Implementation of NAMD molecular dynamics nonbonded force-field on the Cell Broadband Engine processor

Size: px
Start display at page:

Download "Implementation of NAMD molecular dynamics nonbonded force-field on the Cell Broadband Engine processor"

Transcription

1 Implementation of NAMD molecular dynamics nbonded force-field on the Cell Broadband Engine processor Guochun Shi Volodymyr Kindratenko National Center for Supercomputing Applications University of Illiis at Urbana-Champaign

2 Presentation outline Introduction Cell Broadband Engine NA Molecule Dynamics Simulation (NAMD) Implementation Task library and task dispatch system SIMD and code optimizations for SPU Performance Static analysis Performance on hardware Conclusions 2

3 Cell Broadband Engine One Power Processor Element (PPE) and eight Synergistic Processing Elements (SPE), each SPE has 256 KB local storage 3.2 GHz processor 25.6 GB/s processor-tomemory bandwidth > 200 GB/s EIB sustained aggregate bandwidth Theoretical peak performance of GFLOPS (SP) and GFLOPS (DP) Memory Interface Controller (MIC) Element Interconnect Bus (EIB) PowerPC Processor Storage Subsystem (PPSS) L1 instruction cache L2 cache L1 data cache PowerPC Processor Unit (PPU) PowerPC Processor Element (PPE) I/O Interface (IOIF0) Memory Flow Controller (MFC) DMA Controller Local Store (LS) Synergistic Processor Unit (SPU) Synergistic Processor Element (SPE) 0 I/O Interface (IOIF1) SPE 7 3

4 NAMD Compute forces and update positions repeatedly The simulation space is divided into rectangular regions called patches Patch dimensions > cutoff radius for n-bonded interaction Each patch only needs to be checked against nearby patches Self-compute and paircompute 4

5 NAMD kernel NAMD SPEC 2006 CPU benchmark kernel 1: for each atom i in patch p k 2: for each atom j in patch p l 3: if atoms i and j are bonded, compute bonded forces 4: otherwise, if atoms i and j are within the cutoff distance, add atom j to the i s atom pair list 5: end 6: for each atom k in the i s atom pair list 7: compute n-bonded forces (L-J potential and PME direct sum, both vial lookup tables) 8: end 9: end We implemented a simplified version of the kernel that excludes pairlists and bonded forces 1: for each atom i in patch p k 2: for each atom j in patch p l 3: if atoms i and j are within the cutoff distance 4: compute n-bonded forces (L-J potential and PME direct sum, both via lookup tables) 5: end 6: end 5

6 Implementation: task library and dispatch system Compute task struct typedef struct task_s { int cmd; // operand int size; // the size of task structure } task_t; API for PPE and SPE int ppu_task_init(int argc, char **argv,spe_program_handle_t ); // initialization int ppu_task_run(volatile task_t * task); // start a task in all SPEs int ppu_task_spu_run(volatile task_t* task, int spe); // start a task in one SPE int ppu_task_spu_wait(void); // wait for any SPE to finish, blocking call void ppu_task_spu_waitall(void); // wait for all SPEs to finish, blocking all typedef struct compute_task_s { task_t common; <user_type1> <user_var_name1> <user_type2> <user_var_name2> } compute_task_t; int spu_task_init(unsigned long long); int spu_task_register(dotask_t,int); // register a task int spu_task_run(void); // start the infinite loop, wait for tasks Task dispatch system start pool of idle SPEs find idle SPE pool of patch pairs to be processed find a dependency-free patch pair remove patch pair from the pool run pair-compute task on the idle SPE task pool is empty wait until all SPU tasks exit ppu_task_spe_wait() stop 6

7 Implementation: SPU SIMD: each component is kept in a separate vector Data movement dominates the time Buffer size carefully chosen to fit into the local store Data in memory Shuffle operation s vectors Data movement for distance computation (SP case) x0 y0 z0 c0 id0 x1 y1 z1 c0 i0 x2 y2 z2 c0 i0 x3 y3 z3 c0 i0 x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 c0 c1 c2 c3 Local store usage Computation Code (KB) L-J table (KB) Table _four (KB) Atom_ buffer (KB) Force buffer (KB) Stack others dx0 dx1 dx2 dx3 dy0 dy1 dy2 dy3 dz0 dz1 dz2 dz3 SP DP distance vector r0 r1 r2 r3 7

8 Implementation: optimizations task start Different vectorization schemes are applied in order to get best performance compute distances for 4 pairs of atoms DMA in atoms and forces for the patch Yes Selfcompute? No compute distances for 4 pairs of atoms Self-compute: do redundant computations and fill zeros to unused slots Pair-compute: save eugh pairs of atoms, then do calculations any of them within cutoff? compute 4 n-bonded forces nullify forces for those outside of cutoff distance all pairs processed? Save pairs within the cutoff distance Number of save pairs >= 4? compute 4 n-bonded forces all pairs processed? DMA forces back to main memory task exit 8

9 number of clock cycles number of clock cycles Performance: static analysis 4E E+10 3E E+10 scalar force computation scalar distance computation SIMD force computation merge SIMD distance computation 4E E+10 3E E+10 data manupulation cycles compute cycles 2E+10 2E E E+10 1E+10 1E+10 5E+09 5E single-precision self-compute single-precision pair-compute double-precision self-compute double-precision pair-compute single-precision self-compute single-precision pair-compute double-precision self-compute double-precision pair-compute Distance computation code takes most of the time Data manipulation time is significant 9

10 execution time (seconds) speedup execution time (seconds) execution time (seconds) speedup Performance Cell/B.E. PPE (3.2GHz) NAMD kernel performance on different architectures Intel Itanium 2 (900MGz) IBM Power4 (1.2GHz) Intel Xeon (3.0GHz) single-precision kernel double-precision kernel AMD Opteron (2.2GHz) Cell/B.E. 8 SPEs (3.2GHz) 13.4x speedup for SP and 11.6x speedup for DP compared to a 3.0 GHz Intel Xeon processor SP performance is < 2x better than DP Scaling and speedup of the forcefield kernel as compared to a 3.0 GHz Intel Xeon processor Intel Xeon (3.0GHz) Intel Xeon (3.0GHz) speedup execution time SPE 2 SPEs 4 SPEs 8 SPEs 16 SPEs speedup execution time SPE 2 SPEs 4 SPEs 8 SPEs 16 SPEs

11 Conclusions Linear speedup when using multiple synergistic processing units Performance of the double-precision floating-point kernel differs by less than a factor of two from the performance of the single-precision floating-point kernel Even though the peak performance of the Cell s single-precision floating point SIMD engine is 14 times the peak performance of the double-precision floating-point SIMD engine The biggest challenge in using the Cell/B.E. processor in scientific computing applications, such as NAMD, is the software development complexity due to the underlying hardware architecture 11

12 Ackwledgment NSF grant SCI IBM Linux Techlogy Center Dr. James Phillips from the Theoretical and Computational Biophysics Group Access to Cell blades was provided by Prof. Paul Woodward from the University of Minnesota Prof. Dave Bader from the Georgia Institute of Techlogy Trish Barker, Jeremy Es, and Dr. John Larson from NCSA 12

Cell-SWat: Modeling and Scheduling Wavefront Computations on the Cell Broadband Engine

Cell-SWat: Modeling and Scheduling Wavefront Computations on the Cell Broadband Engine Cell-SWat: Modeling and Scheduling Wavefront Computations on the Cell Broadband Engine Ashwin Aji, Wu Feng, Filip Blagojevic and Dimitris Nikolopoulos Forecast Efficient mapping of wavefront algorithms

More information

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching

More information

Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture.

Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture. Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture. Chirag Gupta,Sumod Mohan K cgupta@clemson.edu, sumodm@clemson.edu Abstract In this project we propose a method to improve

More information

IBM CELL CELL INTRODUCTION. Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 IBM CELL. Politecnico di Milano Como Campus

IBM CELL CELL INTRODUCTION. Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 IBM CELL. Politecnico di Milano Como Campus Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 CELL INTRODUCTION 2 1 CELL SYNERGY Cell is not a collection of different processors, but a synergistic whole Operation paradigms,

More information

Optimizing Code for Accelerators: The Long Road to High Performance

Optimizing Code for Accelerators: The Long Road to High Performance Optimizing Code for Accelerators: The Long Road to High Performance Hans Vandierendonck Mons GPU Day November 9 th, 2010 The Age of Accelerators 2 Accelerators in Real Life 3 Latency (ps/inst) Why Accelerators?

More information

Binary search tree with SIMD bandwidth optimization using SSE

Binary search tree with SIMD bandwidth optimization using SSE Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous

More information

High-Performance Modular Multiplication on the Cell Processor

High-Performance Modular Multiplication on the Cell Processor High-Performance Modular Multiplication on the Cell Processor Joppe W. Bos Laboratory for Cryptologic Algorithms EPFL, Lausanne, Switzerland joppe.bos@epfl.ch 1 / 19 Outline Motivation and previous work

More information

Using Many-Core Hardware to Correlate Radio Astronomy Signals

Using Many-Core Hardware to Correlate Radio Astronomy Signals Using Many-Core Hardware to Correlate Radio Astronomy Signals Rob V. van Nieuwpoort ASTRON, Netherlands Institute for Radio Astronomy Dwingeloo, The Netherlands nieuwpoort@astron.nl Categories and Subject

More information

SPEEDUP - optimization and porting of path integral MC Code to new computing architectures

SPEEDUP - optimization and porting of path integral MC Code to new computing architectures SPEEDUP - optimization and porting of path integral MC Code to new computing architectures V. Slavnić, A. Balaž, D. Stojiljković, A. Belić, A. Bogojević Scientific Computing Laboratory, Institute of Physics

More information

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Modern GPU

More information

64-Bit versus 32-Bit CPUs in Scientific Computing

64-Bit versus 32-Bit CPUs in Scientific Computing 64-Bit versus 32-Bit CPUs in Scientific Computing Axel Kohlmeyer Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum March 2004 1/25 Outline 64-Bit and 32-Bit CPU Examples

More information

Multi-Threading Performance on Commodity Multi-Core Processors

Multi-Threading Performance on Commodity Multi-Core Processors Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

Supporting OpenMP on Cell

Supporting OpenMP on Cell Supporting OpenMP on Cell Kevin O Brien, Kathryn O Brien, Zehra Sura, Tong Chen and Tao Zhang IBM T. J Watson Research Abstract. The Cell processor is a heterogeneous multi-core processor with one Power

More information

Dynamic Profiling and Load-balancing of N-body Computational Kernels on Heterogeneous Architectures

Dynamic Profiling and Load-balancing of N-body Computational Kernels on Heterogeneous Architectures Dynamic Profiling and Load-balancing of N-body Computational Kernels on Heterogeneous Architectures A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF MASTER OF SCIENCE IN THE FACULTY

More information

High performance combinatorial algorithm design on the Cell Broadband Engine processor

High performance combinatorial algorithm design on the Cell Broadband Engine processor Available online at www.sciencedirect.com Parallel Computing 33 (2007) 720 740 www.elsevier.com/locate/parco High performance combinatorial algorithm design on the Cell Broadband Engine processor David

More information

NAMD2- Greater Scalability for Parallel Molecular Dynamics. Presented by Abel Licon

NAMD2- Greater Scalability for Parallel Molecular Dynamics. Presented by Abel Licon NAMD2- Greater Scalability for Parallel Molecular Dynamics Laxmikant Kale, Robert Steel, Milind Bhandarkar,, Robert Bunner, Attila Gursoy,, Neal Krawetz,, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan,,

More information

Algorithms of Scientific Computing II

Algorithms of Scientific Computing II Technische Universität München WS 2010/2011 Institut für Informatik Prof. Dr. Hans-Joachim Bungartz Alexander Heinecke, M.Sc., M.Sc.w.H. Algorithms of Scientific Computing II Exercise 4 - Hardware-aware

More information

Lecture 1: the anatomy of a supercomputer

Lecture 1: the anatomy of a supercomputer Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers of the future may have only 1,000 vacuum tubes and perhaps weigh 1½ tons. Popular Mechanics, March 1949

More information

Rethinking SIMD Vectorization for In-Memory Databases

Rethinking SIMD Vectorization for In-Memory Databases SIGMOD 215, Melbourne, Victoria, Australia Rethinking SIMD Vectorization for In-Memory Databases Orestis Polychroniou Columbia University Arun Raghavan Oracle Labs Kenneth A. Ross Columbia University Latest

More information

Seeking Opportunities for Hardware Acceleration in Big Data Analytics

Seeking Opportunities for Hardware Acceleration in Big Data Analytics Seeking Opportunities for Hardware Acceleration in Big Data Analytics Paul Chow High-Performance Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Toronto Who

More information

Revisiting Software Zero-Copy for Web-caching Applications with Twin Memory Allocation

Revisiting Software Zero-Copy for Web-caching Applications with Twin Memory Allocation Revisiting Software Zero-Copy for Web-caching Applications with Twin Memory Allocation Xiang Song Jicheng Shi, Haibo Chen and Binyu Zang IPADS of Shanghai Jiao Tong University Fudan University Network

More information

Lattice QCD Performance. on Multi core Linux Servers

Lattice QCD Performance. on Multi core Linux Servers Lattice QCD Performance on Multi core Linux Servers Yang Suli * Department of Physics, Peking University, Beijing, 100871 Abstract At the moment, lattice quantum chromodynamics (lattice QCD) is the most

More information

GPUs for Scientific Computing

GPUs for Scientific Computing GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles mike.giles@maths.ox.ac.uk Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research

More information

Oracle Database Reliability, Performance and scalability on Intel Xeon platforms Mitch Shults, Intel Corporation October 2011

Oracle Database Reliability, Performance and scalability on Intel Xeon platforms Mitch Shults, Intel Corporation October 2011 Oracle Database Reliability, Performance and scalability on Intel platforms Mitch Shults, Intel Corporation October 2011 1 Intel Processor E7-8800/4800/2800 Product Families Up to 10 s and 20 Threads 30MB

More information

A New, High-Performance, Low-Power, Floating-Point Embedded Processor for Scientific Computing and DSP Applications

A New, High-Performance, Low-Power, Floating-Point Embedded Processor for Scientific Computing and DSP Applications 1 A New, High-Performance, Low-Power, Floating-Point Embedded Processor for Scientific Computing and DSP Applications Simon McIntosh-Smith Director of Architecture 2 Multi-Threaded Array Processing Architecture

More information

Lecture 2 Parallel Programming Platforms

Lecture 2 Parallel Programming Platforms Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple

More information

SWARM: A Parallel Programming Framework for Multicore Processors. David A. Bader, Varun N. Kanade and Kamesh Madduri

SWARM: A Parallel Programming Framework for Multicore Processors. David A. Bader, Varun N. Kanade and Kamesh Madduri SWARM: A Parallel Programming Framework for Multicore Processors David A. Bader, Varun N. Kanade and Kamesh Madduri Our Contributions SWARM: SoftWare and Algorithms for Running on Multicore, a portable

More information

CSE 6040 Computing for Data Analytics: Methods and Tools

CSE 6040 Computing for Data Analytics: Methods and Tools CSE 6040 Computing for Data Analytics: Methods and Tools Lecture 12 Computer Architecture Overview and Why it Matters DA KUANG, POLO CHAU GEORGIA TECH FALL 2014 Fall 2014 CSE 6040 COMPUTING FOR DATA ANALYSIS

More information

Acceleration of Spiking Neural Networks in Emerging Multi-core and GPU Architectures

Acceleration of Spiking Neural Networks in Emerging Multi-core and GPU Architectures Acceleration of Spiking Neural Networks in Emerging Multi-core and GPU Architectures Mohammad A. Bhuiyan, Vivek K. Pallipuram and Melissa C. Smith Department of Electrical and Computer Engineering, Clemson

More information

Bindel, Spring 2010 Applications of Parallel Computers (CS 5220) Week 1: Wednesday, Jan 27

Bindel, Spring 2010 Applications of Parallel Computers (CS 5220) Week 1: Wednesday, Jan 27 Logistics Week 1: Wednesday, Jan 27 Because of overcrowding, we will be changing to a new room on Monday (Snee 1120). Accounts on the class cluster (crocus.csuglab.cornell.edu) will be available next week.

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

1 Bull, 2011 Bull Extreme Computing

1 Bull, 2011 Bull Extreme Computing 1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance

More information

Intel Xeon +FPGA Platform for the Data Center

Intel Xeon +FPGA Platform for the Data Center Intel Xeon +FPGA Platform for the Data Center FPL 15 Workshop on Reconfigurable Computing for the Masses PK Gupta, Director of Cloud Platform Technology, DCG/CPG Overview Data Center and Workloads Xeon+FPGA

More information

Building a Top500-class Supercomputing Cluster at LNS-BUAP

Building a Top500-class Supercomputing Cluster at LNS-BUAP Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

GPU Computing Case Study: Molecular Modeling Applications

GPU Computing Case Study: Molecular Modeling Applications GPU Computing Case Study: Molecular Modeling Applications John Stone Theoretical and Computational Biophysics Group University of Illinois at Urbana-Champaign Research/gpu/ ECE 598SP, November 11, 2008

More information

Panasas High Performance Storage Powers the First Petaflop Supercomputer at Los Alamos National Laboratory

Panasas High Performance Storage Powers the First Petaflop Supercomputer at Los Alamos National Laboratory Customer Success Story Los Alamos National Laboratory Panasas High Performance Storage Powers the First Petaflop Supercomputer at Los Alamos National Laboratory June 2010 Highlights First Petaflop Supercomputer

More information

High Performance Computing in CST STUDIO SUITE

High Performance Computing in CST STUDIO SUITE High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver

More information

Shared Memory Abstractions for Heterogeneous Multicore Processors

Shared Memory Abstractions for Heterogeneous Multicore Processors Shared Memory Abstractions for Heterogeneous Multicore Processors Scott Schneider Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

BSC - Barcelona Supercomputer Center

BSC - Barcelona Supercomputer Center Objectives Research in Supercomputing and Computer Architecture Collaborate in R&D e-science projects with prestigious scientific teams Manage BSC supercomputers to accelerate relevant contributions to

More information

CMSC 611: Advanced Computer Architecture

CMSC 611: Advanced Computer Architecture CMSC 611: Advanced Computer Architecture Parallel Computation Most slides adapted from David Patterson. Some from Mohomed Younis Parallel Computers Definition: A parallel computer is a collection of processing

More information

Benchmarking Large Scale Cloud Computing in Asia Pacific

Benchmarking Large Scale Cloud Computing in Asia Pacific 2013 19th IEEE International Conference on Parallel and Distributed Systems ing Large Scale Cloud Computing in Asia Pacific Amalina Mohamad Sabri 1, Suresh Reuben Balakrishnan 1, Sun Veer Moolye 1, Chung

More information

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture? This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo

More information

Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors. Lesson 05: Array Processors

Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors. Lesson 05: Array Processors Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors Lesson 05: Array Processors Objective To learn how the array processes in multiple pipelines 2 Array Processor

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

HP ProLiant SL270s Gen8 Server. Evaluation Report

HP ProLiant SL270s Gen8 Server. Evaluation Report HP ProLiant SL270s Gen8 Server Evaluation Report Thomas Schoenemeyer, Hussein Harake and Daniel Peter Swiss National Supercomputing Centre (CSCS), Lugano Institute of Geophysics, ETH Zürich schoenemeyer@cscs.ch

More information

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas

More information

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 g_suhakaran@vssc.gov.in THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833

More information

Enabling Technologies for Distributed Computing

Enabling Technologies for Distributed Computing Enabling Technologies for Distributed Computing Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF Multi-core CPUs and Multithreading Technologies

More information

The K computer: Project overview

The K computer: Project overview The Next-Generation Supercomputer The K computer: Project overview SHOJI, Fumiyoshi Next-Generation Supercomputer R&D Center, RIKEN The K computer Outline Project Overview System Configuration of the K

More information

Oracle Database Scalability in VMware ESX VMware ESX 3.5

Oracle Database Scalability in VMware ESX VMware ESX 3.5 Performance Study Oracle Database Scalability in VMware ESX VMware ESX 3.5 Database applications running on individual physical servers represent a large consolidation opportunity. However enterprises

More information

Operating System for the K computer

Operating System for the K computer Operating System for the K computer Jun Moroo Masahiko Yamada Takeharu Kato For the K computer to achieve the world s highest performance, Fujitsu has worked on the following three performance improvements

More information

SPARC64 VIIIfx: CPU for the K computer

SPARC64 VIIIfx: CPU for the K computer SPARC64 VIIIfx: CPU for the K computer Toshio Yoshida Mikio Hondo Ryuji Kan Go Sugizaki SPARC64 VIIIfx, which was developed as a processor for the K computer, uses Fujitsu Semiconductor Ltd. s 45-nm CMOS

More information

Experiences With Mobile Processors for Energy Efficient HPC

Experiences With Mobile Processors for Energy Efficient HPC Experiences With Mobile Processors for Energy Efficient HPC Nikola Rajovic, Alejandro Rico, James Vipond, Isaac Gelado, Nikola Puzovic, Alex Ramirez Barcelona Supercomputing Center Universitat Politècnica

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015

FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015 FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015 AGENDA The Kaveri Accelerated Processing Unit (APU) The Graphics Core Next Architecture and its Floating-Point Arithmetic

More information

Improving System Scalability of OpenMP Applications Using Large Page Support

Improving System Scalability of OpenMP Applications Using Large Page Support Improving Scalability of OpenMP Applications on Multi-core Systems Using Large Page Support Ranjit Noronha and Dhabaleswar K. Panda Network Based Computing Laboratory (NBCL) The Ohio State University Outline

More information

Turbomachinery CFD on many-core platforms experiences and strategies

Turbomachinery CFD on many-core platforms experiences and strategies Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29

More information

Performance Characteristics of Large SMP Machines

Performance Characteristics of Large SMP Machines Performance Characteristics of Large SMP Machines Dirk Schmidl, Dieter an Mey, Matthias S. Müller schmidl@rz.rwth-aachen.de Rechen- und Kommunikationszentrum (RZ) Agenda Investigated Hardware Kernel Benchmark

More information

OpenPower: IBM s Strategy for Best of Breed 64-bit Linux

OpenPower: IBM s Strategy for Best of Breed 64-bit Linux HRG Harvard Research Group HRG Assessment: OpenPower: IBM s Strategy for Best of Breed 64-bit Linux Overview As users migrate from RISC/UNIX platforms to Linux, to which 64-bit architecture will they move

More information

Router Architectures

Router Architectures Router Architectures An overview of router architectures. Introduction What is a Packet Switch? Basic Architectural Components Some Example Packet Switches The Evolution of IP Routers 2 1 Router Components

More information

OpenMP Programming on ScaleMP

OpenMP Programming on ScaleMP OpenMP Programming on ScaleMP Dirk Schmidl schmidl@rz.rwth-aachen.de Rechen- und Kommunikationszentrum (RZ) MPI vs. OpenMP MPI distributed address space explicit message passing typically code redesign

More information

Amazon EC2 XenApp Scalability Analysis

Amazon EC2 XenApp Scalability Analysis WHITE PAPER Citrix XenApp Amazon EC2 XenApp Scalability Analysis www.citrix.com Table of Contents Introduction...3 Results Summary...3 Detailed Results...4 Methods of Determining Results...4 Amazon EC2

More information

How To Build A Supermicro Computer With A 32 Core Power Core (Powerpc) And A 32-Core (Powerpc) (Powerpowerpter) (I386) (Amd) (Microcore) (Supermicro) (

How To Build A Supermicro Computer With A 32 Core Power Core (Powerpc) And A 32-Core (Powerpc) (Powerpowerpter) (I386) (Amd) (Microcore) (Supermicro) ( TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 7 th CALL (Tier-0) Contributing sites and the corresponding computer systems for this call are: GCS@Jülich, Germany IBM Blue Gene/Q GENCI@CEA, France Bull Bullx

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Sockets vs. RDMA Interface over 10-Gigabit Networks: An In-depth Analysis of the Memory Traffic Bottleneck

Sockets vs. RDMA Interface over 10-Gigabit Networks: An In-depth Analysis of the Memory Traffic Bottleneck Sockets vs. RDMA Interface over 1-Gigabit Networks: An In-depth Analysis of the Memory Traffic Bottleneck Pavan Balaji Hemal V. Shah D. K. Panda Network Based Computing Lab Computer Science and Engineering

More information

An Implementation Of Multiprocessor Linux

An Implementation Of Multiprocessor Linux An Implementation Of Multiprocessor Linux This document describes the implementation of a simple SMP Linux kernel extension and how to use this to develop SMP Linux kernels for architectures other than

More information

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.

More information

Generations of the computer. processors.

Generations of the computer. processors. . Piotr Gwizdała 1 Contents 1 st Generation 2 nd Generation 3 rd Generation 4 th Generation 5 th Generation 6 th Generation 7 th Generation 8 th Generation Dual Core generation Improves and actualizations

More information

Cray Gemini Interconnect. Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak

Cray Gemini Interconnect. Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak Cray Gemini Interconnect Technical University of Munich Parallel Programming Class of SS14 Denys Sobchyshak Outline 1. Introduction 2. Overview 3. Architecture 4. Gemini Blocks 5. FMA & BTA 6. Fault tolerance

More information

benchmarking Amazon EC2 for high-performance scientific computing

benchmarking Amazon EC2 for high-performance scientific computing Edward Walker benchmarking Amazon EC2 for high-performance scientific computing Edward Walker is a Research Scientist with the Texas Advanced Computing Center at the University of Texas at Austin. He received

More information

The Green Index: A Metric for Evaluating System-Wide Energy Efficiency in HPC Systems

The Green Index: A Metric for Evaluating System-Wide Energy Efficiency in HPC Systems 202 IEEE 202 26th IEEE International 26th International Parallel Parallel and Distributed and Distributed Processing Processing Symposium Symposium Workshops Workshops & PhD Forum The Green Index: A Metric

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Parallel Computing with MATLAB

Parallel Computing with MATLAB Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best

More information

GPGPU accelerated Computational Fluid Dynamics

GPGPU accelerated Computational Fluid Dynamics t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute

More information

Enabling Technologies for Distributed and Cloud Computing

Enabling Technologies for Distributed and Cloud Computing Enabling Technologies for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Multi-core CPUs and Multithreading

More information

Building an Inexpensive Parallel Computer

Building an Inexpensive Parallel Computer Res. Lett. Inf. Math. Sci., (2000) 1, 113-118 Available online at http://www.massey.ac.nz/~wwiims/rlims/ Building an Inexpensive Parallel Computer Lutz Grosz and Andre Barczak I.I.M.S., Massey University

More information

760 Veterans Circle, Warminster, PA 18974 215-956-1200. Technical Proposal. Submitted by: ACT/Technico 760 Veterans Circle Warminster, PA 18974.

760 Veterans Circle, Warminster, PA 18974 215-956-1200. Technical Proposal. Submitted by: ACT/Technico 760 Veterans Circle Warminster, PA 18974. 760 Veterans Circle, Warminster, PA 18974 215-956-1200 Technical Proposal Submitted by: ACT/Technico 760 Veterans Circle Warminster, PA 18974 for Conduction Cooled NAS Revision 4/3/07 CC/RAIDStor: Conduction

More information

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage Parallel Computing Benson Muite benson.muite@ut.ee http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework

More information

LSN 2 Computer Processors

LSN 2 Computer Processors LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

Energy-aware Memory Management through Database Buffer Control

Energy-aware Memory Management through Database Buffer Control Energy-aware Memory Management through Database Buffer Control Chang S. Bae, Tayeb Jamel Northwestern Univ. Intel Corporation Presented by Chang S. Bae Goal and motivation Energy-aware memory management

More information

Architecture of Hitachi SR-8000

Architecture of Hitachi SR-8000 Architecture of Hitachi SR-8000 University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de Slide 1 Most of the slides from Hitachi Slide 2 the problem modern computer are data

More information

Accelerate Cloud Computing with the Xilinx Zynq SoC

Accelerate Cloud Computing with the Xilinx Zynq SoC X C E L L E N C E I N N E W A P P L I C AT I O N S Accelerate Cloud Computing with the Xilinx Zynq SoC A novel reconfigurable hardware accelerator speeds the processing of applications based on the MapReduce

More information

Performance Counter Monitoring for the Blue Gene/Q Architecture

Performance Counter Monitoring for the Blue Gene/Q Architecture Performance Counter Monitoring for the Blue Gene/Q Architecture Heike McCraw Innovative Computing Laboratory University of Tennessee, Knoxville 1 Introduction and Motivation With the increasing scale and

More information

Current Trend of Supercomputer Architecture

Current Trend of Supercomputer Architecture Current Trend of Supercomputer Architecture Haibei Zhang Department of Computer Science and Engineering haibei.zhang@huskymail.uconn.edu Abstract As computer technology evolves at an amazingly fast pace,

More information

Programming the Cell Multiprocessor: A Brief Introduction

Programming the Cell Multiprocessor: A Brief Introduction Programming the Cell Multiprocessor: A Brief Introduction David McCaughan, HPC Analyst SHARCNET, University of Guelph dbm@sharcnet.ca Overview Programming for the Cell is non-trivial many issues to be

More information

Programming Techniques for Supercomputers: Multicore processors. There is no way back Modern multi-/manycore chips Basic Compute Node Architecture

Programming Techniques for Supercomputers: Multicore processors. There is no way back Modern multi-/manycore chips Basic Compute Node Architecture Programming Techniques for Supercomputers: Multicore processors There is no way back Modern multi-/manycore chips Basic ompute Node Architecture SimultaneousMultiThreading (SMT) Prof. Dr. G. Wellein (a,b),

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

CUDA programming on NVIDIA GPUs

CUDA programming on NVIDIA GPUs p. 1/21 on NVIDIA GPUs Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view

More information

Packet Capture in 10-Gigabit Ethernet Environments Using Contemporary Commodity Hardware

Packet Capture in 10-Gigabit Ethernet Environments Using Contemporary Commodity Hardware Packet Capture in 1-Gigabit Ethernet Environments Using Contemporary Commodity Hardware Fabian Schneider Jörg Wallerich Anja Feldmann {fabian,joerg,anja}@net.t-labs.tu-berlin.de Technische Universtität

More information

SOC architecture and design

SOC architecture and design SOC architecture and design system-on-chip (SOC) processors: become components in a system SOC covers many topics processor: pipelined, superscalar, VLIW, array, vector storage: cache, embedded and external

More information

AMD PhenomII. Architecture for Multimedia System -2010. Prof. Cristina Silvano. Group Member: Nazanin Vahabi 750234 Kosar Tayebani 734923

AMD PhenomII. Architecture for Multimedia System -2010. Prof. Cristina Silvano. Group Member: Nazanin Vahabi 750234 Kosar Tayebani 734923 AMD PhenomII Architecture for Multimedia System -2010 Prof. Cristina Silvano Group Member: Nazanin Vahabi 750234 Kosar Tayebani 734923 Outline Introduction Features Key architectures References AMD Phenom

More information

~ Greetings from WSU CAPPLab ~

~ Greetings from WSU CAPPLab ~ ~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)

More information

Performance Monitoring of the Software Frameworks for LHC Experiments

Performance Monitoring of the Software Frameworks for LHC Experiments Proceedings of the First EELA-2 Conference R. mayo et al. (Eds.) CIEMAT 2009 2009 The authors. All rights reserved Performance Monitoring of the Software Frameworks for LHC Experiments William A. Romero

More information

Performance Evaluation of Amazon EC2 for NASA HPC Applications!

Performance Evaluation of Amazon EC2 for NASA HPC Applications! National Aeronautics and Space Administration Performance Evaluation of Amazon EC2 for NASA HPC Applications! Piyush Mehrotra!! J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,! S. Saini, R. Biswas!

More information

Summary. Key results at a glance:

Summary. Key results at a glance: An evaluation of blade server power efficiency for the, Dell PowerEdge M600, and IBM BladeCenter HS21 using the SPECjbb2005 Benchmark The HP Difference The ProLiant BL260c G5 is a new class of server blade

More information

CPU Session 1. Praktikum Parallele Rechnerarchtitekturen. Praktikum Parallele Rechnerarchitekturen / Johannes Hofmann April 14, 2015 1

CPU Session 1. Praktikum Parallele Rechnerarchtitekturen. Praktikum Parallele Rechnerarchitekturen / Johannes Hofmann April 14, 2015 1 CPU Session 1 Praktikum Parallele Rechnerarchtitekturen Praktikum Parallele Rechnerarchitekturen / Johannes Hofmann April 14, 2015 1 Overview Types of Parallelism in Modern Multi-Core CPUs o Multicore

More information