Real-Time Broadcast Video Services over the Internet using MPEG-DASH

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Real-Time Broadcast Video Services over the Internet using MPEG-DASH"

Transcription

1 over the Internet using MPEG-DASH Real-Time Broadcast Video Services over the Internet using MPEG-DASH Backhaul and Primary Distribution over the Internet does not require service contracts, special IT knowledge, or expensive adapters. This is now simple to do.

2 Executive Summary There is a simpler alternative to traditional real-time broadcast video service transport. This alternative uses the Internet lingua franca, HTTP, in the form of MPEG-DASH adaptive bitrate live profile. In this paper, the phrase traditional real-time broadcast is given context and then followed by a brief introduction to MPEG-DASH. The old and new are contrasted, and finally the end-to-end quality of service delivery with MPEG-DASH is investigated.

3 Context for Change Traditional real-time broadcast video services are often considered to be Standard Definition and High Definition compressed below 20Mbps using either MPEG-2 or Advanced Video Compression (AVC). Synchronized Audio usually includes 2 to 6 channels PCM, AAC, or HE- AAC. Ancillary data, such as closed captions, may also be present. Transport of these compressed signals is then required among and between two or more locations and using a variety of techniques. The encoded audio, video, and ancillary channels are multiplexed into a Transport Stream then wrapped, seven per Ethernet packet, for IP delivery (MPEG-2 TS/IP or SMPTE ). This is also called Light Contribution or Primary Distribution. Example 1: Station Group Centralcast using Constant Bitrate MPEG-2/AAC frame compression over high bitrate private networks using Forward Error Correction (FEC) packet recovery. Good for Point to Multipoint Primary Distribution. Example 2: Special Event Live-to-Air using Variable Bitrate AVC/HE-AAC compression with buffering and Automatic Repeat request (ARQ) packet error recovery from the field to a production center. Good for Occasional Use Live Events. A new live transport technique is emerging that uses the public internet and the very simple file transfer protocol known ubiquitously as HTTP.

4 MPEG DASH Arrives The Motion Pictures Engineering Group (MPEG) created the international standard Dynamic Adaptive Streaming over HTTP (DASH) as a means to converge from many into one the existing family of Adaptive Bitrate (ABR) distribution technologies: Apple HTTP Live Streaming, Microsoft Smooth Streaming, and Adobe Flash. All of these must have an input video source that is encoded and pre-processed in sequential time slots and then delivered as files, where each file contains the compressed media for one time slot. The number of video frames per time slot is typically both fixed and between 30 and 600. These files are called segments and have the special property of being capable of stand-alone decode. In other words there is no motion prediction across file boundaries. The audio is in a separate file and shares a presentation timeline with the video for synchronization. MPEG-DASH is interoperable ABR. [Note: Adaptive Bitrate can be confusing. Just be aware that in this context, adaptive refers to the decoder adapting to network conditions. Adaptive does not refer to the encoder dynamically changing the level of compression. The ABR encoder is designed to simultaneously output many versions of the compressed video as files distinguished by the quality in direct proportion to the file size. In other words, the bigger the file size the higher the quality. ] Today, ABR is primarily used for video-on-demand (VOD). However, live ABR, specifically the MPEG-DASH Live profile, is beginning to attract attention. The two big differences between Live ABR and VOD ABR are time synchronization of the seek logic and the complexity in the decoder rate adaptation. For example, when the decoder first detects network trouble, does it immediately abort and adjust to a lower quality or wait with potential disastrous consequences of buffer underun? Lastly, MPEG-DASH allows for encapsulation in an appropriately flexible and standardized format called ISO Base Media File Format (ISO-BMFF or MP4). ISO-BMFF is specifically designed for multi-media file transport and better for ABR than MPEG-2 TS/IP. This whitepaper is focused on real-time live ABR. How can file transfer be Low Latency? It s Relative The minimum end-to-end latency of ABR is typically between 5 and 60 seconds limited primarily by how many frames are encoded in each segment file. At 720p60 fps (frames per second), if the encoder is configured for segment file duration of 600 frames then it takes at least 10 seconds to accumulate and encode. Plus 10 more seconds are buffered during file receive and decode. Finally adding transmission delay and error recovery increases end-to-end latency up to 30 seconds. However, with careful attention to encoding parameters and decoder rate adaptation algorithms, a low end-to-end latency is possible, even less than five seconds!

5 Pull Video from the Encoder versus Push Video to the Decoder ABR transport is started when the Decoder requests to pull media files from the Encoder s built-in web server using the HTTP protocol. Pulling files using HTTP requires the establishment of a reliable two-way communication path using the Transmission Control Protocol (TCP). TCP lies in contrast to existing methods where Video over IP data packets are pushed from the Encoder to the Decoder typically using the one-way User Datagram Protocol (UDP) protocol, commonly called TS over IP (TS/IP). UDP reliability is enhanced by the number of Forward Error Correction (FEC) packets delivered with the media packets. The more FEC packets sent, the more reliable the service. ABR uses TCP while your existing service likely uses UDP. TCP TCP is suited for applications that require high reliability, and transmission time is relatively less critical. TCP handles reliability and congestion control. There is an absolute guarantee that the segment file remains intact. TCP is slower due to automatic repeat request (ARQ) round-trip time. UDP UDP is suitable for applications that need fast, efficient transmission, such as games. There is no ordering of messages and no tracking connections. There is no guarantee that the packets sent will reach the destination. UDP is faster because there is no repeat request. TCP packets are buffered at decoder. Lost packets are requested again. Quality switch up or down according to buffer and estimated throughput. Aqua = estimated throughput Navy = chosen quality level Green = video buffer level UDP packets are buffered at decoder and lost packets are detected in the buffer and recovered using FEC. Under bad conditions, correction may not be possible. Data packets are Blue FEC packets are Red

6 Quality of Service Measurements Automatic Repeat Request (ARQ) ARQ is an algorithm for reliable two-way communications. ARQ is part of TCP. ARQ can be added to UDP. Bandwidth measured in bits/second is the maximum rate that information can be transferred. TCP will optimize use of the available bandwidth. For UDP, this MUST be known in advance. Throughput measured in bits/second is the actual rate that information is transferred. TCP will adapt to low throughput. UDP will collapse. Latency measured in milliseconds is the delay between the sender and the receiver. This is mainly a function of the packets travel time, and processing time at any nodes the information traverses. Latency will delay TCP ARQ. UDP is not affected by latency. Jitter measured in milliseconds is the variation in the time of arrival at the receiver of the packets. With high jitter, the Decoder (UDP and TCP) will always resort to packet recovery logic. Error rate is the number of corrupted bits expressed as a percentage or fraction of the total sent. For TCP, error rate will be measured in segments (Segment Error Rate). For UDP error rate will be measured in packets (Packet Error Rate). 1. Decoder Requests to start video. This is optional with UDP since Encoder is allowed to start at any time 2. Encoder begins to transmit packets to Decoder 3. Decoder detects lost packet due to timeout delay in buffer and requests a re-transmission 4. Encoder sends replacement 5. Decoder acknowledges good packets Takeaway: ARQ improves reliability, requires buffering and adds latency. TCP failures will cause ABR file transfer failure. At the decoder, this is corrected by pulling a different file that is smaller in size. This is repeated until the file arrives or the buffer underruns. When throughput later increases then the decoder again pulls the higher quality segments. Bandwidth Throughput Quality of Service UDP failures will cause packet loss. At the decoder, FEC and ARQ can be added to correct the packet loss. FEC adds latency and overhead. ARQ also adds latency and requires a two-way communication channel. Video errors result if the lost UDP packet is not corrected in time. Bandwidth Throughput TCP Packets Time UDP Packets Time When throughput is reduced, ABR with TCP maintains a reduced Quality of Service while UDP simply fails.

7 over the Internet using MPEG-DASH Inside the Workflow IP networking is on a trend to replace all other protocols where professional video is compressed for broadcast transport. This change has been underway since 2000 facilitated by sales of IP equipment vendors. So by now, your workflow includes IP data networking for better or for worse. The security of your IP data network assets, including video workflow, demands oversight by IT specialists. Most workplaces have dedicated staff who understands Network Address Translation (NAT), Domain Name Services (DNS), Dynamic Host Configuration Protocol (DHCP), Dynamic Port Forwarding (DPF), and Content Delivery Networks (CDN). Firewalls and routers provide this security by enabling various configuration settings to grant or deny network traffic both into and out of your Local Area Network. IP networking is both simple and complex. HTTP is SIMPLE. There are millions of web browsers using HTTP every day. Over the years great effort has been exerted to both simplify and secure this protocol. Behind the scenes, operating systems and modern web browsers cooperate with corporate IT firewalls and routers to streamline the HTTP protocol. MPEG-DASH uses HTTP. Most CDNs understand HTTP and can provide transparent and convenient point to multipoint delivery. In contrast, configuring a private service using UDP is COMPLEX. This is because most, if not all, UDP services are filtered by your firewall. Working with UDP services demands special configuration of firewalls and routers in order to allow video over IP traffic to flow. A choice must be made to either move your video adapters outside the firewall or schedule your IT administrator for custom firewall configuration. With MPEG-DASH, press GO and see results. Or configure your LAN, Firewall, and ISP to play nice with your UDP Service.

8 Conclusion The technology in Adaptive Bitrate Encoding is SIMPLE and POWERFUL. ABR is used by all high quality Over the Top (OTT) consumer video servers. The magic behind a high quality OTT video experience is HTTP and the public internet. It is important to know that ABR is not only for consumers but can also be used for contribution and primary distribution applications. During high internet congestion, with ABR, you do not lose your picture. Instead there is only a temporary quality reduction. Over days and weeks, with ABR, the average quality is higher as the decoder dynamically adapts to time varying increases in available throughput. With ABR, your IT administrator will never call asking why the ISP throughput collapsed when you started your video service. When ABR detects competition for bandwidth, it backs down allowing other services to continue. In summary, ABR can be used for contribution and primary distribution, not just OTT. In fact, when the end-to-end network is unpredictable ABR may represent the only reliable option. We invite you to try the new PiXiE AVC HD encoder/decoder with MPEG-DASH. Visit Simple. Reliable. Video from anywhere to everywhere over the Internet Lusk Boulevard, Suite B100 San Diego, California

Streaming Audio and Video

Streaming Audio and Video Streaming Audio and Video CS 360 Internet Programming Daniel Zappala Brigham Young University Computer Science Department Streaming Audio and Video Daniel Zappala 1/27 Types of Streaming stored audio and

More information

TCP - Introduction. Features of TCP

TCP - Introduction. Features of TCP TCP - Introduction The Internet Protocol (IP) provides unreliable datagram service between hosts The Transmission Control Protocol (TCP) provides reliable data delivery It uses IP for datagram delivery

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

Clearing the Way for VoIP

Clearing the Way for VoIP Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.

More information

MPEG-DASH: The Standard for Multimedia Streaming Over Internet 1 Iraj Sodagar Microsoft Corporation, 1 Microsoft Way, Redmond, WA, USA 98052

MPEG-DASH: The Standard for Multimedia Streaming Over Internet 1 Iraj Sodagar Microsoft Corporation, 1 Microsoft Way, Redmond, WA, USA 98052 MPEG-DASH: The Standard for Multimedia Streaming Over Internet 1 Iraj Sodagar Microsoft Corporation, 1 Microsoft Way, Redmond, WA, USA 98052 Watching the Olympics live over the Internet? Streaming last

More information

Streaming Audio and Video

Streaming Audio and Video Streaming Audio and Video Multimedia on the Internet Daniel Zappala Brigham Young University Computer Science Department Streaming Audio and Video Daniel Zappala 1/39 1 Introduction 2 Stored Media 3 CDNs

More information

Myriad of different LAN technologies co-existing in a WAN. For example:

Myriad of different LAN technologies co-existing in a WAN. For example: Myriad of different LAN technologies co-existing in a WAN. For example: Fast Ethernet (100 Mbps) Gigabit Ethernet (1000 Mbps); 10 and 100 GigE Purdue CS backbone: 10 Gbps AT&T (tier-1 provider)? WLAN (11,

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst Data communication in reality In reality, the source and destination hosts are very seldom on the same network, for

More information

Region 10 Videoconference Network (R10VN)

Region 10 Videoconference Network (R10VN) Region 10 Videoconference Network (R10VN) Network Considerations & Guidelines 1 What Causes A Poor Video Call? There are several factors that can affect a videoconference call. The two biggest culprits

More information

Digital Audio and Video Data

Digital Audio and Video Data Multimedia Networking Reading: Sections 3.1.2, 3.3, 4.5, and 6.5 CS-375: Computer Networks Dr. Thomas C. Bressoud 1 Digital Audio and Video Data 2 Challenges for Media Streaming Large volume of data Each

More information

White paper. Latency in live network video surveillance

White paper. Latency in live network video surveillance White paper Latency in live network video surveillance Table of contents 1. Introduction 3 2. What is latency? 3 3. How do we measure latency? 3 4. What affects latency? 4 4.1 Latency in the camera 4 4.1.1

More information

ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK

ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK Contemporary Control Systems, Inc. Understanding Ethernet Switches and Routers This extended article was based on a two-part article that was

More information

VoIP network planning guide

VoIP network planning guide VoIP network planning guide Document Reference: Volker Schüppel 08.12.2009 1 CONTENT 1 CONTENT... 2 2 SCOPE... 3 3 BANDWIDTH... 4 3.1 Control data 4 3.2 Audio codec 5 3.3 Packet size and protocol overhead

More information

Perfect Video over Any Network. Perfect Video over Any Network State-of-the-art Technology for Live Video Comunications

Perfect Video over Any Network. Perfect Video over Any Network State-of-the-art Technology for Live Video Comunications Perfect Video over Any Network Perfect Video over Any Network State-of-the-art Technology for Live Video Comunications Who We Are Established in 2004 Focus on the Professional Video Market Over 20 years

More information

Networking Issues. Multimedia Communications: Coding, Systems, and Networking. Prof. Tsuhan Chen

Networking Issues. Multimedia Communications: Coding, Systems, and Networking. Prof. Tsuhan Chen 18-796 Multimedia Communications: Coding, Systems, and Networking Prof. Tsuhan Chen tsuhan@ece.cmu.edu Networking Issues 1 Network Characteristics Internet ATM Frame Enterprise ISDN PSTN Intranet Small

More information

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD

Ethernet. Ethernet Frame Structure. Ethernet Frame Structure (more) Ethernet: uses CSMA/CD Ethernet dominant LAN technology: cheap -- $20 for 100Mbs! first widely used LAN technology Simpler, cheaper than token rings and ATM Kept up with speed race: 10, 100, 1000 Mbps Metcalfe s Etheret sketch

More information

- OSI Reference Model -

- OSI Reference Model - 1 Network Reference Models - OSI Reference Model - A computer network connects two or more devices together to share information and services. Multiple networks connected together form an internetwork.

More information

Understand the OSI Model

Understand the OSI Model Understand the OSI Model Part 2 Lesson Overview In this lesson, you will learn information about: Frames Packets Segments TCP TCP/IP Model Well-known ports for most-used purposes Anticipatory Set Review

More information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.

More information

Combining Voice over IP with Policy-Based Quality of Service

Combining Voice over IP with Policy-Based Quality of Service TechBrief Extreme Networks Introduction Combining Voice over IP with Policy-Based Quality of Service Businesses have traditionally maintained separate voice and data networks. A key reason for this is

More information

An Introductory Guide to IPTV: Enterprise Multi-cast, Scalable Internet Video Streaming and Web-based Monitoring

An Introductory Guide to IPTV: Enterprise Multi-cast, Scalable Internet Video Streaming and Web-based Monitoring 2013 An Introductory Guide to IPTV: Enterprise Multi-cast, Scalable Internet Video Streaming and Web-based Monitoring Jim Jachetta VidOvation Moving Video Forward 192 Technology Drive, Suite V Irvine,

More information

Data Communication and Computer Network

Data Communication and Computer Network 1 Data communication principles, types and working principles of modems, Network principles, OSI model, functions of data link layer and network layer, networking components, communication protocols- X

More information

An Introduction to VoIP Protocols

An Introduction to VoIP Protocols An Introduction to VoIP Protocols www.netqos.com Voice over IP (VoIP) offers the vision of a converged network carrying multiple types of traffic (voice, video, and data, to name a few). To carry out this

More information

HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL

HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL White Paper HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL EXPLORING THE CHALLENGES AND OPPORTUNITIES OF DELIVERING MORE CONTENT AT LESS COST Today s broadcasters are faced with an ever- present

More information

Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University Voice-Over-IP Daniel Zappala CS 460 Computer Networking Brigham Young University Coping with Best-Effort Service 2/23 sample application send a 160 byte UDP packet every 20ms packet carries a voice sample

More information

QoS in Axis Video Products

QoS in Axis Video Products Table of contents 1 Quality of Service...3 1.1 What is QoS?...3 1.2 Requirements for QoS...3 1.3 A QoS network scenario...3 2 QoS models...4 2.1 The IntServ model...4 2.2 The DiffServ model...5 2.3 The

More information

Understanding Latency in IP Telephony

Understanding Latency in IP Telephony Understanding Latency in IP Telephony By Alan Percy, Senior Sales Engineer Brooktrout Technology, Inc. 410 First Avenue Needham, MA 02494 Phone: (781) 449-4100 Fax: (781) 449-9009 Internet: www.brooktrout.com

More information

Wowza Media Systems provides all the pieces in the streaming puzzle, from capture to delivery, taking the complexity out of streaming live events.

Wowza Media Systems provides all the pieces in the streaming puzzle, from capture to delivery, taking the complexity out of streaming live events. Deciding what event you want to stream live that s the easy part. Figuring out how to stream it? That s a different question, one with as many answers as there are options. Cameras? Encoders? Origin and

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

TDM services over IP networks

TDM services over IP networks Keyur Parikh Junius Kim TDM services over IP networks 1. ABSTRACT Time Division Multiplexing (TDM) circuits have been the backbone of communications over the past several decades. These circuits which

More information

VOICE OVER IP AND NETWORK CONVERGENCE

VOICE OVER IP AND NETWORK CONVERGENCE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Assaid O. SHAROUN* VOICE OVER IP AND NETWORK CONVERGENCE As the IP network was primarily designed to carry data, it

More information

Protocol Data Units and Encapsulation

Protocol Data Units and Encapsulation Chapter 2: Communicating over the 51 Protocol Units and Encapsulation For application data to travel uncorrupted from one host to another, header (or control data), which contains control and addressing

More information

Computer Networks CS321

Computer Networks CS321 Computer Networks CS321 Dr. Ramana I.I.T Jodhpur Dr. Ramana ( I.I.T Jodhpur ) Computer Networks CS321 1 / 22 Outline of the Lectures 1 Introduction OSI Reference Model Internet Protocol Performance Metrics

More information

Improving Quality of Service

Improving Quality of Service Improving Quality of Service Using Dell PowerConnect 6024/6024F Switches Quality of service (QoS) mechanisms classify and prioritize network traffic to improve throughput. This article explains the basic

More information

Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions

Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions 1 Nortel - 920-803 Technology Standards and Protocol for IP Telephony Solutions QUESTION: 1 To achieve the QoS necessary to deliver voice between two points on a Frame Relay network, which two items are

More information

Transportation Protocols: UDP, TCP & RTP

Transportation Protocols: UDP, TCP & RTP Transportation Protocols: UDP, TCP & RTP Transportation Functions UDP (User Datagram Protocol) Port Number to Identify Different Applications Server and Client as well as Port TCP (Transmission Control

More information

Glossary of Terms and Acronyms for Videoconferencing

Glossary of Terms and Acronyms for Videoconferencing Glossary of Terms and Acronyms for Videoconferencing Compiled by Irene L. Ferro, CSA III Education Technology Services Conferencing Services Algorithm an algorithm is a specified, usually mathematical

More information

Program: Module 1: What is streaming? Video and Internet Transmissions protocols

Program: Module 1: What is streaming? Video and Internet Transmissions protocols Video Streaming Ing. Marco Bertini - Ing. Gianpaolo D Amico Università degli Studi di Firenze Via S. Marta 3-50139 - Firenze - Italy Tel.: +39-055-4796540 Fax: +39-055-4796363 E-mail: bertini@dsi.unifi.it

More information

Application Note How To Determine Bandwidth Requirements

Application Note How To Determine Bandwidth Requirements Application Note How To Determine Bandwidth Requirements 08 July 2008 Bandwidth Table of Contents 1 BANDWIDTH REQUIREMENTS... 1 1.1 VOICE REQUIREMENTS... 1 1.1.1 Calculating VoIP Bandwidth... 2 2 VOIP

More information

Multimedia Networking. Real-Time (Phone) Over IP s Best-Effort. Recovery From Jitter. Settings. up to 10 % loss is tolerable TCP instead of UDP?

Multimedia Networking. Real-Time (Phone) Over IP s Best-Effort. Recovery From Jitter. Settings. up to 10 % loss is tolerable TCP instead of UDP? Multimedia Networking Principles Classify multimedia applications Identify the network services the apps need Making the best of best effort service Mechanisms for providing QoS Protocols and Architectures

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above

2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above 1. How many bits are in an IP address? A. 16 B. 32 C. 64 2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 3. The network number plays what part in an IP address? A. It

More information

Quality of Service Monitoring

Quality of Service Monitoring Adaptive Bitrate video testing and monitoring at origin servers, CDN (caching servers), and last mile (streaming servers). Quality assurance monitoring for multiscreen video delivery from Pay TV providers.

More information

Dynamic Load Balancing and Node Migration in a Continuous Media Network

Dynamic Load Balancing and Node Migration in a Continuous Media Network Dynamic Load Balancing and Node Migration in a Continuous Media Network Anthony J. Howe Supervisor: Dr. Mantis Cheng University of Victoria Draft: April 9, 2001 Abstract This report examines current technologies

More information

Classes of multimedia Applications

Classes of multimedia Applications Classes of multimedia Applications Streaming Stored Audio and Video Streaming Live Audio and Video Real-Time Interactive Audio and Video Others Class: Streaming Stored Audio and Video The multimedia content

More information

Network Considerations for IP Video

Network Considerations for IP Video Network Considerations for IP Video H.323 is an ITU standard for transmitting voice and video using Internet Protocol (IP). It differs from many other typical IP based applications in that it is a real-time

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

Star topology. Ethernet. Ethernet Frame Structure (more) Ethernet Frame Structure. Ethernet uses CSMA/CD. Unreliable, connectionless service

Star topology. Ethernet. Ethernet Frame Structure (more) Ethernet Frame Structure. Ethernet uses CSMA/CD. Unreliable, connectionless service thernet dominant wired LN technology: cheap $0 for 00Mbs! first widely used LN technology Simpler, cheaper than token LNs and TM Kept up with speed race: 0 Mbps 0 bps Star topology us topology popular

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

Troubleshooting VoIP and Streaming Video Problems

Troubleshooting VoIP and Streaming Video Problems Using the ClearSight Analyzer to troubleshoot the top five VoIP problems and troubleshoot Streaming Video With the prevalence of Voice over IP and Streaming Video applications within the enterprise, it

More information

Level 1 Technical. Networking and Technology Basics. Contents

Level 1 Technical. Networking and Technology Basics. Contents Level 1 Technical Networking and Technology Basics Contents 1 Glossary... 2 2 IP Networking Basics... 4 Fundamentals... 4 IP Addresses... 4 Subnet Masks... 5 Network Communication... 6 Transport Protocols...

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

Using the ClearSight Analyzer To Troubleshoot the Top Five VoIP Problems And Troubleshooting Streaming Video

Using the ClearSight Analyzer To Troubleshoot the Top Five VoIP Problems And Troubleshooting Streaming Video Using the ClearSight Analyzer To Troubleshoot the Top Five VoIP Problems And Troubleshooting Streaming Video With the prevalence of Voice over IP applications within the enterprise, it is important to

More information

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource

More information

The OSI Model and the TCP/IP Protocol Suite. Pritee Parwekar ANITS 1

The OSI Model and the TCP/IP Protocol Suite. Pritee Parwekar ANITS 1 The OSI Model and the TCP/IP Protocol Suite Pritee Parwekar ANITS 1 To study To discuss the idea of multiple layering in data communication and networking and the interrelationship between layers. To discuss

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

920-803 - technology standards and protocol for ip telephony solutions

920-803 - technology standards and protocol for ip telephony solutions 920-803 - technology standards and protocol for ip telephony solutions 1. Which CODEC delivers the greatest compression? A. B. 711 C. D. 723.1 E. F. 726 G. H. 729 I. J. 729A Answer: C 2. To achieve the

More information

QOS Requirements and Service Level Agreements. LECTURE 4 Lecturer: Associate Professor A.S. Eremenko

QOS Requirements and Service Level Agreements. LECTURE 4 Lecturer: Associate Professor A.S. Eremenko QOS Requirements and Service Level Agreements LECTURE 4 Lecturer: Associate Professor A.S. Eremenko Application SLA Requirements Different applications have different SLA requirements; the impact that

More information

VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. sales@advancedvoip.com support@advancedvoip.com. Phone: +1 213 341 1431

VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. sales@advancedvoip.com support@advancedvoip.com. Phone: +1 213 341 1431 VoIP QoS Version 1.0 September 4, 2006 AdvancedVoIP.com sales@advancedvoip.com support@advancedvoip.com Phone: +1 213 341 1431 Copyright AdvancedVoIP.com, 1999-2006. All Rights Reserved. No part of this

More information

Fragmented MPEG-4 Technology Overview

Fragmented MPEG-4 Technology Overview Fragmented MPEG-4 Technology Overview www.mobitv.com 6425 Christie Ave., 5 th Floor Emeryville, CA 94607 510.GET.MOBI HIGHLIGHTS Mobile video traffic is increasing exponentially. Video-capable tablets

More information

Chapter 3 ATM and Multimedia Traffic

Chapter 3 ATM and Multimedia Traffic In the middle of the 1980, the telecommunications world started the design of a network technology that could act as a great unifier to support all digital services, including low-speed telephony and very

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions 1. Q: What is the Network Data Tunnel? A: Network Data Tunnel (NDT) is a software-based solution that accelerates data transfer in point-to-point or point-to-multipoint network

More information

Dragon Slayer Consulting

Dragon Slayer Consulting Eradicating The VMware WAN Performance Barrier Overcoming Data Packet Loss, Latency, and TCP/IP Packet Loss Management Marc Staimer, President & CDS of Dragon Slayer Consulting marcstaimer@comcast.net

More information

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: j.cao@student.rmit.edu.au

More information

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross Multimedia Communication Multimedia Systems(Module 5 Lesson 2) Summary: H Internet Phone Example Making the Best use of Internet s Best-Effort Service. Sources: H Chapter 6 from Computer Networking: A

More information

SwiftBroadband and IP data connections

SwiftBroadband and IP data connections SwiftBroadband and IP data connections Version 01 30.01.08 inmarsat.com/swiftbroadband Whilst the information has been prepared by Inmarsat in good faith, and all reasonable efforts have been made to ensure

More information

Voice over IP. Demonstration 1: VoIP Protocols. Network Environment

Voice over IP. Demonstration 1: VoIP Protocols. Network Environment Voice over IP Demonstration 1: VoIP Protocols Network Environment We use two Windows workstations from the production network, both with OpenPhone application (figure 1). The OpenH.323 project has developed

More information

The Problem with TCP. Overcoming TCP s Drawbacks

The Problem with TCP. Overcoming TCP s Drawbacks White Paper on managed file transfers How to Optimize File Transfers Increase file transfer speeds in poor performing networks FileCatalyst Page 1 of 6 Introduction With the proliferation of the Internet,

More information

Protocols and Architecture. Protocol Architecture.

Protocols and Architecture. Protocol Architecture. Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between

More information

Adaptive Bit Rate (ABR) Multistreaming: HEVC Encoding and MPEG-DASH Content Delivery Networks

Adaptive Bit Rate (ABR) Multistreaming: HEVC Encoding and MPEG-DASH Content Delivery Networks White Paper Adaptive Bit Rate (ABR) Multistreaming: HEVC Encoding and MPEG-DASH Content Delivery Networks Greg Mirsky PhD, VP Product Development Nick Terterov PhD, Chief Scientist Sam Blinstein PhD, Member

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

Latency on a Switched Ethernet Network

Latency on a Switched Ethernet Network Application Note 8 Latency on a Switched Ethernet Network Introduction: This document serves to explain the sources of latency on a switched Ethernet network and describe how to calculate cumulative latency

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2015 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński multimedia in the Internet Voice-over-IP multimedia

More information

Solutions: Homework #12

Solutions: Homework #12 Solutions: Homework #12 (Compendium of student submissions) 11.13 a. Video on demand: packet latency: If the video is not live, low packet latency may not be a requirement. With sufficient buffering, video

More information

ADVANTAGES OF AV OVER IP. EMCORE Corporation

ADVANTAGES OF AV OVER IP. EMCORE Corporation ADVANTAGES OF AV OVER IP More organizations than ever before are looking for cost-effective ways to distribute large digital communications files. One of the best ways to achieve this is with an AV over

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

Internet Routing and MPLS

Internet Routing and MPLS Internet Routing and MPLS N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 27 Roadmap for Multimedia Networking 2 1. Introduction why QoS? what are the problems? 2.

More information

VegaStream Information Note Considerations for a VoIP installation

VegaStream Information Note Considerations for a VoIP installation VegaStream Information Note Considerations for a VoIP installation To get the best out of a VoIP system, there are a number of items that need to be considered before and during installation. This document

More information

Encapsulating Voice in IP Packets

Encapsulating Voice in IP Packets Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols

More information

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining

More information

CS 5114 Network Programming Languages End Hosts. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages End Hosts. Nate Foster Cornell University Spring 2013 CS 5114 Network Programming Languages End Hosts http://www.flickr.com/photos/rofi/2097239111/! Nate Foster Cornell University Spring 2013 Based on lecture notes by Jennifer Rexford and Michael Freedman

More information

Real Time Protocol (RTP)

Real Time Protocol (RTP) 1 Real Time Protocol (RTP) Prof. Jean-Yves Le Boudec Prof. Andrzej Duda Prof. Patrick Thiran LCA, EPFL CH-1015 Ecublens Patrick.Thiran@epfl.ch http://icawww.epfl.ch Multimedia applications 2 Streaming

More information

How To. Instreamer to Exstreamer connection. Project Name: Document Type: Document Revision: Instreamer to Exstreamer connection. How To 1.

How To. Instreamer to Exstreamer connection. Project Name: Document Type: Document Revision: Instreamer to Exstreamer connection. How To 1. Instreamer to Exstreamer connection Project Name: Document Type: Document Revision: Instreamer to Exstreamer connection 1.11 Date: 06.03.2013 2013 Barix AG, all rights reserved. All information is subject

More information

VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet

VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet 1 Outlines 1. Introduction 2. QoS in VoIP 3. H323 4. Signalling in VoIP 5. Conclusions 2 1. Introduction to VoIP Voice

More information

Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia

Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia Streaming Media Lecture 33 Streaming Audio & Video April 20, 2005 Classes of applications: streaming stored video/audio streaming live video/audio real-time interactive video/audio Examples: distributed

More information

UPPER LAYER SWITCHING

UPPER LAYER SWITCHING 52-20-40 DATA COMMUNICATIONS MANAGEMENT UPPER LAYER SWITCHING Gilbert Held INSIDE Upper Layer Operations; Address Translation; Layer 3 Switching; Layer 4 Switching OVERVIEW The first series of LAN switches

More information

Voice Over IP. MultiFlow 5048. IP Phone # 3071 Subnet # 10.100.24.0 Subnet Mask 255.255.255.0 IP address 10.100.24.171. Telephone.

Voice Over IP. MultiFlow 5048. IP Phone # 3071 Subnet # 10.100.24.0 Subnet Mask 255.255.255.0 IP address 10.100.24.171. Telephone. Anritsu Network Solutions Voice Over IP Application Note MultiFlow 5048 CALL Manager Serv # 10.100.27 255.255.2 IP address 10.100.27.4 OC-48 Link 255 255 25 IP add Introduction Voice communications over

More information

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

More information

Serving Media with NGINX Plus

Serving Media with NGINX Plus Serving Media with NGINX Plus Published June 11, 2015 NGINX, Inc. Table of Contents 3 About NGINX Plus 3 Using this Guide 4 Prerequisites and System Requirements 5 Serving Media with NGINX Plus 9 NGINX

More information

Video Streaming with Network Coding

Video Streaming with Network Coding Video Streaming with Network Coding Kien Nguyen, Thinh Nguyen, and Sen-Ching Cheung Abstract Recent years have witnessed an explosive growth in multimedia streaming applications over the Internet. Notably,

More information

ipca Quality Awareness Technology White Paper

ipca Quality Awareness Technology White Paper ipca Quality Awareness Technology White Paper ipca Quality Awareness Technology White Paper 1 IP/Ethernet Networks Cannot Measure Service Quality...2 1.1 ipca Overview...2 1.2 ipca Benefits...3 2 ipca

More information

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address Objectives University of Jordan Faculty of Engineering & Technology Computer Engineering Department Computer Networks Laboratory 907528 Lab.4 Basic Network Operation and Troubleshooting 1. To become familiar

More information

Network Connection Considerations for Microsoft Response Point 1.0 Service Pack 2

Network Connection Considerations for Microsoft Response Point 1.0 Service Pack 2 Network Connection Considerations for Microsoft Response Point 1.0 Service Pack 2 Updated: February 2009 Microsoft Response Point is a small-business phone solution that is designed to be easy to use and

More information

Mul$media Networking. #3 Mul$media Networking Semester Ganjil PTIIK Universitas Brawijaya. #3 Requirements of Mul$media Networking

Mul$media Networking. #3 Mul$media Networking Semester Ganjil PTIIK Universitas Brawijaya. #3 Requirements of Mul$media Networking Mul$media #3 Mul$media Semester Ganjil PTIIK Universitas Brawijaya Schedule of Class Mee$ng 1. Introduc$on 2. Applica$ons of MN 3. Requirements of MN 4. Coding and Compression 5. RTP 6. IP Mul$cast 7.

More information

Datagram-based network layer: forwarding; routing. Additional function of VCbased network layer: call setup.

Datagram-based network layer: forwarding; routing. Additional function of VCbased network layer: call setup. CEN 007C Computer Networks Fundamentals Instructor: Prof. A. Helmy Homework : Network Layer Assigned: Nov. 28 th, 2011. Due Date: Dec 8 th, 2011 (to the TA) 1. ( points) What are the 2 most important network-layer

More information

Networked AV Systems Pretest

Networked AV Systems Pretest Networked AV Systems Pretest Instructions Choose the best answer for each question. Score your pretest using the key on the last page. If you miss three or more out of questions 1 11, consider taking Essentials

More information