Dynamic Load Balancing and Node Migration in a Continuous Media Network

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Dynamic Load Balancing and Node Migration in a Continuous Media Network"

Transcription

1 Dynamic Load Balancing and Node Migration in a Continuous Media Network Anthony J. Howe Supervisor: Dr. Mantis Cheng University of Victoria Draft: April 9, 2001 Abstract This report examines current technologies available in a continuous media network and presents two new areas. Current network structures include forward proxy caching, server farms, and content distribution networks. Methods for broadcast distribution include controlled connection and one-way connection communication. Two important areas of research not addressed by current technologies are dynamic load balancing and node migration. 1 Introduction Streaming media is found everywhere on the Internet! Radio stations use this technology to deliver their programs to a broader audience than can be reached by a local broadcast. Live broadcasts from public music concerts are streamed across the Internet. News web sites such as CNN.com deliver news through streaming video clips. Individuals are able to deliver their own mp3 collections to a world wide audience using Nullsoft s SHOUTcast. The increased application of streaming media brings increased demand. Technologies for continuous media on the Internet are rapidly evolving to meet this high demand. A streaming technology involves data compression algorithms, and the reliable delivery of data from the to the end user. The Internet makes jitter free delivery of continuous data difficult due to unpredictable network congestion. Jitter is the variation of time between the delivery of a series of packets of continuous media [1]. For continuous media reliable delivery is not as critical as jitter free delivery. A continuous stream that experiences jitter will result in distorted audio or video for the end user. This report examines current streaming delivery technologies and proposes and explains two important areas of research not addressed by current technologies: dynamic load balancing and node migration. 1

2 2 Current Technologies In 1995 Real Networks released a continuous media delivery application. This application delivered streaming media from a single server [2]. A single server limited the available audience size due to the performance of the server and the network bandwidth available. To reduce load on a central server three common network structures have evolved: forward proxy caching, server farms, and content distribution networks [3]. In addition the method of broadcast distribution has evolved. This section examines these network structures and streaming technologies and discusses current technologies that employ these ideas. 2.1 Forward Proxy Caching Forward proxy caching attempts to bring continuous data closer to the end user. It has been in use for several years as front ends to web servers [3]. Figure 1 shows a forward proxy caching network. The nodes pass all their requests through the proxy before going to the origin. If the proxy is able to answer the request it returns the relevant information. The proxy provides faster response time to the node and reduces load on the origin. A disadvantage of proxy caches is that an uncommon request still has to go to the origin. Many uncommon requests from nodes around the Internet at one time could overload the origin. origin Internet first time requests are sent to origin proxy cache node node node node's send requests to the proxy Figure 1: A Foward Proxy Cache 2

3 Real Networks has used this proxy caching technology in their RealSystem Proxy 8 [4]. The RealSystem Proxy 8 is able to handle both on-demand media and also deliver live broadcasts. For on-demand data, the first time media is requested it comes directly from the origin but is then stored in the cache of the RealSystem Proxy for any future requests. For live media a single stream from the origin is split and delivered to many requesting nodes. This saves bandwidth since many nodes access the stream from the local proxy as opposed to each accessing a separate live stream from the origin. 2.2 Server Farms Server Farms rely on an intelligent switch to evenly distribute requests among a group of computers hosting the same information [3]. They appear to the user as a single origin. Figure 2 shows a server farm. Nodes are distributed evenly among the servers. A server farm provides redundancy. If any server fails requests are just routed to other servers. An advantage to this type of network is that all the servers are in one location and can be managed easily. A disadvantage to a server farm is in the delivery of continuous data. A server farm still has the problem of jitter free delivery to nodes many hops away. Server Farm server server server Intelligent Switch Internet node node node Figure 2: An example of a server farm Nullsoft s SHOUTcast ( technology is prone to this problem. The goal of SHOUTcast is to enable anyone to be able to deliver streaming data to the Internet [5]. Their product is not concerned with splitting streams and using caches at the edges of the network but only the 3

4 delivery from the to mirror servers. Figure 3 shows a sample SHOUTcast network. A generator node sends streams to mirror servers. These mirror servers deliver the content to end users. There is no intelligent switch to these servers and it is up to the end user to choose a mirror. Since the end user may be many hops away from the mirrors, jitter free delivery of data from the mirrors may be impossible due to unpredictable network congestion. SHOUTcast generator SHOUTcast mirror SHOUTcast mirror SHOUTcast mirror node node node Figure 3: A Sample Shoutcast network 2.3 Content Distribution Networks A content distribution network takes both the advantages of server farms and caching proxies. Figure 4 shows a content distribution network. Replicas of the origins data are transferred to servers named surrogates located geographically far apart. When a node requests data they first communicate to the request routing system that forwards the node to the best surrogate. The measure of best can be derived from geographic location and current network load and congestion. By locating the surrogates in various geographic locations nodes have a higher chance of experiencing quick and jitter free delivery of data from a close surrogate. An advantage of the content distribution network is that the origin can be decoupled from the delivery network. The owner of the origin can out the management of the delivery of data to another organization. Organizations such as Digital Island ( and Akamai 4

5 origin Distribution System Request Router Vancouver surrogate Calgary surrogate Toronto surrogate node node node Figure 4: A content distribution network ( currently provide distribution infrastructures spread throughout the world to deliver discrete and continuous data. RealNetworks ( provides a distribution technology called iq that can be used in the above global networks to distribute continuous data. RealNetworks iq technology is concerned with the delivery of data streams from a to servers that may be located throughout the world such as in a Content Distribution Network [6]. RealNetworks iq allows for continuous media distribution or live broadcast distribution. It uses redundant methods to propagate streams to surrogate servers located throughout the world. Redundant methods include sending multiple streams on multiple networks and then merging them back at the, and forward error correction. The servers in the iq network act as peers and are able to share capacity among each other and react in case of a network failure [6]. 2.4 Two Methods for Broadcast Distribution The white paper Live Broadcast Distribution with RealSystem Server 8 [6] by RealNetworks discusses two methods for broadcast distribution. The earlier method used two TCP connections and a UDP connection to deliver a data stream. The new method uses just one UDP connection for delivery of a data stream from a to the destination. The earlier method has more latency and is not as efficient as the UDP 5

6 method [6]. Figure 5a shows this method. The UDP connection is used for the main distribution of live data. The return channel is used for notifying the of lost packets. The TCP control channel is used for the control of the data stream. Using the extra lines for lost packets and control introduces a latency in the data stream. persistant TCP control channel unidirectional data channel (UDP) return channel for resent requests receiver a unidirectional data channel (UDP) receiver b Figure 5: Two methods for broadcast distribution To reduce the latency in the data stream the newer broadcast distribution method uses just one UDP connection. To add redundancy to this UDP line, the stream is encoded using forward error correction (FEC) [6]. One example of forward error correction is using Solomon codes. Figure 5b shows this method. In addition to RealNetworks another company developing a form of FEC is Digital Fountain ( 3 Dynamic Network Load Balancing and Node Migration The above technologies do not address two important areas for the distribution of continuous data: dynamic network load balancing and node migration. The first area of distribution not addressed is the dynamic addition more surrogate servers to the network when demand for continuous data is high and dynamic removal of surrogates when demand for continuous data is low. Reduction of surrogates means that nodes will have to be consolidated to the remaining surrogates; this is the second important area of distribution of continuous data. Both of these areas will add more scalability and jitter free performance to the above two technologies. 6

7 3.1 Dynamic Network Load Balancing Figure 6 shows a Content Distribution Network with surrogate servers. Two continuous data s are distributed to master surrogates on the network by the distribution hubs. The distribution hubs may broadcast the continuous data to the master surrogates using multicast communication. The master surrogates may further distribute the data to slave surrogates. A grouping of a master surrogate and slave surrogates is known as a surrogate group. Network nodes initially connect to one of the surrogates of the best surrogate group. A definition of best may be not only be geographically close but also refer to the status of the network. A surrogate group that is further away geographically may be chosen for a node if there is network congestion between the node and its closest surrogate group. src Source Network src dh Content Distribution Network dh S s Ss Ss S s Internet src - server - master surrogate server S s - slave surrogate server dh - distribution hub Figure 6: Distributing Streaming Content from to surrogate to end user A surrogate group must promote or bring online another slave surrogate when the group reaches capacity. All additional requests for continuous data will be forwarded to the newly promoted slave surrogate. The newly promoted slave surrogate will receive a data stream from a surrogate master. Figure 7 shows the addition of a surrogate as the network capacity increases for a surrogate group. Each surrogate can host a maximum of two nodes. In Figure 7a the network is at capacity and must promote the available offline surrogate. In Figure 7b the extra surrogate has been promoted and waits for a node connection. The next requesting node connects to the new surrogate in Figure 7c. When the network load on a surrogate group decreases, the slave surrogates 7

8 S_O Ss Ss a b c - master surrogate server S s - slave surrogate server S_O - offline surrogate server Figure 7: The promotion of an offline surrogate will be demoted or taken offline. When this happens all the nodes on the demoted slave surrogates must be consolidated onto the remaining surrogates. Node migration is discussed in section Node Migration Node migration is essential in consolidation of surrogate servers or for dynamic load balancing. A requirement of node migration is to ensure the continuous data is delivered such that the end user does not notice an interruption in the media. Node migration requires changes of buffer sizes on the node, and a swapping protocol. Each node requires a buffer to smooth out jitter caused by unpredictable inter-packet delay Changing Buffer Sizes Since all surrogates receive the original streaming at different latencies hosts must adapt their buffer sizes accordingly to continue to deliver media to the end user without interruption. Latency is not observable from a user point of view except at connection time. At connection time the latency is caused by end-to-end transmission delay and setup time. When a node moves to a surrogate of greater latency from the original than its current surrogate then its buffer will shrink. When a node moves to a surrogate of less latency from the original than its current surrogate then its buffer will grow. The details of these findings can be found in the report Buffer Management in a Continous Content Distribution Network by Howe [7] The Swapping Protocol When a node swaps from a surrogate of greater latency than the new surrogate, the node must catch up its delivery to equal that of other nodes connected to the same surrogate. If all the nodes connected to the surrogate are receiving the broadcast from a multicast then the recently swapped node must use a merge 8

9 method similar to the one described in the report The Split and Merge Protocol for Interactive Video-on-Demand by Liao et al [8]. 4 Conclusion Two important areas of continuous media distribution are not addressed by current technologies. These two areas include dynamic network load balancing and node migration. Dynamic network load balancing and node migration will aid in scalability and jitter free delivery of continuous content distribution networks. Both of these areas require further investigation. References [1] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design. Addison-Wesley, third edition, [2] Rob Glaser. Realsystem iq transforming digital media delivery. Public Announcement Video Stream, December Date Viewed: April 5, [3] G. Tomlinson M. Day, B. Cain and P. Rzewski. A model for content internetworking. Technical report, Network Working Group Internet-Draft, February [4] Realsystem Proxy 8 overview. RealSystem iq Whitepaper, RealNetworks, December [5] SHOUTcast online documentation. Nullsoft, Date Viewed: April 5, [6] Live broadcast distribution with Realsystem Server 8. RealSystem iq Whitepaper, RealNetworks, December [7] Anthony J. Howe. Buffer management in a continuous content distribution network. Technical report, University of Victoria, March Draft. [8] Wanjiun Liao and Victor O. K. Li. The split and merge protocol for interactive video-on-demand. IEEE MultiMedia, 4(4):51 62, October December

networks Live & On-Demand Video Delivery without Interruption Wireless optimization the unsolved mystery WHITE PAPER

networks Live & On-Demand Video Delivery without Interruption Wireless optimization the unsolved mystery WHITE PAPER Live & On-Demand Video Delivery without Interruption Wireless optimization the unsolved mystery - Improving the way the world connects - WHITE PAPER Live On-Demand Video Streaming without Interruption

More information

Real-Time Broadcast Video Services over the Internet using MPEG-DASH

Real-Time Broadcast Video Services over the Internet using MPEG-DASH over the Internet using MPEG-DASH Real-Time Broadcast Video Services over the Internet using MPEG-DASH Backhaul and Primary Distribution over the Internet does not require service contracts, special IT

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.

More information

Content Delivery Networks. Shaxun Chen April 21, 2009

Content Delivery Networks. Shaxun Chen April 21, 2009 Content Delivery Networks Shaxun Chen April 21, 2009 Outline Introduction to CDN An Industry Example: Akamai A Research Example: CDN over Mobile Networks Conclusion Outline Introduction to CDN An Industry

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. sales@advancedvoip.com support@advancedvoip.com. Phone: +1 213 341 1431

VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. sales@advancedvoip.com support@advancedvoip.com. Phone: +1 213 341 1431 VoIP QoS Version 1.0 September 4, 2006 AdvancedVoIP.com sales@advancedvoip.com support@advancedvoip.com Phone: +1 213 341 1431 Copyright AdvancedVoIP.com, 1999-2006. All Rights Reserved. No part of this

More information

Distributed Systems. 23. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 23. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 23. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2015 November 17, 2015 2014-2015 Paul Krzyzanowski 1 Motivation Serving web content from one location presents

More information

Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia

Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia Streaming Media Lecture 33 Streaming Audio & Video April 20, 2005 Classes of applications: streaming stored video/audio streaming live video/audio real-time interactive video/audio Examples: distributed

More information

Video Streaming Without Interruption

Video Streaming Without Interruption Video Streaming Without Interruption Adaptive bitrate and content delivery networks: Are they enough to achieve high quality, uninterrupted Internet video streaming? WHITE PAPER Abstract The increasing

More information

Streaming Stored Audio & Video

Streaming Stored Audio & Video Streaming Stored Audio & Video Streaming stored media: Audio/video file is stored in a server Users request audio/video file on demand. Audio/video is rendered within, say, 10 s after request. Interactivity

More information

Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University Voice-Over-IP Daniel Zappala CS 460 Computer Networking Brigham Young University Coping with Best-Effort Service 2/23 sample application send a 160 byte UDP packet every 20ms packet carries a voice sample

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Optimizing Enterprise Network Bandwidth For Security Applications. Improving Performance Using Antaira s Management Features

Optimizing Enterprise Network Bandwidth For Security Applications. Improving Performance Using Antaira s Management Features Optimizing Enterprise Network Bandwidth For Security Applications Improving Performance Using Antaira s Management Features By: Brian Roth, Product Marketing Engineer April 1, 2014 April 2014 Optimizing

More information

Content Delivery Networks

Content Delivery Networks Content Delivery Networks Silvano Gai Cisco Systems, USA Politecnico di Torino, IT sgai@cisco.com 1 Agenda What are Content Delivery Networks? DNS based routing Server Load Balancing Content Routers Ethical

More information

Need for Signaling and Call Control

Need for Signaling and Call Control Need for Signaling and Call Control VoIP Signaling In a traditional voice network, call establishment, progress, and termination are managed by interpreting and propagating signals. Transporting voice

More information

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross Multimedia Communication Multimedia Systems(Module 5 Lesson 2) Summary: H Internet Phone Example Making the Best use of Internet s Best-Effort Service. Sources: H Chapter 6 from Computer Networking: A

More information

A Digital Fountain Approach to Reliable Distribution of Bulk Data

A Digital Fountain Approach to Reliable Distribution of Bulk Data A Digital Fountain Approach to Reliable Distribution of Bulk Data John Byers, ICSI Michael Luby, ICSI Michael Mitzenmacher, Compaq SRC Ashu Rege, ICSI Application: Software Distribution New release of

More information

7 Streaming Architectures

7 Streaming Architectures 7 Streaming Architectures 7.1 Streaming: Basic Terminology 7.2 High-Level Streaming Architecture 7.3 Real-Time Data Transport * 7.4 Scalability and Multicast * Literature: David Austerberry: The Technology

More information

An Active Packet can be classified as

An Active Packet can be classified as Mobile Agents for Active Network Management By Rumeel Kazi and Patricia Morreale Stevens Institute of Technology Contact: rkazi,pat@ati.stevens-tech.edu Abstract-Traditionally, network management systems

More information

Strategies. Addressing and Routing

Strategies. Addressing and Routing Strategies Circuit switching: carry bit streams original telephone network Packet switching: store-and-forward messages Internet Spring 2007 CSE 30264 14 Addressing and Routing Address: byte-string that

More information

Distributed Systems 19. Content Delivery Networks (CDN) Paul Krzyzanowski pxk@cs.rutgers.edu

Distributed Systems 19. Content Delivery Networks (CDN) Paul Krzyzanowski pxk@cs.rutgers.edu Distributed Systems 19. Content Delivery Networks (CDN) Paul Krzyzanowski pxk@cs.rutgers.edu 1 Motivation Serving web content from one location presents problems Scalability Reliability Performance Flash

More information

Telecommunication Services Engineering (TSE) Lab. Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC)

Telecommunication Services Engineering (TSE) Lab. Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC) Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC) http://users.encs.concordia.ca/~glitho/ Outline 1. LTE 2. EPC architectures (Basic and advanced) 3. Mobility management in EPC 4.

More information

HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL

HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL White Paper HOW PUBLIC INTERNET IS FINALLY READY FOR HD VIDEO BACKHAUL EXPLORING THE CHALLENGES AND OPPORTUNITIES OF DELIVERING MORE CONTENT AT LESS COST Today s broadcasters are faced with an ever- present

More information

Intelligent Content Delivery Network (CDN) The New Generation of High-Quality Network

Intelligent Content Delivery Network (CDN) The New Generation of High-Quality Network White paper Intelligent Content Delivery Network (CDN) The New Generation of High-Quality Network July 2001 Executive Summary Rich media content like audio and video streaming over the Internet is becoming

More information

Distributed Systems. 25. Content Delivery Networks (CDN) 2014 Paul Krzyzanowski. Rutgers University. Fall 2014

Distributed Systems. 25. Content Delivery Networks (CDN) 2014 Paul Krzyzanowski. Rutgers University. Fall 2014 Distributed Systems 25. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2014 November 16, 2014 2014 Paul Krzyzanowski 1 Motivation Serving web content from one location presents

More information

MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport

MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport MPLS-TP Future Ready. Today Introduction As data traffic started dominating telecom networks, there was a need for transport data networks, as opposed to transport TDM networks. Traditional transport technologies

More information

Streaming Audio and Video

Streaming Audio and Video Streaming Audio and Video CS 360 Internet Programming Daniel Zappala Brigham Young University Computer Science Department Streaming Audio and Video Daniel Zappala 1/27 Types of Streaming stored audio and

More information

TDM services over IP networks

TDM services over IP networks Keyur Parikh Junius Kim TDM services over IP networks 1. ABSTRACT Time Division Multiplexing (TDM) circuits have been the backbone of communications over the past several decades. These circuits which

More information

The old Internet. Software in the Network: Outline. Traditional Design. 1) Basic Caching. The Arrival of Software (in the network)

The old Internet. Software in the Network: Outline. Traditional Design. 1) Basic Caching. The Arrival of Software (in the network) The old Software in the Network: What Happened and Where to Go Prof. Eric A. Brewer UC Berkeley Inktomi Corporation Local networks with local names and switches IP creates global namespace and links the

More information

White Paper. Enterprise IPTV and Video Streaming with the Blue Coat ProxySG >

White Paper. Enterprise IPTV and Video Streaming with the Blue Coat ProxySG > White Paper Enterprise IPTV and Video Streaming with the Blue Coat ProxySG > Table of Contents INTRODUCTION................................................... 2 SOLUTION ARCHITECTURE.........................................

More information

Module 2 Overview of Computer Networks

Module 2 Overview of Computer Networks Module 2 Overview of Computer Networks Networks and Communication Give me names of all employees Who earn more than $100,000 % ISP intranet % % % backbone satellite link desktop computer: server: network

More information

QoS Issues for Multiplayer Gaming

QoS Issues for Multiplayer Gaming QoS Issues for Multiplayer Gaming By Alex Spurling 7/12/04 Introduction Multiplayer games are becoming large part of today s digital entertainment. As more game players gain access to high-speed internet

More information

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

Content Distribution over IP: Developments and Challenges

Content Distribution over IP: Developments and Challenges Content Distribution over IP: Developments and Challenges Adrian Popescu, Blekinge Inst of Technology, Sweden Markus Fiedler, Blekinge Inst of Technology, Sweden Demetres D. Kouvatsos, University of Bradford,

More information

Overview. 15-441 15-441 Computer Networking 15-641. Lecture 18: Delivering Content Content Delivery Networks Peter Steenkiste

Overview. 15-441 15-441 Computer Networking 15-641. Lecture 18: Delivering Content Content Delivery Networks Peter Steenkiste Overview 5-44 5-44 Computer Networking 5-64 Lecture 8: Delivering Content Content Delivery Networks Peter Steenkiste Fall 04 www.cs.cmu.edu/~prs/5-44-f4 Web Consistent hashing Peer-to-peer CDN Motivation

More information

Three Key Design Considerations of IP Video Surveillance Systems

Three Key Design Considerations of IP Video Surveillance Systems Three Key Design Considerations of IP Video Surveillance Systems 2012 Moxa Inc. All rights reserved. Three Key Design Considerations of IP Video Surveillance Systems Copyright Notice 2012 Moxa Inc. All

More information

QoS in VoIP. Rahul Singhai Parijat Garg

QoS in VoIP. Rahul Singhai Parijat Garg QoS in VoIP Rahul Singhai Parijat Garg Outline Introduction The VoIP Setting QoS Issues Service Models Techniques for QoS Voice Quality Monitoring Sample solution from industry Conclusion Introduction

More information

VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet

VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet VOICE over IP H.323 Advanced Computer Network SS2005 Presenter : Vu Thi Anh Nguyet 1 Outlines 1. Introduction 2. QoS in VoIP 3. H323 4. Signalling in VoIP 5. Conclusions 2 1. Introduction to VoIP Voice

More information

Internet Infrastructure Measurement: Challenges and Tools

Internet Infrastructure Measurement: Challenges and Tools Internet Infrastructure Measurement: Challenges and Tools Internet Infrastructure Measurement: Challenges and Tools Outline Motivation Challenges Tools Conclusion Why Measure? Why Measure? Internet, with

More information

Figure 1: Comparison of Audio signals over TCP/IP: Audio over TCP/IP (buffer used)

Figure 1: Comparison of Audio signals over TCP/IP: Audio over TCP/IP (buffer used) Introduction: NetStreams patent-pending StreamNet Technology encompasses several protocols, conventions, and technologies to insure the best quality audio and video distribution over TCP/IP. This whitepaper

More information

Protocols. Packets. What's in an IP packet

Protocols. Packets. What's in an IP packet Protocols Precise rules that govern communication between two parties TCP/IP: the basic Internet protocols IP: Internet Protocol (bottom level) all packets shipped from network to network as IP packets

More information

White paper. Latency in live network video surveillance

White paper. Latency in live network video surveillance White paper Latency in live network video surveillance Table of contents 1. Introduction 3 2. What is latency? 3 3. How do we measure latency? 3 4. What affects latency? 4 4.1 Latency in the camera 4 4.1.1

More information

Mobile Computing/ Mobile Networks

Mobile Computing/ Mobile Networks Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

Packetized Telephony Networks

Packetized Telephony Networks Packetized Telephony Networks Benefits of Packet Telephony Networks Traditionally, the potential savings on long-distance costs was the driving force behind the migration to converged voice and data networks.

More information

high-quality steaming over the Internet

high-quality steaming over the Internet Content Delivery Networks & high-quality steaming over the Internet 27 th october 2011 2009 Level 3 Communications, LLC. All Rights Reserved. Level 3 Communications, Level 3, the red 3D brackets, the (3)

More information

6. Streaming Architectures 7. Multimedia Content Production and Management 8. Commercial Streaming Systems: An Overview 9. Web Radio and Web TV

6. Streaming Architectures 7. Multimedia Content Production and Management 8. Commercial Streaming Systems: An Overview 9. Web Radio and Web TV Outline (Preliminary) 1. Introduction and Motivation 2. Digital Rights Management 3. Cryptographic Techniques 4. Electronic Payment Systems 5. Multimedia Content Description Part I: Content-Oriented Base

More information

Multimedia Networking and Network Security

Multimedia Networking and Network Security CMPT371 12-1 Multimedia Networking and Network Security 1 Multimedia Networking and Network Security This note is based on Chapters 7 and 8 of the text book. Outline of multimedia networking Multimedia

More information

Choosing a Content Delivery Method

Choosing a Content Delivery Method Choosing a Content Delivery Method Executive Summary Cache-based content distribution networks (CDNs) reach very large volumes of highly dispersed end users by duplicating centrally hosted video, audio

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP Voice over IP Andreas Mettis University of Cyprus November 23, 2004 Overview What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP 1 VoIP VoIP (voice over IP - that is,

More information

Receiving the IP packets Decoding of the packets Digital-to-analog conversion which reproduces the original voice stream

Receiving the IP packets Decoding of the packets Digital-to-analog conversion which reproduces the original voice stream Article VoIP Introduction Internet telephony refers to communications services voice, fax, SMS, and/or voice-messaging applications that are transported via the internet, rather than the public switched

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

QOS Requirements and Service Level Agreements. LECTURE 4 Lecturer: Associate Professor A.S. Eremenko

QOS Requirements and Service Level Agreements. LECTURE 4 Lecturer: Associate Professor A.S. Eremenko QOS Requirements and Service Level Agreements LECTURE 4 Lecturer: Associate Professor A.S. Eremenko Application SLA Requirements Different applications have different SLA requirements; the impact that

More information

What s a protocol? What s a protocol? A closer look at network structure: What s the Internet? What s the Internet? What s the Internet?

What s a protocol? What s a protocol? A closer look at network structure: What s the Internet? What s the Internet? What s the Internet? What s the Internet? PC server laptop cellular handheld access points wired s connected computing devices: hosts = end systems running apps communication s fiber, copper, radio transmission rate = bandwidth

More information

Internet Routing and MPLS

Internet Routing and MPLS Internet Routing and MPLS N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 27 Roadmap for Multimedia Networking 2 1. Introduction why QoS? what are the problems? 2.

More information

Web. Broadcasting over the. Windows Media encoder. Kari Bulkley Sorenson Media

Web. Broadcasting over the. Windows Media encoder. Kari Bulkley Sorenson Media Broadcasting over the Web Kari Bulkley Sorenson Media There are several different ways of distributing audio and video content over the Internet. You can encode it offline in any number of formats (Windows

More information

Distributed Systems 3. Network Quality of Service (QoS)

Distributed Systems 3. Network Quality of Service (QoS) Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski pxk@cs.rutgers.edu 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through

More information

Mobile VoIP: Managing, scheduling and refining voice packets to and from mobile phones

Mobile VoIP: Managing, scheduling and refining voice packets to and from mobile phones Mobile VoIP: Managing, scheduling and refining voice packets to and from mobile phones MOHAMMAD ABDUS SALAM Student ID: 01201023 TAPAN BISWAS Student ID: 01201003 \ Department of Computer Science and Engineering

More information

Quality of Service Testing in the VoIP Environment

Quality of Service Testing in the VoIP Environment Whitepaper Quality of Service Testing in the VoIP Environment Carrying voice traffic over the Internet rather than the traditional public telephone network has revolutionized communications. Initially,

More information

Content Delivery Networks

Content Delivery Networks Content Delivery Networks Terena 2000 ftp://ftpeng.cisco.com/sgai/t2000cdn.pdf Silvano Gai Cisco Systems, USA Politecnico di Torino, IT sgai@cisco.com Terena 2000 1 Agenda What are Content Delivery Networks?

More information

VoIP over P2P networks

VoIP over P2P networks VoIP over P2P networks Víctor Ramos UAM-Iztapalapa Redes y Telecomunicaciones Victor.Ramos@ieee.org http://laryc.izt.uam.mx/~vramos What is the Internet? The IP protocol suite and related mechanisms and

More information

Measurement of IP Transport Parameters for IP Telephony

Measurement of IP Transport Parameters for IP Telephony Measurement of IP Transport Parameters for IP Telephony B.V.Ghita, S.M.Furnell, B.M.Lines, E.C.Ifeachor Centre for Communications, Networks and Information Systems, Department of Communication and Electronic

More information

Computer Network and Communication

Computer Network and Communication 2 Computer Network and Communication 2.1 INTRODUCTION As we all know, the advances in Information technology revolutionized almost every aspect of our life. Education, industry, banking, researches and

More information

Multimedia Requirements. Multimedia and Networks. Quality of Service

Multimedia Requirements. Multimedia and Networks. Quality of Service Multimedia Requirements Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Transfer/Control Protocols Quality of Service

More information

Voice over IP (VoIP) Overview. Introduction. David Feiner ACN 2004. Introduction VoIP & QoS H.323 SIP Comparison of H.323 and SIP Examples

Voice over IP (VoIP) Overview. Introduction. David Feiner ACN 2004. Introduction VoIP & QoS H.323 SIP Comparison of H.323 and SIP Examples Voice over IP (VoIP) David Feiner ACN 2004 Overview Introduction VoIP & QoS H.323 SIP Comparison of H.323 and SIP Examples Introduction Voice Calls are transmitted over Packet Switched Network instead

More information

Application Note How To Determine Bandwidth Requirements

Application Note How To Determine Bandwidth Requirements Application Note How To Determine Bandwidth Requirements 08 July 2008 Bandwidth Table of Contents 1 BANDWIDTH REQUIREMENTS... 1 1.1 VOICE REQUIREMENTS... 1 1.1.1 Calculating VoIP Bandwidth... 2 2 VOIP

More information

Peer-to-Peer Networks. Chapter 6: P2P Content Distribution

Peer-to-Peer Networks. Chapter 6: P2P Content Distribution Peer-to-Peer Networks Chapter 6: P2P Content Distribution Chapter Outline Content distribution overview Why P2P content distribution? Network coding Peer-to-peer multicast Kangasharju: Peer-to-Peer Networks

More information

Chapter 2. Literature Review

Chapter 2. Literature Review Chapter 2 Literature Review This chapter presents a literature review on Load balancing based Traffic Engineering, VoIP application, Hybrid Neuro-Fuzzy System, and Intra & Inter Domain Networks. 2.1 Load

More information

Cable Modems. Definition. Overview. Topics. 1. How Cable Modems Work

Cable Modems. Definition. Overview. Topics. 1. How Cable Modems Work Cable Modems Definition Cable modems are devices that allow high-speed access to the Internet via a cable television network. While similar in some respects to a traditional analog modem, a cable modem

More information

Multimedia Communications Voice over IP

Multimedia Communications Voice over IP Multimedia Communications Voice over IP Anandi Giridharan Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India Voice over IP (Real time protocols) Internet Telephony

More information

Classes of multimedia Applications

Classes of multimedia Applications Classes of multimedia Applications Streaming Stored Audio and Video Streaming Live Audio and Video Real-Time Interactive Audio and Video Others Class: Streaming Stored Audio and Video The multimedia content

More information

Overview of Network Hardware and Software. CS158a Chris Pollett Jan 29, 2007.

Overview of Network Hardware and Software. CS158a Chris Pollett Jan 29, 2007. Overview of Network Hardware and Software CS158a Chris Pollett Jan 29, 2007. Outline Scales of Networks Protocol Hierarchies Scales of Networks Last day, we talked about broadcast versus point-to-point

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Bandwidth Control in Multiple Video Windows Conferencing System Lee Hooi Sien, Dr.Sureswaran

Bandwidth Control in Multiple Video Windows Conferencing System Lee Hooi Sien, Dr.Sureswaran Bandwidth Control in Multiple Video Windows Conferencing System Lee Hooi Sien, Dr.Sureswaran Network Research Group, School of Computer Sciences Universiti Sains Malaysia11800 Penang, Malaysia Abstract

More information

3. MONITORING AND TESTING THE ETHERNET NETWORK

3. MONITORING AND TESTING THE ETHERNET NETWORK 3. MONITORING AND TESTING THE ETHERNET NETWORK 3.1 Introduction The following parameters are covered by the Ethernet performance metrics: Latency (delay) the amount of time required for a frame to travel

More information

Distributed Systems. 24. Content Delivery Networks (CDN) 2013 Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 24. Content Delivery Networks (CDN) 2013 Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 24. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2013 November 27, 2013 2013 Paul Krzyzanowski 1 Motivation Serving web content from one location presents

More information

Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic.

Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. A Network and Data Link Layer infrastructure Design to Improve QoS in Voice and video Traffic Jesús Arturo Pérez,

More information

Streaming Audio and Video

Streaming Audio and Video Streaming Audio and Video Multimedia on the Internet Daniel Zappala Brigham Young University Computer Science Department Streaming Audio and Video Daniel Zappala 1/39 1 Introduction 2 Stored Media 3 CDNs

More information

The Value of a Content Delivery Network

The Value of a Content Delivery Network September 2010 White Paper The Value of a Content Delivery Network Table of Contents Introduction... 3 Performance... 3 The Second Generation of CDNs... 6 Conclusion... 7 About NTT America... 8 Introduction

More information

4. H.323 Components. VOIP, Version 1.6e T.O.P. BusinessInteractive GmbH Page 1 of 19

4. H.323 Components. VOIP, Version 1.6e T.O.P. BusinessInteractive GmbH Page 1 of 19 4. H.323 Components VOIP, Version 1.6e T.O.P. BusinessInteractive GmbH Page 1 of 19 4.1 H.323 Terminals (1/2)...3 4.1 H.323 Terminals (2/2)...4 4.1.1 The software IP phone (1/2)...5 4.1.1 The software

More information

Datagram-based network layer: forwarding; routing. Additional function of VCbased network layer: call setup.

Datagram-based network layer: forwarding; routing. Additional function of VCbased network layer: call setup. CEN 007C Computer Networks Fundamentals Instructor: Prof. A. Helmy Homework : Network Layer Assigned: Nov. 28 th, 2011. Due Date: Dec 8 th, 2011 (to the TA) 1. ( points) What are the 2 most important network-layer

More information

Local-Area Network -LAN

Local-Area Network -LAN Computer Networks A group of two or more computer systems linked together. There are many [types] of computer networks: Peer To Peer (workgroups) The computers are connected by a network, however, there

More information

Understanding Latency in IP Telephony

Understanding Latency in IP Telephony Understanding Latency in IP Telephony By Alan Percy, Senior Sales Engineer Brooktrout Technology, Inc. 410 First Avenue Needham, MA 02494 Phone: (781) 449-4100 Fax: (781) 449-9009 Internet: www.brooktrout.com

More information

12 Quality of Service (QoS)

12 Quality of Service (QoS) Burapha University ก Department of Computer Science 12 Quality of Service (QoS) Quality of Service Best Effort, Integrated Service, Differentiated Service Factors that affect the QoS Ver. 0.1 :, prajaks@buu.ac.th

More information

Communications and Computer Networks

Communications and Computer Networks SFWR 4C03: Computer Networks and Computer Security January 5-8 2004 Lecturer: Kartik Krishnan Lectures 1-3 Communications and Computer Networks The fundamental purpose of a communication system is the

More information

Multimedia Networking Applications

Multimedia Networking Applications Multimedia Communication Multimedia Systems Summary: Multimedia Networking Applications: Requirements Current Networks Limitations & Evolution RTSP Sources: Chapter 6 from Computer Networking: A Top-Down

More information

Comparison of Voice over IP with circuit switching techniques

Comparison of Voice over IP with circuit switching techniques Comparison of Voice over IP with circuit switching techniques Author Richard Sinden Richard Sinden 1 of 9 Abstract Voice-over-IP is a growing technology. Companies are beginning to consider commercial

More information

Region 10 Videoconference Network (R10VN)

Region 10 Videoconference Network (R10VN) Region 10 Videoconference Network (R10VN) Network Considerations & Guidelines 1 What Causes A Poor Video Call? There are several factors that can affect a videoconference call. The two biggest culprits

More information

HIGH AVAILABILITY FOR BUSINESS- CRITICAL PROCESSES WITH VIPRINET

HIGH AVAILABILITY FOR BUSINESS- CRITICAL PROCESSES WITH VIPRINET HIGH AVAILABILITY FOR BUSINESS- CRITICAL PROCESSES WITH VIPRINET EXECUTIVE SUMMARY In order to be successful, companies today need more bandwidth with higher reliability than ever. Whether in retail or

More information

What VoIP Requires From a Data Network

What VoIP Requires From a Data Network A White Paper by NEC Unified Solutions, Inc. What VoIP Requires From a Data Network Introduction Here is a very common story. A customer has a data network based on TCP/IP that is working well. He can

More information

CDN and Traffic-structure

CDN and Traffic-structure CDN and Traffic-structure Outline Basics CDN Traffic Analysis 2 Outline Basics CDN Building Blocks Services Evolution Traffic Analysis 3 A Centralized Web! Slow content must traverse multiple backbones

More information

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs CHAPTER 6 VOICE COMMUNICATION OVER HYBRID MANETs Multimedia real-time session services such as voice and videoconferencing with Quality of Service support is challenging task on Mobile Ad hoc Network (MANETs).

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

1Multimedia Networking and Communication: Principles and Challenges

1Multimedia Networking and Communication: Principles and Challenges 1Multimedia Networking and Communication: Principles and Challenges Mihaela van der Schaar and Philip A. Chou In case you haven t noticed, multimedia communication over IP and wireless networks is exploding.

More information

Challenges of Sending Large Files Over Public Internet

Challenges of Sending Large Files Over Public Internet Challenges of Sending Large Files Over Public Internet CLICK TO EDIT MASTER TITLE STYLE JONATHAN SOLOMON SENIOR SALES & SYSTEM ENGINEER, ASPERA, INC. CLICK TO EDIT MASTER SUBTITLE STYLE OUTLINE Ø Setting

More information

Technological Trend. A Framework for Highly-Available Cascaded Real-Time Internet Services. Service Composition. Service Composition

Technological Trend. A Framework for Highly-Available Cascaded Real-Time Internet Services. Service Composition. Service Composition A Framework for Highly-Available Cascaded Real-Time Internet Services Bhaskaran Raman Qualifying Examination Proposal Feb 12, 2001 Examination Committee: Prof. Anthony D. Joseph (Chair) Prof. Randy H.

More information

Multimedia Streaming. Multimedia Retrieval Architecture

Multimedia Streaming. Multimedia Retrieval Architecture Multimedia Streaming Some Example Applications Common multimedia applications on the Internet: Streaming stored audio and video. Streaming live audio and video. Real-time interactive audio and video. All

More information