-ordinated Research Programme Design and engineering aspects of the robustness of digital instrumentation and control (I&C)

More information

Vetting Smart Instruments for the Nuclear Industry

Vetting Smart Instruments for the Nuclear Industry TS Lockhart, Director of Engineering Moore Industries-International, Inc. Vetting Smart Instruments for the Nuclear Industry Moore Industries-International, Inc. is a world leader in the design and manufacture

More information

Version: 1.0 Last Edited: 2005-10-27. Guideline

Version: 1.0 Last Edited: 2005-10-27. Guideline Process hazard and risk Comments on this report are gratefully received by Johan Hedberg at SP Swedish National Testing and Research Institute mailto:johan.hedberg@sp.se -1- Summary This report will try

More information

TÜV FS Engineer Certification Course www.silsupport.com www.tuv.com. Being able to demonstrate competency is now an IEC 61508 requirement:

TÜV FS Engineer Certification Course www.silsupport.com www.tuv.com. Being able to demonstrate competency is now an IEC 61508 requirement: CC & technical support services TÜV FS Engineer Certification Course www.silsupport.com www.tuv.com Being able to demonstrate competency is now an IEC 61508 requirement: CAPITALISE ON EXPERT KNOWLEDGE

More information

Performance Based Gas Detection System Design for Hydrocarbon Storage Tank Systems

Performance Based Gas Detection System Design for Hydrocarbon Storage Tank Systems Performance Based Gas Detection System Design for Hydrocarbon Storage Tank Systems Srinivasan N. Ganesan, M.S., P.E. MENA Region Manager, Kenexis DMCC, Dubai, UAE Edward M. Marszal, PE, ISA 84 Expert ABSTRACT

More information

The promise and pitfalls of cyber insurance January 2016

The promise and pitfalls of cyber insurance January 2016 www.pwc.com/us/insurance The promise and pitfalls of cyber insurance January 2016 2 top issues The promise and pitfalls of cyber insurance Cyber insurance is a potentially huge but still largely untapped

More information

Operations & Maintenance 101 Maintenance Strategies and Work Practices to Reduce Costs

Operations & Maintenance 101 Maintenance Strategies and Work Practices to Reduce Costs 2003 Emerson Process Management. All rights reserved. View this and other courses online at www.plantwebuniversity.com. Operations & Maintenance 101 Maintenance Strategies and Work Practices to Reduce

More information

GUIDELINES FOR THE CONDUCT OF OIL, GAS & PETROCHEMICAL RISK ENGINEERING SURVEYS

GUIDELINES FOR THE CONDUCT OF OIL, GAS & PETROCHEMICAL RISK ENGINEERING SURVEYS GUIDELINES FOR THE CONDUCT OF OIL, GAS & PETROCHEMICAL RISK ENGINEERING SURVEYS Developed by: Ron Jarvis Andy Goddard Swiss Re, London Talbot Syndicate, London Contributions made by the London market engineers

More information

Does Aligning Cyber Security and Process Safety Reduce Risk?

Does Aligning Cyber Security and Process Safety Reduce Risk? Does Aligning Cyber Security and Process Safety Reduce Risk? How can we align them to protect Operational Integrity? Schneider Electric September 15, 2015 Hosted by Greg Hale, Founder & Editor of Industrial

More information

Quality Risk Management Tools Quality Risk Management Tool Selection When to Select FMEA: QRM Tool Selection Matrix

Quality Risk Management Tools Quality Risk Management Tool Selection When to Select FMEA: QRM Tool Selection Matrix Quality Risk Management Tools Quality Risk Management Tool Selection When to Select FMEA: QRM Tool Selection Matrix 26 Quality Risk Management Tools The ICH Q9 guideline, Quality Risk Management, provides

More information

SAFETY MANUAL SIL SWITCH AMPLIFIER

SAFETY MANUAL SIL SWITCH AMPLIFIER PROCESS AUTOMATION SAFETY MANUAL SIL SWITCH AMPLIFIER KF**-SR2-(Ex)*(.LB), KFD2-SR2-(Ex)2.2S ISO9001 2 With regard to the supply of products, the current issue of the following document is applicable:

More information

Recommendations to align safety and security for industrial automation control systems ISA99 WG7 TG1. 30 January 2015

Recommendations to align safety and security for industrial automation control systems ISA99 WG7 TG1. 30 January 2015 Recommendations to align safety and security for industrial automation control systems ISA99 WG7 TG1 Dennis Holstein (US), Virgil Hammond (US), Joe Weiss (US), Ajay Mishra (US), Andrew Ginter (US), Robert

More information

Alarm Management Standards Are You Taking Them Seriously?

Alarm Management Standards Are You Taking Them Seriously? Alarm Management Standards Are You Taking Them Seriously? Executive Summary EEMUA Publication 191 ALARM SYSTEMS - A Guide to Design, Management, and Procurement was first released in 1999 and is well acknowledged

More information

> THE SEVEN GREATEST THREATS TO PROCESS PLANT > WHAT S INSIDE: SAFETY, AND HOW TO MANAGE THEM WHITE PAPER

> THE SEVEN GREATEST THREATS TO PROCESS PLANT > WHAT S INSIDE: SAFETY, AND HOW TO MANAGE THEM WHITE PAPER WHITE PAPER > THE SEVEN GREATEST THREATS TO PROCESS PLANT SAFETY, > WHAT S INSIDE: Introduction 1. Nuisance Trips 2. Not Using the Full Functionality of the Control and Safety System 3. Human Error 4.

More information

TÜV Rheinland Functional Safety Program Functional Safety Engineer Certification

TÜV Rheinland Functional Safety Program Functional Safety Engineer Certification TÜV Rheinland Functional Safety Program Functional Safety Engineer Certification The TÜV Rheinland Functional Safety Program is a unique opportunity to provide certified evidence of competency in functional

More information

Fire and Gas Solutions. Improving Safety and Business Performance

Fire and Gas Solutions. Improving Safety and Business Performance Fire and Gas Solutions Improving Safety and Business Performance Industrial Fire & Gas (F&G) systems play a critical role in protecting people, processes and the environment. They continuously monitor

More information

SILs and Software. Introduction. The SIL concept. Problems with SIL. Unpicking the SIL concept

SILs and Software. Introduction. The SIL concept. Problems with SIL. Unpicking the SIL concept SILs and Software PG Bishop Adelard and Centre for Software Reliability, City University Introduction The SIL (safety integrity level) concept was introduced in the HSE (Health and Safety Executive) PES

More information

How to Upgrade SPICE-Compliant Processes for Functional Safety

How to Upgrade SPICE-Compliant Processes for Functional Safety How to Upgrade SPICE-Compliant Processes for Functional Safety Dr. Erwin Petry KUGLER MAAG CIE GmbH Leibnizstraße 11 70806 Kornwestheim Germany Mobile: +49 173 67 87 337 Tel: +49 7154-1796-222 Fax: +49

More information

Reducing Steps to Achieve Safety Certification

Reducing Steps to Achieve Safety Certification Reducing Steps to Achieve Safety Certification WP-01174-1.0 White Paper This white paper describes the successful steps in achieving certification for an FPGA implementation of an application certified

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions The exida 61508 Certification Program V1 R8 October 19, 2007 exida Geneva, Switzerland Sellersville, PA 18960, USA, +1-215-453-1720 Munich, Germany, +49 89 4900 0547 1 Exida

More information

You Must Know About the New RIA Automation Standard

You Must Know About the New RIA Automation Standard You Must Know About the New RIA Automation Standard AMT Decoding the essentials of RIA R15.06:2012 The new Robotics Industry Association (RIA) standard for robots and robot systems (RIA R15.06:2012) will

More information

NW Natural & Pipeline Safety

NW Natural & Pipeline Safety NW Natural & Pipeline Safety We Grew Up Here NW Natural is an Oregon-based utility company founded in 1859. The company purchases natural gas for its core market in western Oregon and southwestern Washington,

More information

Risk Management Primer

Risk Management Primer Risk Management Primer Purpose: To obtain strong project outcomes by implementing an appropriate risk management process Audience: Project managers, project sponsors, team members and other key stakeholders

More information

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r), Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

More information

Optimizing International Property Insurance Coverage

Optimizing International Property Insurance Coverage Companies with facilities outside the U.S. protect against the financial losses that can result from damage to those facilities through international property insurance programs. International property

More information

Controlling Risks Risk Assessment

Controlling Risks Risk Assessment Controlling Risks Risk Assessment Hazard/Risk Assessment Having identified the hazards, one must assess the risks by considering the severity and likelihood of bad outcomes. If the risks are not sufficiently

More information

An introduction to Functional Safety and IEC 61508

An introduction to Functional Safety and IEC 61508 An introduction to Functional Safety and IEC 61508 Application Note AN9025 Contents Page 1 INTRODUCTION........................................................... 1 2 FUNCTIONAL SAFETY.......................................................

More information

Is Cost Effective Compliance with the IEC61511 Safety Lifecycle Sustainable?

Is Cost Effective Compliance with the IEC61511 Safety Lifecycle Sustainable? Is Cost Effective Compliance with the IEC61511 Safety Lifecycle Sustainable? Michael Scott, PE, CFSE Exec VP - Global Process Safety Technology aesolutions Carolyn Presgraves, CFSP Senior Director of Software

More information

Information Security Services

Information Security Services Information Security Services Information Security In 2013, Symantec reported a 62% increase in data breaches over 2012. These data breaches had tremendous impacts on many companies, resulting in intellectual

More information

ELECTROTECHNIQUE IEC INTERNATIONALE 61508-3 INTERNATIONAL ELECTROTECHNICAL

ELECTROTECHNIQUE IEC INTERNATIONALE 61508-3 INTERNATIONAL ELECTROTECHNICAL 61508-3 ª IEC: 1997 1 Version 12.0 05/12/97 COMMISSION CEI ELECTROTECHNIQUE IEC INTERNATIONALE 61508-3 INTERNATIONAL ELECTROTECHNICAL COMMISSION Functional safety of electrical/electronic/ programmable

More information