5G Network Architecture and the Future Mobile Internet IEEE 5G Workshop Princeton, May 26, 2015

Size: px
Start display at page:

Download "5G Network Architecture and the Future Mobile Internet IEEE 5G Workshop Princeton, May 26, 2015"

Transcription

1 5G Network Architecture and the Future Mobile Internet IEEE 5G Workshop Princeton, May 26, 2015 D. Raychaudhuri WINLAB, Rutgers University

2 Introduction

3 Introduction: 5G Vision Faster radio ~Gbps Low-latency wireless access ~ms Dynamic spectrum, multiple radio access technologies Next-gen network with improved support for emerging mobility services: Vehicular Networks Content Delivery Cloud Services Mobile Data (cellular, hetnet) Emergency Networks Internet-of-Things WINLAB

4 Introduction: Why 5G Needs a New Network Architecture TODAY PCRF 5G/NGMN/FIA LTE SGW PGW Internet LTE w/fia interface Mobility-Centric Future Internet Architecture 4G Radio Access Network HSS MME MSC Standard FIA Router WiFi WAG AAA Hybrid 3GPP & IP arch Complex control interfaces! Technology specific IP tunneling in data path Gateways (..bottlenecks, suboptimum routing,..) WiFi w/fia interface WINLAB FIA Distributed Control Plane Unified Internet/Mobile Net arch with integrated support for naming, authentication, mobility, etc. Simplified distributed control! Technology neutral BS or AP plug-in Flat! No gateways or tunnels! Mobile devices as first class citizens

5 Introduction: Why the Internet needs a new mobility-centric protocol architecture Historic shift from PC s to mobile computing and embedded devices Mobile data growing exponentially 3.6 Exabytes in 2014, >> wired Internet traffic Sensor/IoT/V2V ~5-10B units by 2020 Internet in 2020 all about mobile platforms & services Inevitable convergence of mobile network and Internet industries Need to think beyond the G s, associated with linear progression in mobile systems Era of vertically integrated protocol stacks built on radio standards coming to an end Single end-to-end protocol standard for the future mobile Internet! Wireless Technology Trend 5G Internet Technology Trend FIA Higher speeds/scale, network of networks New wireless/mobile functions, enhanced security, services Same end users! Future Mobile Internet Research Target of NSF Future Internet Architecture (FIA) MobilityFirst Project WINLAB

6 Introduction: What a Converged Mobile Internet Protocol Would Look Like Mobility was added to IP after the fact due to historical reasons, but single unified solution remains feasible Previous attempts at convergence such as mobile IP proved to be insufficient 5G is an opportunity for the industry to address this need with a single unified protocol stack for all services on the Internet, given that mobile is now the dominant use case Can provide significant improvements: radio technology neutral, improved scalability and security, flat network structure, enhanced mobility functions, TODAY 5G/NGMN/FIA UE TP FIA IP+ xg MAC xg PHY BS/AP Router Router FIA IP+ FIA IP+ FIA IP+ xg MAC xg PHY DLC PHY DLC PHY Server TP FIA IP+ DLC PHY Custom Access Protocols Internet Protocol Radio access specific Future Internet Protocol with Integrated Mobility Support WINLAB

7 Next-Gen Mobile Network Requirements

8 WINLAB Next-Gen Network Requirements: (1) Mobility End-point mobility as a basic service of the future Internet Any network connected object or device should be reachable on an efficiently routed path as it migrates from one network to another Eliminate service gateways (bottleneck points), IP tunnels, etc. ( flat ) Fast authentication, dynamic handoff (vertical), and global roaming Mobility service should be scalable (billions of devices) and fast ~ ms Implications for core naming/routing/security architecture of Internet Inter-AS Roaming Agreement Mobile Peering AS39 (WiFi ) INTERNET AS99 (LTE) AS49 AS2 User/Device Mobility Measured Inter-Network Mobility Traces (Prof. J. Kurose, UMass, 2013)

9 WINLAB Next-Gen Network Requirements : (2) Handling Disconnection & BW Variation Wireless medium has inherent fluctuations in bit-rate (as much as 10:1 in 4G access), heterogeneity and disconnection Poses a fundamental protocol design challenge New requirements include in-network storage/delay tolerant delivery, dynamic rerouting (late binding), etc. Transport layer implications end-to-end TCP vs. hop-by-hop Mobile devices with varying BW due to SNR variation, Shared media access and heterogeneous technologies BS-1 Bit Rate (Mbps) BS-1 Disconnect AP-2 Wireless Access Net #3 INTERNET Disconnection interval Time Wireless Access Network #2 AP-2

10 WINLAB Next-Gen Network Requirements: (3) Multicast as a Basic Service Many mobility services (content, context) involve multicast The wireless medium is inherently multicast, making it possible to reach multiple end-user devices with a single transmission Fine-grain packet level multicast desirable at network routers Session level Multicast Overlay (e.g. PIM-SIM) Packet-level Multicast at Routers/AP s/bss Pkt Mcast at Routers Wireless Access Net #11 INTERNET RP Access Network (Eithernet) INTERNET Wireless Access Net #32 Radio Broadcast Medium

11 WINLAB Next-Gen Network Requirements : (4) Multi-Homing as a Standard Feature Multiple/heterogeneous radio access technologies (e.g. 4G/5G and WiFi) increasingly the norm Improved service quality/capacity via opportunistic high BW access Improved throughput in hetnet (WiFi/small cell + cellular) scenarios Can also be used to realize ultra-high bit-rate services using multiple technologies, e.g. 60 Ghz supplement to LTE Implications for naming and routing in the Internet Multihomed devices may utilize two or more interfaces to improve communications quality/cost, with policies such as deliver on best interface or deliver only on WiFi or deliver on all interfaces INTERNET Wireless Wireless Access Net #3 Access Net #3 LTE BS 60 Ghz BS (supplement to LTE) Wireless Access Network #2 WiFi AP Mobile device With dual-radio NICs Multiple Potential Paths

12 Next-Gen Network Requirements: (5) Efficient Content Delivery Delivery of content to/from mobile devices a key service requirement in future networks ( ICN, etc.) This requirement currently served by overlay CDN s In-network support for content addressability and caching is desirable service primitives such as get(content-id,..) In-network cache In-network cache Content Owner s Server Send( content_id, user_id )) Alternative paths for retrieval or delivery Get ( content_id ) WINLAB

13 WINLAB Next-Gen Network Requirements: (6) Context-Aware Services Context-aware delivery associated with mobile services, M2M Examples of context are group membership, location, network state, Requires framework for defining and addressing context (e.g. taxis in New Brunswick ) Anycast and multicast services for message delivery to dynamic group Context = geo-coordinates & first_responder Send (context, data) Context Naming Service Context GUID Global Name Resolution service ba x NA1:P7, NA1:P9, NA2,P21,.. Context-based Multicast delivery Mobile Device trajectory

14 Next-Gen Network Requirements: (7) Edge Cloud Services Efficient, low-latency cloud services important for emerging mobile data and cyber physical applications Tight integration of cloud service with access network Service anycast primitive get(service_id,..) Low latency, dynamic migration of state Option for in-network processing in data plane Mobile Internet Edge Cloud Service A Access Network A Access Network B Edge Cloud Service B Nearest Cloud Service Low latency, dynamic migration Get( service_id, data) User Mobility WINLAB

15 Next-Gen Network Requirements: (8) Edge Peering and Ad Hoc Networks Wireless devices can form ad hoc networks with or without connectivity to the core Internet These ad hoc networks may also be mobile and may be capable of peering along the edge Requires rethinking of inter-domain routing, trust model, etc. Ad Hoc Network Formation, Intermittent Connection to Wired Internet & Network Mobility Access Network INTERNET Access Network V2I ) ) V2V Network WINLAB

16 WINLAB Next-Gen Network Requirements: Summary Security related functions: authentication, data security, etc. Mobility related functions: end-point migration, network mobility, innetwork storage/delay tolerance, edge awareness, ad-hoc modes, Multiple interface related functions: separation of object names from network addresses, multi-homing, multi-path, Content & context support: named content retrieval, contextspecified dynamic multicast, in-network caching, In-network processing (optional): media transcoding, cloud services, data aggregation,.. Open (IP_address, data) From today s connection oriented IP services ( pipes ) To more general set of service abstractions named objects, data Send (names, data) Get (service) service

17 From Vision to Proof-of- Concept Realization: MobilityFirst Architecture

18 MobilityFirst Design: Architecture Features Named devices, content, and context Human-readable name Strong authentication, privacy Public Key Based Global Identifier (GUID) End-Point mobility with multi-homing Heterogeneous Wireless Access Routers with Integrated Storage & Computing In-network content cache Service API with unicast, multi-homing, mcast, anycast, content query, etc. Storage-aware Intra-domain routing Edge-aware Inter-domain routing Hop-by-hop file transport Connectionless Packet Switched Network with hybrid name/address routing Network Mobility & Disconnected Mode Ad-hoc p2p mode WINLAB

19 MF Design: Protocol Stack App 1 App 2 App 3 App 4 Name Certification & Assignment Service NCS Socket API E2E TP1 E2E TP2 E2E TP3 E2E TP4 Optional Compute Layer Plug-In A Global Name Resolution Service GNRS GUID Service Layer Narrow Waist MF Routing Control Protocol GSTAR Routing Hop-by-Hop Block Transfer MF Inter-Domain Switching Option IP Link Layer 1 (802.11) Link Layer 2 (LTE) Link Layer 3 (Ethernet) Link Layer 4 (SONET) Link Layer 5 (etc.) Control Plane Data Plane WINLAB

20 MF Design: Name-Address Separation GUIDs Separation of names (ID) from network addresses (NA) Globally unique name (GUID) for network attached objects User name, device ID, content, context, AS name, and so on Multiple domain-specific naming services Global Name Resolution Service for GUID NA mappings Hybrid GUID/NA approach Both name/address headers in PDU Fast path when NA is available GUID resolution, late binding option Sue s_mobile_2 Network address Net1.local_ID John s _laptop_1 Host Naming Service Server_1234 Sensor Naming Service Sensor@XYZ Media File_ABC Globally Unique Flat Identifier (GUID) Network Content Naming Service Global Name Resolution Service Net2.local_ID WINLAB Context Naming Service Taxis in NB

21 MF Design: Hybrid GUID/NA Storage Router in MobilityFirst Hybrid name-address based routing in MobilityFirst requires a new router design with in-network storage and two lookup tables: Virtual DHT table for GUID-to-NA lookup as needed Conventional NA-to-port # forwarding table for fast path Also, enhanced routing algorithm for store/forward decisions GUID based forwarding (slow path) Look up GUID-NA table when: - no NAs in pkt header - encapsulated GUID - delivery failure or expired NA entry GUID-Address Mapping virtual DHT table GUID NA NA99,32 To NA11 DATA DATA To NA51 Router Storage Store when: - Poor short-term path quality - Delivery failure, no NA entry - GNRS query failure - etc. GUID= SID NA99,NA32 Look up NA-next hop table when: - pkt header includes NAs - valid NA to next hop entry NA Forwarding Table stored physically at router Dest NA NA99 NA62 NA32 Port #, Next Hop Port 5, NA11 Port 5, NA11 Port 7, NA51 Network Address Based Forwarding (fast path) DATA WINLAB

22 WINLAB MF Protocol Example: Mobility Service via Name Resolution at Device End-Points Service API capabilities: - send (GUID, options, data) Options = anycast, mcast, time,.. - get (content_guid, options) Options = nearest, all,.. GUID lookup from directory Name Certification Services (NCS) Register John Smith22 s devices with NCS GUID assigned MobilityFirst Network (Data Plane) NA99 GNRS update (after link-layer association) Send (GUID = , SID=01, data) NA32 GUID <-> NA lookup GNRS query GNRS GUID = Send (GUID = , SID=01, NA99, NA32, data) Represents network object with 2 devices DATA GUID SID NAs Packet sent out by host

23 WINLAB MF Protocol Example: Handling Disconnection Store-and-forward mobility service example GUID DATA NA99 rebind to NA75 Delivery failure at NA99 due to device mobility Router stores & periodically checks GNRS binding Deliver to new network NA75 when GNRS updates NA99 Data Plane NA75 Disconnection interval Device mobility DATA DATA GUID SID NA99 DATA GUID NA75 GUID SID Send data file to John Smith22 s laptop, SID= 11 (unicast, mobile delivery)

24 WINLAB MF Protocol Example: Dual Homing Service Multihoming service example DATA Router bifurcates PDU to NA99 & NA32 (no GUID resolution needed) GUID DATA NetAddr= NA99 NA99 Data Plane NA32 DATA DATA GUID= SID NA99,NA32 DATA GUID NetAddr= NA32 GUID SID Send data file to John Smith22 s laptop, SID= 129 (multihoming all interfaces)

25 Latitide Average throughput per sec (in Mbps) Maximum throughput per sec (in Mbps) WINLAB Example Dual-Homing Result for MF: Cellular LTE + WiFi Performance Free Wi-Fi hotspots (AT&T HotSpot Locator) Using only LTE Using the best available Wi-Fi Using all the available WiFis Using all the Wi-Fis and LTE Longitude Only Wi-Fi does not help on an average Simulation of San-Francisco cabs for Wi-Fi /LTE dual-homing Dual-Homed 0 Mobile Device (WiFI + LTE) Cab no Cab no. MobilityFirst network evaluation for dual-homing Parametric analysis of best interface vs. dual homing Link delay, data rate and download size varied Soft threshold to stripe across both interfaces or use best

26 MF Proof-of-Concept Prototype: Click Software Router and Android API Click-based MF Router - Storage-aware routing (GSTAR) - Name resolution (GNRS) - Reliable hop-by-hop link transport (Hop) Android/Linux MF Protocol Stack - Network API - Hop transport - Dual homing (WiFi/WiMAX) Native, user-level implementation on Android runtime MF Router WiFi AP MF Router 26 MF Router WiMAX BTS 5/26/2015 WINLAB, Rutgers University 26 WINLAB

27 MF Proof-of-Concept: Deployment on GENI NL R Lincoln, NE Madison, WI Ann Arbor, MI Cambridge, MA Tokyo, Japan Palo Alto, CA Salt Lake, UT N. Brunswick, NJ Los Angeles, CA I2 Atlanta, GA Clemson, SC MF Services Demonstrated on GENI: Multi-Homing Mobile Named Content Delivery In-network Compute Service Context-Aware Message Delivery Edge-Aware Inter-Domain Routing Global Name Resolution and others Early adopter trials starting in 2015 MobilityFirst Routing and Name Resolution Service Sites MobilityFirst Access Net Long-term (non- GENI) Short-term Wide Area ProtoGENI ProtoGENI WINLAB

28 Concluding Remarks

29 Concluding Remarks: 5G and the Next-Gen Mobile Network Architecture Many new enabling technologies, but the key to 5G will be the network architecture Inevitable convergence of wireless access networks with the Internet Highly functional new protocol design needed to support advanced mobility services From connection-oriented pipes to flexible connectionless service abstractions NSF FIA MobilityFirst architecture serves as proof-of-concept. Open LTE 5G Radio 60 Ghz ad?? Wideband Cognitive Radio Multi-Radio Android Device Next-Gen Network 5G Enabling Technologies Programmable OpenFlow SDN Switch Historic opportunity & risk for wireless and networking industries! WINLAB

30 WINLAB Resources Project website: GENI website: ORBIT website:

MobilityFirst NP Project Update NSF PI Meeting Washington D.C. May 19-20, 2014. D. Raychaudhuri WINLAB, Rutgers University ray@winlab.rutgers.

MobilityFirst NP Project Update NSF PI Meeting Washington D.C. May 19-20, 2014. D. Raychaudhuri WINLAB, Rutgers University ray@winlab.rutgers. MobilityFirst NP Project Update NSF PI Meeting Washington D.C. May 19-20, 2014 D. Raychaudhuri, Rutgers University ray@winlab.rutgers.edu Introduction MobilityFirst Project: Background MobilityFirst project

More information

Virtual Mobile Cloud Network for Realizing Scalable, Real-Time Cyber Physical Systems

Virtual Mobile Cloud Network for Realizing Scalable, Real-Time Cyber Physical Systems Virtual Mobile Cloud Network for Realizing Scalable, Real-Time Cyber Physical Systems Kiran Nagaraja, Yanyong Zhang, Ivan Seskar, Dipankar Raychaudhuri (PI) WINLAB, Rutgers University Kiyohide Nakauchi,

More information

ICN-IoT and its Evaluation

ICN-IoT and its Evaluation ICN-IoT and its Evaluation Sugang Li, Yanyong Zhang, Dipankar Raychaudhuri (WINLAB, Rutgers University) Ravishankar Ravindran, GQ Wang (Huawei Research Center) Phase I: ICN-IoT Architecture IoT Architectural

More information

ATCN 2014: SDN - Mobility and SDN: Mobility Management and Mobile Networks

ATCN 2014: SDN - Mobility and SDN: Mobility Management and Mobile Networks ATCN 2014: SDN - Mobility and SDN: Mobility Management and Mobile Networks Karin Anna Hummel, ETH Zurich (thanks to Vasileios Kotronis for some material) November 10, 2014 1 Locating and Connecting 2 Wireless

More information

SERVICE DISCOVERY AND MOBILITY MANAGEMENT

SERVICE DISCOVERY AND MOBILITY MANAGEMENT Objectives: 1) Understanding some popular service discovery protocols 2) Understanding mobility management in WLAN and cellular networks Readings: 1. Fundamentals of Mobile and Pervasive Computing (chapt7)

More information

Wireless Software Defined Networks Ayaka Koshibe, Akash Baid and Ivan Seskar

Wireless Software Defined Networks Ayaka Koshibe, Akash Baid and Ivan Seskar Wireless Software Defined Networks Ayaka Koshibe, Akash Baid and Ivan Seskar Rutgers University 2014 Fall IAB December 12 th, 2014 Need for Inter-network Cooperation Interaction between managed wireless

More information

Comparing Alternative Approaches for Networking of Named Objects in the Future Internet

Comparing Alternative Approaches for Networking of Named Objects in the Future Internet Comparing Alternative Approaches for Networking of Named Objects in the Future Internet Akash Baid, Tam Vu, Dipankar Raychaudhuri WINLAB, Rutgers University, {baid, tamvu, ray}@winlab.rutgers.edu Abstract

More information

IMPLEMENTATION AND EVALUATION OF THE MOBILITYFIRST PROTOCOL STACK ON SOFTWARE-DEFINED NETWORK PLATFORMS

IMPLEMENTATION AND EVALUATION OF THE MOBILITYFIRST PROTOCOL STACK ON SOFTWARE-DEFINED NETWORK PLATFORMS IMPLEMENTATION AND EVALUATION OF THE MOBILITYFIRST PROTOCOL STACK ON SOFTWARE-DEFINED NETWORK PLATFORMS BY ARAVIND KRISHNAMOORTHY A thesis submitted to the Graduate School New Brunswick Rutgers, The State

More information

Towards Software Defined Cellular Networks

Towards Software Defined Cellular Networks Towards Software Defined Cellular Networks Li Erran Li (Bell Labs, Alcatel-Lucent) Morley Mao (University of Michigan) Jennifer Rexford (Princeton University) 1 Outline Critiques of LTE Architecture CellSDN

More information

Introduction Chapter 1. Uses of Computer Networks

Introduction Chapter 1. Uses of Computer Networks Introduction Chapter 1 Uses of Computer Networks Network Hardware Network Software Reference Models Example Networks Network Standardization Metric Units Revised: August 2011 Uses of Computer Networks

More information

Disaster-Resilient Backbone and Access Networks

Disaster-Resilient Backbone and Access Networks The Workshop on Establishing Resilient Life-Space in the Cyber-Physical Integrated Society, March. 17, 2015, Sendai, Japan Disaster-Resilient Backbone and Access Networks Shigeki Yamada (shigeki@nii.ac.jp)

More information

Mobile Multimedia Meet Cloud: Challenges and Future Directions

Mobile Multimedia Meet Cloud: Challenges and Future Directions Mobile Multimedia Meet Cloud: Challenges and Future Directions Chang Wen Chen State University of New York at Buffalo 1 Outline Mobile multimedia: Convergence and rapid growth Coming of a new era: Cloud

More information

LTE - Can SDN paradigm be applied?

LTE - Can SDN paradigm be applied? LTE - Can SDN paradigm be applied? Source of this presentation: Towards Software Defined Cellular Networks Li Erran Li (Bell Labs, Alcatel-Lucent) Morley Mao (University of Michigan) Jennifer Rexford (Princeton

More information

Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744. The problem

Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744. The problem Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744 The problem How to support mobile users What do we mean by support? Make it easy and convenient to effectively

More information

EVALUATION OF EDGE CLOUD SERVICE SCENARIOS WITH APPLICATION SPECIFIC ROUTING IN THE NETWORK

EVALUATION OF EDGE CLOUD SERVICE SCENARIOS WITH APPLICATION SPECIFIC ROUTING IN THE NETWORK EVALUATION OF EDGE CLOUD SERVICE SCENARIOS WITH APPLICATION SPECIFIC ROUTING IN THE NETWORK BY ANUSHA SHEELAVANT A thesis submitted to the Graduate School New Brunswick Rutgers, The State University of

More information

TRILL Large Layer 2 Network Solution

TRILL Large Layer 2 Network Solution TRILL Large Layer 2 Network Solution Contents 1 Network Architecture Requirements of Data Centers in the Cloud Computing Era... 3 2 TRILL Characteristics... 5 3 Huawei TRILL-based Large Layer 2 Network

More information

CDN/CLOUD/SDN/NFV FOR MULTIMEDIA SERVICES

CDN/CLOUD/SDN/NFV FOR MULTIMEDIA SERVICES CDN/CLOUD/SDN/NFV FOR MULTIMEDIA SERVICES Nakjung Choi, Technical Director, Bell Labs Seoul KRnet 2014, June 24 th, 2014 CONTENT Background on CDN/Cloud/SDN/NFV Video Delivery in the Existing Infrastructure

More information

How To Make A Vpc More Secure With A Cloud Network Overlay (Network) On A Vlan) On An Openstack Vlan On A Server On A Network On A 2D (Vlan) (Vpn) On Your Vlan

How To Make A Vpc More Secure With A Cloud Network Overlay (Network) On A Vlan) On An Openstack Vlan On A Server On A Network On A 2D (Vlan) (Vpn) On Your Vlan Centec s SDN Switch Built from the Ground Up to Deliver an Optimal Virtual Private Cloud Table of Contents Virtualization Fueling New Possibilities Virtual Private Cloud Offerings... 2 Current Approaches

More information

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs

LAN Switching. 15-441 Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, 802.11, PPP. Interconnecting LANs LAN Switching 15-441 Computer Networking Bridges/Switches, 802.11, PPP Extend reach of a single shared medium Connect two or more segments by copying data frames between them Switches only copy data when

More information

Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心

Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心 Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心 1 SDN Introduction Decoupling of control plane from data plane

More information

The Future of Network Marketing Research

The Future of Network Marketing Research ONELAB and experimentally driven research. Leandros Tassiulas http://www.inf.uth.gr/~leandros University of Thessaly Volos, Greece Outline Onelab: facilitating experimentally driven research in Europe

More information

MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport

MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport MPLS-TP Future Ready. Today Introduction As data traffic started dominating telecom networks, there was a need for transport data networks, as opposed to transport TDM networks. Traditional transport technologies

More information

Overview to the Cisco Mobility Services Architecture

Overview to the Cisco Mobility Services Architecture Overview to the Cisco Mobility Services Architecture Introduction Business has gone mobile. The number of employees that expect access to network resources to improve productivity has increased significantly

More information

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration Interconnection of Heterogeneous Networks Internetworking Service model Addressing Address mapping Automatic host configuration Wireless LAN network@home outer Ethernet PPS Internet-Praktikum Internetworking

More information

IP Anycast: Point to (Any) Point Communications. Draft 0.3. Chris Metz, chmetz@cisco.com. Introduction

IP Anycast: Point to (Any) Point Communications. Draft 0.3. Chris Metz, chmetz@cisco.com. Introduction IP Anycast: Point to (Any) Point Communications Draft 0.3 Chris Metz, chmetz@cisco.com Introduction The Internet supports several different communication paradigms. Unicast is defined as a point-to-point

More information

Gateway Service for Integration of Heterogeneous Networks using Different Interworking Solutions

Gateway Service for Integration of Heterogeneous Networks using Different Interworking Solutions Gateway Service for Integration of Heterogeneous Networks using Different Interworking Solutions Hyunho Park*, Hyeong Ho Lee*, H. Anthony Chan** * Electronics and Telecommunications Research Institute

More information

How To Understand The Power Of The Internet

How To Understand The Power Of The Internet DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book: Computer Networking, A Top-Down Approach, Kurose, Ross Slides: - Course book Slides - Slides from Princeton University COS461

More information

Deploying IPv6 in 3GPP Networks. Evolving Mobile Broadband from 2G to LTE and Beyond. NSN/Nokia Series

Deploying IPv6 in 3GPP Networks. Evolving Mobile Broadband from 2G to LTE and Beyond. NSN/Nokia Series Brochure More information from http://www.researchandmarkets.com/reports/2379605/ Deploying IPv6 in 3GPP Networks. Evolving Mobile Broadband from 2G to LTE and Beyond. NSN/Nokia Series Description: Deploying

More information

EVOLVING ENTERPRISE NETWORKS WITH SPB-M APPLICATION NOTE

EVOLVING ENTERPRISE NETWORKS WITH SPB-M APPLICATION NOTE EVOLVING ENTERPRISE NETWORKS WITH SPB-M APPLICATION NOTE EXECUTIVE SUMMARY Enterprise network managers are being forced to do more with less. Their networks are growing in size and complexity. They need

More information

CS6204 Advanced Topics in Networking

CS6204 Advanced Topics in Networking CS6204 Advanced Topics in Networking Assoc Prof. Chan Mun Choon School of Computing National University of Singapore Aug 14, 2015 CS6204 Lecturer Chan Mun Choon Office: COM2, #04-17 Email: chanmc@comp.nus.edu.sg

More information

Evolution to 5G: An operator's perspective

Evolution to 5G: An operator's perspective Evolution to 5G: An operator's perspective Dr. Ivo Maljevic TELUS team IEEE 5G Summit Nov 2015 Cellular Standards Evolution 2? 1980 1G 1990 2G 2000 3G 2010-4G 2020 5G Analog systems Large terminals Several

More information

Experimental research on communication networks at CTTC The ADRENALINE and EXTREME testbeds

Experimental research on communication networks at CTTC The ADRENALINE and EXTREME testbeds Experimental research on communication networks at CTTC The ADRENALINE and EXTREME testbeds Josep Mangues-Bafalluy and Raül Muñoz Communication Networks Division Centre Tecnològic de Telecomunicacions

More information

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks Zhibin Wu, Sachin Ganu and Dipankar Raychaudhuri WINLAB, Rutgers University 2006-11-16 IAB Research Review, Fall 2006 1 Contents

More information

VPN. Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu

VPN. Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu VPN Date: 4/15/2004 By: Heena Patel Email:hpatel4@stevens-tech.edu What is VPN? A VPN (virtual private network) is a private data network that uses public telecommunicating infrastructure (Internet), maintaining

More information

Objectives of Lecture. Network Architecture. Protocols. Contents

Objectives of Lecture. Network Architecture. Protocols. Contents Objectives of Lecture Network Architecture Show how network architecture can be understood using a layered approach. Introduce the OSI seven layer reference model. Introduce the concepts of internetworking

More information

SBSCET, Firozpur (Punjab), India

SBSCET, Firozpur (Punjab), India Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based

More information

MPLS VPN in Cellular Mobile IPv6 Architectures(04##017)

MPLS VPN in Cellular Mobile IPv6 Architectures(04##017) MPLS VPN in Cellular Mobile IPv6 Architectures(04##017) Yao-Chung Chang, Han-Chieh Chao, K.M. Liu and T. G. Tsuei* Department of Electrical Engineering, National Dong Hwa University Hualien, Taiwan, Republic

More information

CSIS 3230. CSIS 3230 Spring 2012. Networking, its all about the apps! Apps on the Edge. Application Architectures. Pure P2P Architecture

CSIS 3230. CSIS 3230 Spring 2012. Networking, its all about the apps! Apps on the Edge. Application Architectures. Pure P2P Architecture Networking, its all about the apps! CSIS 3230 Chapter 2: Layer Concepts Chapter 5.4: Link Layer Addressing Networks exist to support apps Web Social ing Multimedia Communications Email File transfer Remote

More information

DEMYSTIFYING ROUTING SERVICES IN SOFTWAREDEFINED NETWORKING

DEMYSTIFYING ROUTING SERVICES IN SOFTWAREDEFINED NETWORKING DEMYSTIFYING ROUTING SERVICES IN STWAREDEFINED NETWORKING GAUTAM KHETRAPAL Engineering Project Manager, Aricent SAURABH KUMAR SHARMA Principal Systems Engineer, Technology, Aricent DEMYSTIFYING ROUTING

More information

How to deal with a thousand nodes: M2M communication over cellular networks. A. Maeder NEC Laboratories Europe andreas.maeder@neclab.

How to deal with a thousand nodes: M2M communication over cellular networks. A. Maeder NEC Laboratories Europe andreas.maeder@neclab. How to deal with a thousand nodes: M2M communication over cellular networks A. Maeder NEC Laboratories Europe andreas.maeder@neclab.eu Outline Introduction to M2M communications The M2M use case landscape

More information

Wireless & Mobile. Working Group

Wireless & Mobile. Working Group Wireless & Mobile Working Group Table of Contents 1 Executive Summary... 3 2 Mission & Motivation... 3 3 Scope... 3 4 Goals & Non-Goals... 4 5 Deliverables... 5 6 Milestones... 6 7 Example Use Cases Summaries...

More information

Telecommunication Services Engineering (TSE) Lab. Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC)

Telecommunication Services Engineering (TSE) Lab. Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC) Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC) http://users.encs.concordia.ca/~glitho/ Outline 1. LTE 2. EPC architectures (Basic and advanced) 3. Mobility management in EPC 4.

More information

Mobile Computing/ Mobile Networks

Mobile Computing/ Mobile Networks Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

Tranzeo s EnRoute500 Performance Analysis and Prediction

Tranzeo s EnRoute500 Performance Analysis and Prediction Tranzeo s EnRoute500 Performance Analysis and Prediction Introduction Tranzeo has developed the EnRoute500 product family to provide an optimum balance between price and performance for wireless broadband

More information

Overview. Lecture 16: IP variations: IPv6, multicast, anycast. I think we have a problem. IPv6. IPv6 Key Features

Overview. Lecture 16: IP variations: IPv6, multicast, anycast. I think we have a problem. IPv6. IPv6 Key Features Overview Lecture 16: IP variations: IPv6, multicast, anycast Next generation IP: IPv6 6lowpan and the Internet of Things IP multicast IP anycast Practical considerations throughout I think we have a problem

More information

Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL)

Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL) Asynchrous Transfer Mode: architecture 1980s/1990 s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport

More information

SOFTWARE-DEFINED NETWORKING IN HETEROGENEOUS RADIO ACCESS NETWORKS

SOFTWARE-DEFINED NETWORKING IN HETEROGENEOUS RADIO ACCESS NETWORKS SOFTWARE-DEFINED NETWORKING IN HETEROGENEOUS RADIO ACCESS NETWORKS Hao Yu Technical University of Denmark (DTU), Oersteds Plads 343, Kgs. Lyngby, 2800, Denmark e-mail: haoyu@fotonik.dtu.dk Paper type Research

More information

Software Defined Networking

Software Defined Networking Software Defined Networking Richard T. B. Ma School of Computing National University of Singapore Material from: Scott Shenker (UC Berkeley), Nick McKeown (Stanford), Jennifer Rexford (Princeton) CS 4226:

More information

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman 1 Wireless Networks Reading: Sec5on 2.8 COS 461: Computer Networks Spring 2011 Mike Freedman hep://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Widespread Deployment Worldwide cellular subscribers

More information

Demo 1. Network Path and Quality Validation in the Evolved Packet Core

Demo 1. Network Path and Quality Validation in the Evolved Packet Core Competence Center NGNI Demo 1 Network Path and Quality Validation in the Evolved Packet Core 1 Fraunhofer Institute FOKUS and TU Berlin AV AV provides education and applied research together with Fraunhofer

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

networks Live & On-Demand Video Delivery without Interruption Wireless optimization the unsolved mystery WHITE PAPER

networks Live & On-Demand Video Delivery without Interruption Wireless optimization the unsolved mystery WHITE PAPER Live & On-Demand Video Delivery without Interruption Wireless optimization the unsolved mystery - Improving the way the world connects - WHITE PAPER Live On-Demand Video Streaming without Interruption

More information

Software-Defined Networking Architecture Framework for Multi-Tenant Enterprise Cloud Environments

Software-Defined Networking Architecture Framework for Multi-Tenant Enterprise Cloud Environments Software-Defined Networking Architecture Framework for Multi-Tenant Enterprise Cloud Environments Aryan TaheriMonfared Department of Electrical Engineering and Computer Science University of Stavanger

More information

CME: A Middleware Architecture for Network-Aware Adaptive Applications

CME: A Middleware Architecture for Network-Aware Adaptive Applications CME: A Middleware Architecture for Network-Aware Adaptive Applications Jun-Zhao Sun, Jari Tenhunen, and Jaakko Sauvola MediaTeam, Machine Vision and Media Processing Unit, Infotech Oulu P.O.Box 4500 4SOINFO,

More information

Hybrid Overlay Multicast Framework draft-irtf-sam-hybrid-overlay-framework-01.txt. John Buford, Avaya Labs Research

Hybrid Overlay Multicast Framework draft-irtf-sam-hybrid-overlay-framework-01.txt. John Buford, Avaya Labs Research Hybrid Overlay Multicast Framework draft-irtf-sam-hybrid-overlay-framework-01.txt John Buford, Avaya Labs Research Topics SAM Charter Recap and Problem Statement AMT(Automatic Multicast Tunneling) Overview

More information

Intel Network Builders Solution Brief. Intel and ASTRI* Help Mobile Network Operators Support Small Cell Networks

Intel Network Builders Solution Brief. Intel and ASTRI* Help Mobile Network Operators Support Small Cell Networks Intel Network Builders Solution Brief Intel and ASTRI* Help Mobile Network Operators Support Small Cell Networks Overview Wireless networks built using small cell base stations are enabling mobile network

More information

Software Defined Networking (SDN) - Open Flow

Software Defined Networking (SDN) - Open Flow Software Defined Networking (SDN) - Open Flow Introduction Current Internet: egalitarian routing/delivery based on destination address, best effort. Future Internet: criteria based traffic management,

More information

Wave Relay System and General Project Details

Wave Relay System and General Project Details Wave Relay System and General Project Details Wave Relay System Provides seamless multi-hop connectivity Operates at layer 2 of networking stack Seamless bridging Emulates a wired switch over the wireless

More information

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN:

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN: WLAN: Wireless LAN Make use of a wireless transmission medium Tipically restricted in their diameter: buildings, campus, single room etc.. The global goal is to replace office cabling and to introduce

More information

a new sdn-based control plane architecture for 5G

a new sdn-based control plane architecture for 5G a new sdn-based control plane architecture for 5G With a Case Study on Connectivity Management m. outline what is sdn? 5G proposed control plane connectivity control software-defined networking The needs

More information

An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework

An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework Zutao Zhu Zhenjun Li YunYong Duan Department of Business Support Department of Computer Science Department of Business

More information

Vytautas Valancius, Nick Feamster, Akihiro Nakao, and Jennifer Rexford

Vytautas Valancius, Nick Feamster, Akihiro Nakao, and Jennifer Rexford Vytautas Valancius, Nick Feamster, Akihiro Nakao, and Jennifer Rexford Hosting and Cloud computing is on the rise Collocation hosting Cloud and data center hosting Different hosted applications have different

More information

3G/Wi-Fi Seamless Offload

3G/Wi-Fi Seamless Offload Qualcomm Incorporated March 2010 Table of Contents [1] Introduction... 1 [2] The Role of WLAN... 2 [3] 3G/Wi-Fi Seamless Offload Pathway... 2 [4] Application-Based Switching... 3 [5] Wi-Fi Mobility...

More information

LTE Overview October 6, 2011

LTE Overview October 6, 2011 LTE Overview October 6, 2011 Robert Barringer Enterprise Architect AT&T Proprietary (Internal Use Only) Not for use or disclosure outside the AT&T companies except under written agreement LTE Long Term

More information

VLANs. Application Note

VLANs. Application Note VLANs Application Note Table of Contents Background... 3 Benefits... 3 Theory of Operation... 4 IEEE 802.1Q Packet... 4 Frame Size... 5 Supported VLAN Modes... 5 Bridged Mode... 5 Static SSID to Static

More information

- Multiprotocol Label Switching -

- Multiprotocol Label Switching - 1 - Multiprotocol Label Switching - Multiprotocol Label Switching Multiprotocol Label Switching (MPLS) is a Layer-2 switching technology. MPLS-enabled routers apply numerical labels to packets, and can

More information

Network Mobility Support Scheme on PMIPv6 Networks

Network Mobility Support Scheme on PMIPv6 Networks Network Mobility Support Scheme on PMIPv6 Networks Hyo-Beom Lee 1, Youn-Hee Han 2 and Sung-Gi Min 1 1 Dept. of Computer Science and Engineering, Korea University, Seoul, South Korea. sgmin@korea.ac.kr

More information

Internet Peering, IPv6, and NATs. Mike Freedman V22.0480-005 Networks

Internet Peering, IPv6, and NATs. Mike Freedman V22.0480-005 Networks Internet Peering, IPv6, and NATs Mike Freedman V22.0480-005 Networks Internet Peering Review: Routing Internet has a loose hierarchy of domains Hosts now local router Local routers know site routers Site

More information

CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012

CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 Important: The solutions to the homework problems from the course book have been provided by the authors.

More information

COnvergence of fixed and Mobile BrOadband access/aggregation networks Work programme topic: ICT 2011.1.1 Future Networks Type of project: Large scale

COnvergence of fixed and Mobile BrOadband access/aggregation networks Work programme topic: ICT 2011.1.1 Future Networks Type of project: Large scale COnvergence of fixed and Mobile BrOadband access/aggregation networks Work programme topic: ICT 2011.1.1 Future Networks Type of project: Large scale integrating project Project start: 1 st January 2013

More information

Conference. Smart Future Networks THE NEXT EVOLUTION OF THE INTERNET FROM INTERNET OF THINGS TO INTERNET OF EVERYTHING

Conference. Smart Future Networks THE NEXT EVOLUTION OF THE INTERNET FROM INTERNET OF THINGS TO INTERNET OF EVERYTHING Conference THE NEXT EVOLUTION OF THE INTERNET FROM INTERNET OF THINGS TO INTERNET OF Smart Future Networks www.internet-of-things.no EVERYTHING Patrick Waldemar Vice President Telenor Research and Future

More information

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 楊 竹 星 教 授 國 立 成 功 大 學 電 機 工 程 學 系 Outline Introduction OpenFlow NetFPGA OpenFlow Switch on NetFPGA Development Cases Conclusion 2 Introduction With the proposal

More information

Comparing Mobile VPN Technologies WHITE PAPER

Comparing Mobile VPN Technologies WHITE PAPER Comparing Mobile VPN Technologies WHITE PAPER Executive Summary Traditional approaches for encrypting data in transit such as IPSec and SSL are intended for wired networks with high speed, highly reliable

More information

SOFTWARE-DEFINED NETWORKING AND OPENFLOW

SOFTWARE-DEFINED NETWORKING AND OPENFLOW SOFTWARE-DEFINED NETWORKING AND OPENFLOW Freddie Örnebjär TREX Workshop 2012 2012 Brocade Communications Systems, Inc. 2012/09/14 Software-Defined Networking (SDN): Fundamental Control

More information

Definition. A Historical Example

Definition. A Historical Example Overlay Networks This lecture contains slides created by Ion Stoica (UC Berkeley). Slides used with permission from author. All rights remain with author. Definition Network defines addressing, routing,

More information

Today. Finishing up inter-domain routing. Review of end-to-end forwarding. How we build routers. Economics of peering/settlement

Today. Finishing up inter-domain routing. Review of end-to-end forwarding. How we build routers. Economics of peering/settlement Today Finishing up inter-domain routing Economics of peering/settlement Review of end-to-end forwarding How we build routers 1 A History of Settlement The telephone world LECs (local exchange carriers)

More information

SDN, a New Definition of Next-Generation Campus Network

SDN, a New Definition of Next-Generation Campus Network SDN, a New Definition of Next-Generation Campus Network Contents Campus Evolution and Development Trends... 1 Three Changes to Drive the Campus Network Development... 2 Fundamental Changes in User Behaviors...2

More information

Network-Oriented Software Development. Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2

Network-Oriented Software Development. Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2 Network-Oriented Software Development Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2 Topics Layering TCP/IP Layering Internet addresses and port numbers Encapsulation

More information

Get the best performance from your LTE Network with MOBIPASS

Get the best performance from your LTE Network with MOBIPASS Get the best performance from your LTE Network with MOBIPASS The most powerful, user friendly and scalable enodeb test tools family for Network Equipement Manufacturers and Mobile Network Operators Network

More information

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1 Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer

More information

mesdn: Mobile Extension of SDN Mostafa Uddin Advisor: Dr. Tamer Nadeem Old Dominion University

mesdn: Mobile Extension of SDN Mostafa Uddin Advisor: Dr. Tamer Nadeem Old Dominion University mesdn: Mobile Extension of SDN Mostafa Uddin Advisor: Dr. Tamer Nadeem Old Dominion University Very brief on SDN Networks are very hard to manage and evolve. Data Plane: Fwding state + Packet header forwarding

More information

IT4405 Computer Networks (Compulsory)

IT4405 Computer Networks (Compulsory) IT4405 Computer Networks (Compulsory) INTRODUCTION This course provides a comprehensive insight into the fundamental concepts in data communications, computer network systems and protocols both fixed and

More information

Mobile-edge Computing

Mobile-edge Computing Mobile-edge Computing Major strides towards RAN virtualization Nurit Sprecher 1 02/09/2014 Nokia 2014 - Nurit Sprecher Agenda Market drivers and requirements 2020 network architecture vision Cloud RAN

More information

Software Defined Networking to Improve Mobility Management Performance

Software Defined Networking to Improve Mobility Management Performance Department of Computer Science and the Electrical Engineering, The Netherlands Software Defined Networking to Improve Mobility Management Performance Morteza Karimzadeh, Anna Sperotto, and Aiko Pras m.karimzadeh@utwente.nl

More information

WAN & Carrier Networks

WAN & Carrier Networks WAN & Carrier Networks Harry Petty Vello Systems,Vice President, Marketing Matthew Palmer Wiretap Ventures Partner We should leave this session with a common understanding of the ONF s definition of WAN

More information

Trends in Mobile Network Architectures 3GPP LTE Mobile WiMAX Next Generation Mobile Networks Dr.-Ing. Michael Schopp, Siemens Networks

Trends in Mobile Network Architectures 3GPP LTE Mobile WiMAX Next Generation Mobile Networks Dr.-Ing. Michael Schopp, Siemens Networks Trends in Mobile Network Architectures 3GPP LTE Mobile WiMAX Next Generation Mobile Networks Dr.-Ing. Michael Schopp, Siemens Networks Outline 1 Next Generation Mobile Networks 2 New Radio Access Network

More information

Protocol Data Units and Encapsulation

Protocol Data Units and Encapsulation Chapter 2: Communicating over the 51 Protocol Units and Encapsulation For application data to travel uncorrupted from one host to another, header (or control data), which contains control and addressing

More information

Multiprotocol Label Switching (MPLS)

Multiprotocol Label Switching (MPLS) Multiprotocol Label Switching (MPLS) รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D. anan.p@ku.ac.th http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

Continued improvement in semiconductor and computing. technologies brought exponential growth to wireless industry. The

Continued improvement in semiconductor and computing. technologies brought exponential growth to wireless industry. The 23 Chapter-1 INTRODUCTION Continued improvement in semiconductor and computing technologies brought exponential growth to wireless industry. The huge number of advance mobile devices and integrated applications

More information

5G Backhauling_. Luis M. Contreras GCTO Unit, Transport, Telefónica 05.11.2015

5G Backhauling_. Luis M. Contreras GCTO Unit, Transport, Telefónica 05.11.2015 5G Backhauling_ Luis M. Contreras GCTO Unit, Transport, Telefónica 05.11.2015 NGMN Whitepaper 5G System Architecture 5G System Requirements and Architecture Performance 1000x higher mobile data volumes

More information

What is CSG150 about? Fundamentals of Computer Networking. Course Outline. Lecture 1 Outline. Guevara Noubir noubir@ccs.neu.

What is CSG150 about? Fundamentals of Computer Networking. Course Outline. Lecture 1 Outline. Guevara Noubir noubir@ccs.neu. What is CSG150 about? Fundamentals of Computer Networking Guevara Noubir noubir@ccs.neu.edu CSG150 Understand the basic principles of networking: Description of existing networks, and networking mechanisms

More information

Mobility-Centric Host Stack for the Future Internet

Mobility-Centric Host Stack for the Future Internet Mobility-Centric Host Stack for the Future Internet Chunhui Zhang, Guanling Chen Computer Science Department University of Massachusetts Lowell {czhang, glchen}@cs.uml.edu Kiran Nagaraja, Ivan Seskar,

More information

OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS

OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS OVERLAYING VIRTUALIZED LAYER 2 NETWORKS OVER LAYER 3 NETWORKS Matt Eclavea (meclavea@brocade.com) Senior Solutions Architect, Brocade Communications Inc. Jim Allen (jallen@llnw.com) Senior Architect, Limelight

More information

Performance Evaluation of Linux Bridge

Performance Evaluation of Linux Bridge Performance Evaluation of Linux Bridge James T. Yu School of Computer Science, Telecommunications, and Information System (CTI) DePaul University ABSTRACT This paper studies a unique network feature, Ethernet

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2004 Lecture 1: Introduction & Review Stefan Savage Class Overview Course Material Class lectures, textbook readings, and handouts Course Assignments Exams Homework

More information

Whitepaper. 10 Metrics to Monitor in the LTE Network. www.sevone.com blog.sevone.com info@sevone.com

Whitepaper. 10 Metrics to Monitor in the LTE Network. www.sevone.com blog.sevone.com info@sevone.com 10 Metrics to Monitor in the LTE Network The deployment of LTE increases dependency on the underlying network, which must be closely monitored in order to avert serviceimpacting events. In addition, the

More information

Software-Defined Networking for the Data Center. Dr. Peer Hasselmeyer NEC Laboratories Europe

Software-Defined Networking for the Data Center. Dr. Peer Hasselmeyer NEC Laboratories Europe Software-Defined Networking for the Data Center Dr. Peer Hasselmeyer NEC Laboratories Europe NW Technology Can t Cope with Current Needs We still use old technology... but we just pimp it To make it suitable

More information