APPLICATION BULLETIN
|
|
|
- Christal Hall
- 9 years ago
- Views:
Transcription
1 APPLICATION BULLETIN Mailing Address: PO Box Tucson, AZ Street Address: 6730 S. Tucson Blvd. Tucson, AZ Tel: ( Twx: Telex: FAX ( Immediate Product Info: ( DIODE-BASED TEMPERATURE MEASUREMENT BY R. MARK STITT AND DAVID KUNST ( Diodes are frequently used as temperature sensors in a wide variety of moderate-precision temperature measurement applications. The relatively high temperature coefficient of about 2mV/ C is fairly linear. To make a temperature measurement system with a diode requires excitation, offsetting, and amplification. The circuitry can be quite simple. This Bulletin contains a collection of circuits to address a variety of applications. THE DIODE Just about any silicon diode can be used as a temperature measurement transducer. But the Silicon Temperature Sensor is a diode specifically designed and optimized for this function. It is intended for temperature sensing applications in automotive, consumer and industrial products where low cost and high accuracy are important. Packaged in a TO-92 package it features precise temperature accuracy of ±2 C from 40 C to +150 C. EXCITATION A current source is the best means for diode excitation. In some instances, resistor biasing can provide an adequate approximation, but power supply variations and ripple can cause significant errors with this approach. These problems are exacerbated in applications with low power supply voltages such as 5V single supply systems. Since the is specified for operation, the Burr-Brown Dual Current Source/Sink makes the perfect match. One current source can be used for excitation and the other current source can be used for offsetting. 4.5V to 36V = (1 + / = voltage across diode (V Zero and span adjustments with and are interactive. Figure 1. Simple Diode-based Temperature Measurement Circuit. interactive adjustment technique. Another possible disadvantage is that the temperature to voltage conversion is inverting. In other words, a positive change in temperature results in a negative change in output voltage. If the output is to be processed in a digital system, neither of these limitations may be a disadvantage. resistor values for the Figure 1 circuit. = (1 + / AMPLIFICATION In most instances, any precision op amp can be used for diode signal conditioning. Speed is usually not a concern. When ±15V supplies are available, the low cost precision OPA177 is recommended. For 5V single-supply applications, the Dual Single-Supply op amp is recommended. Its inputs can common-mode to its negative power supply rail (ground in single-supply applications, and its output can swing to within about 15mV of the negative rail. Figure 1 shows the simplest diode-based temperature measurement system. One of the current sources in the is used for diode excitation. The other current source is used for offsetting. One disadvantage of this circuit is that the span (GAIN and zero (OFFSET adjustments are interactive. You must either accept the initial errors or use an = (δ /δt (25 + ( 25 C ( V1 ((δ /δt (δ /δt = ( 1, = Resistor values (Ω = Voltage across diode (V 25 = Diode voltage at 25 C (V Three choices are available for the See table on page Burr-Brown Corporation AB-036 Printed in U.S.A. September, 1991 SBOA019
2 V 1 = Output voltage of circuit at (V = Output voltage of circuit (V = Diode temperature coefficient (V/ C value depends on 25 See table below. = Minimum process temperature ( C δ /δt = Desired output voltage change for given temperature change (V/ C (Note: Must be negative for Figure 1 circuit. AVAILABLE VBE 25 AND VALUES FOR MOTOROLA TEMPERATURE SENSOR 25 (V (V/ C Design a temperature measurement system with a 0 to 1.0V δ /δt = ( 1V 0V/(100 C 0 C = 0.01V/ C If 25 = 0.595V, = 8.424kΩ = 28.77kΩ For a 0 to 10V output with a 0 to 100 C temperature: = 6.667kΩ = 287.7kΩ If independent adjustment of offset and span is required consider the circuit shown in Figure 2. In this circuit, a third resistor, is added in series with the temperaturesensing diode. System zero (offset can be adjusted with without affecting span (gain. To trim the circuit adjust span first. Either or (or both can be used to adjust span. As with the Figure 1 circuit this circuit has the possible disadvantage that the temperature to voltage conversion is inverting. resistor values for the Figure 2 circuit. = ( + (1 + / Set = 1kΩ (or use a 2kΩ pot (δ /δt (25 + ( + ( 25 C ( V 1 = ((δ /δt (δ /δt = ( 1 = Zero (offset adjust resistor (Ω Others = as before Design a temperature measurement system with a 0 to 1.0V δ /δt = ( 1V 0V/(100 C 0 C = 0.01V/ C If 25 = 0.595V, = 1kΩ (use 2kΩ pot = 9.717kΩ = 33.18kΩ For a 0 to 10V output with a 0 to 100 C temperature: = 1kΩ (use 2kΩ pot = 7.69kΩ = 331.8kΩ R Zero 4.5V to 36V = ( + (1 + / = voltage across diode (V Adjust span first with or then adjust zero with for noninteractive trim. Figure 2. Diode-based Temperature Measurement Circuit with Independent Span (gain and Zero (offset Adjustment. R1 2
3 For a noninverting temperature to voltage conversion, consider the circuit shown in Figure 3. This circuit is basically the same as the Figure 2 circuit except that the amplifier is connected to the low side of the diode. With this connection, the temperature to voltage conversion is noninverting. As before, if adjustment is required, adjust span with or first, then adjust zero with. A disadvantage of the Figure 3 circuit is that it requires a negative power supply. resistor values for the Figure 3 circuit. = ( (1 + / + = same as Figure 2 = same as Figure 2 Components = as before Design a temperature measurement system with a 0 to 1.0V δ /δt = (1V 0V/(100 C 0 C = 0.01V/ C If 25 = 0.595V, = 1kΩ = 9.717kΩ = 33.18kΩ For a 0 to 10V output with a 0 to 100 C temperature: = 1kΩ = 7.69kΩ = 331.8kΩ For a single-supply noninverting temperature to voltage conversion, consider the Figure 4 circuit. This circuit is similar to the Figure 2 circuit, except that the temperaturesensing diode is connected to the inverting input of the amplifier and the offsetting network is connected to the noninverting input. To prevent sensor loading, a second amplifier is connected as a buffer between the temp sensor and the amplifier. If adjustment is required, adjust span with or first, then adjust zero with. resistor values for the Figure 4 circuit. R Zero V S = ( (1 + / + = voltage across diode (V Adjust span first with or then adjust zero with for noninteractive trim. Figure 3. Positive Transfer Function Temperature Measurement Circuit with Independent Span (gain and Zero (offset Adjustment. = (1 + / / (T = C V 1 (δ /δt (25 + ( 25 C ( (δ /δt = 10kΩ (arbitrary (δ /δt = ( Components = as before Design a temperature measurement system with a 0 to 1.0V δ /δt = (1V 0V/(100 C 0 C = 0.01V/ C If 25 = 0.595V, = 5.313kΩ = 10.0kΩ = 44.15kΩ 3
4 For a 0 to 10V output with a 0 to 100 C temperature: = 6.372kΩ = 10.0kΩ = 441.5kΩ 4.5V to 36V resistor values for the Figure 5 circuit. = ((2 + 2 (1 + 1 GAIN GAIN = / = 2 (δ /δt + 2 A 2 1 = 2 = 500Ω (use 1kΩ pot for = Span (gain adjust resistor [Ω] Others = as before = R ZER O (1 + / / = voltage across diode [V] Adjust span first with or then adjust zero with for noninteractive trim. Figure 4. Single-supply Positive Transfer Function Temperature Measurement Circuit with Independent Span (gain and Zero (offset Adjustment. For differential temperature measurement, use the circuit shown in Figure 5. In this circuit, the differential output between two temperature sensing diodes is amplified by a two-op-amp instrumentation amplifier (IA. The IA is formed from the two op amps in a dual and resistors,, R 4, and. sets the gain of the IA. For good common-mode rejection,,, and R 4 must be matched. If 1% resistors are used, CMR will be greater than 70dB for gains over 50V/V. Span and zero can be adjusted in any order in this circuit. Design a temperature measurement system with a 0 to 1.0V output for a 0 to 1 C temperature differential. δ /δt = (1V 0V/(1 C 0 C = 1.0V/ C If 25 = 0.595V, = 1kΩ pot,, R 4 =, 1% = 455Ω For a 0 to 10V output with a 0 to 1 C temperature differential: = 1kΩ pot,, R 4 =, 1% = 45.3Ω 4
5 4.5V to 36V R 3 R 4 A 2 = ((2 + 2 (1 + 1 GAIN GAIN = R / SPAN Adjust zero and span in any order. Figure 5. Differential Temperature Measurement Circuit. 5
6 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI s publication of information regarding any third party s products or services does not constitute TI s approval, warranty or endorsement thereof. Copyright 2000, Texas Instruments Incorporated
SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS
SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated
Signal Conditioning Wheatstone Resistive Bridge Sensors
Application Report SLOA034 - September 1999 Signal Conditioning Wheatstone Resistive Bridge Sensors James Karki Mixed Signal Products ABSTRACT Resistive elements configured as Wheatstone bridge circuits
Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER
Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER FEATURES HIGH GAIN-BANDWIDTH: 35MHz LOW INPUT NOISE: 1nV/ Hz HIGH SLEW RATE: V/µs FAST SETTLING: 24ns to.1% FET INPUT: I B = 5pA max HIGH OUTPUT
SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS
The SN54165 and SN74165 devices SN54165, SN54LS165A, SN74165, SN74LS165A PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments
WHAT DESIGNERS SHOULD KNOW ABOUT DATA CONVERTER DRIFT
WHAT DESIGNERS SHOULD KNOW ABOUT DATA CONVERTER DRIFT Understanding the Components of Worst-Case Degradation Can Help in Avoiding Overspecification Exactly how inaccurate will a change in temperature make
APPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 746-1111 Telex: 066-6491 FAX (520) 889-1510 Product Info: (800) 548-6132
How To Close The Loop On A Fully Differential Op Amp
Application Report SLOA099 - May 2002 Fully Differential Op Amps Made Easy Bruce Carter High Performance Linear ABSTRACT Fully differential op amps may be unfamiliar to some designers. This application
SDLS068A DECEMBER 1972 REVISED OCTOBER 2001. Copyright 2001, Texas Instruments Incorporated
SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 PRODUCTION DATA information is current as of publication date. Products conform to
Designing Gain and Offset in Thirty Seconds
Application Report SLOA097 February 2002 Designing Gain and Offset in Thirty Seconds Bruce Carter High Performance Linear ABSTRACT This document discusses how to design an operational amplifier (op amp)
Pressure Transducer to ADC Application
Application Report SLOA05 October 2000 Pressure Transducer to ADC Application John Bishop ABSTRACT Advanced Analog Products/OpAmp Applications A range of bridgetype transducers can measure numerous process
Signal Conditioning Piezoelectric Sensors
Application Report SLOA033A - September 2000 Signal Conditioning Piezoelectric Sensors James Karki Mixed Signal Products ABSTRACT Piezoelectric elements are used to construct transducers for a vast number
Audio Tone Control Using The TLC074 Operational Amplifier
Application Report SLOA42 - JANUARY Audio Tone Control Using The TLC74 Operational Amplifier Dee Harris Mixed-Signal Products ABSTRACT This application report describes the design and function of a stereo
TSL250, TSL251, TLS252 LIGHT-TO-VOLTAGE OPTICAL SENSORS
TSL50, TSL5, TLS5 SOES004C AUGUST 99 REVISED NOVEMBER 995 Monolithic Silicon IC Containing Photodiode, Operational Amplifier, and Feedback Components Converts Light Intensity to Output Voltage High Irradiance
August 2001 PMP Low Power SLVU051
User s Guide August 2001 PMP Low Power SLVU051 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service
High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate
Application Report SLLA091 - November 2000 High-Speed Gigabit Data Transmission Across Various Cable Media at Various Lengths and Data Rate Boyd Barrie, Huimin Xia ABSTRACT Wizard Branch, Bus Solution
RETRIEVING DATA FROM THE DDC112
RETRIEVING DATA FROM THE by Jim Todsen This application bulletin explains how to retrieve data from the. It elaborates on the discussion given in the data sheet and provides additional information to allow
DESIGN OF FIXED CURRENT SOURCES
APPLICATION BULLETIN Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Tel: (602) 746-1111 Twx: 910-952-111 Telex: 066-6491 FAX (602) 889-1510 Immediate
Buffer Op Amp to ADC Circuit Collection
Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op
Understanding the Terms and Definitions of LDO Voltage Regulators
Application Report SLVA79 - October 1999 Understanding the Terms and Definitions of ltage Regulators Bang S. Lee Mixed Signal Products ABSTRACT This report provides an understanding of the terms and definitions
A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers
Application Report SLOA043 - December 1999 A Low-Cost, Single Coupling Capacitor Configuration for Stereo Headphone Amplifiers Shawn Workman AAP Precision Analog ABSTRACT This application report compares
Filter Design in Thirty Seconds
Application Report SLOA093 December 2001 Filter Design in Thirty Seconds Bruce Carter High Performance Analog ABSTRACT Need a filter fast? No theory, very little math just working filter designs, and in
Analysis of Filter Coefficient Precision on LMS Algorithm Performance for G.165/G.168 Echo Cancellation
Application Report SPRA561 - February 2 Analysis of Filter Coefficient Precision on LMS Algorithm Performance for G.165/G.168 Echo Cancellation Zhaohong Zhang Gunter Schmer C6 Applications ABSTRACT This
How To Make A Two Series Cell Battery Pack Supervisor Module
Features Complete and compact lithium-ion pack supervisor Provides overvoltage, undervoltage, and overcurrent protection for two series Li-Ion cells Combines bq2058t with charge/discharge control FETs
Calculating Gain for Audio Amplifiers
Application eport SLOA105A October 003 evised September 005 Calculating Gain for Audio Amplifiers Audio Power Amplifiers ABSTACT This application report explains the different types of audio power amplifier
Theory of Operation. Figure 1 illustrates a fan motor circuit used in an automobile application. The TPIC2101. 27.4 kω AREF.
In many applications, a key design goal is to minimize variations in power delivered to a load as the supply voltage varies. This application brief describes a simple DC brush motor control circuit using
Application Report SLVA051
Application Report November 998 Mixed-Signal Products SLVA05 ltage Feedback Vs Current Feedback Op Amps Application Report James Karki Literature Number: SLVA05 November 998 Printed on Recycled Paper IMPORTANT
AUDIO BALANCED LINE DRIVERS
DRV DRV DRV DRV DRV AUDIO BALAED LINE DRIVERS FEATURES BALAED OUTPUT LOW DISTORTION:.% at f = khz WIDE OUTPUT SWING: Vrms into Ω HIGH CAPACITIVE LOAD DRIVE HIGH SLEW RATE: V/µs WIDE SUPPLY RANGE: ±.V to
Application Report SLOA030A
Application Report March 2001 Mixed Signal Products SLOA030A IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
Application of Rail-to-Rail Operational Amplifiers
Application Report SLOA039A - December 1999 Application of Rail-to-Rail Operational Amplifiers Andreas Hahn Mixed Signal Products ABSTRACT This application report assists design engineers to understand
TSL213 64 1 INTEGRATED OPTO SENSOR
TSL 64 INTEGRATED OPTO SENSOR SOES009A D4059, NOVEMBER 99 REVISED AUGUST 99 Contains 64-Bit Static Shift Register Contains Analog Buffer With Sample and Hold for Analog Output Over Full Clock Period Single-Supply
SN54HC157, SN74HC157 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS
SNHC, SNHC QUADRUPLE 2-LINE TO -LINE DATA SELECTORS/MULTIPLEXERS SCLSB DECEMBER 982 REVISED MAY 99 Package Options Include Plastic Small-Outline (D) and Ceramic Flat (W) Packages, Ceramic Chip Carriers
4-20mA CURRENT TRANSMITTER with Bridge Excitation and Linearization
-ma CURRENT TRANSMITTER with Bridge Excitation and Linearization FEATURES LOW TOTAL UNADJUSTED ERROR.V, V BRIDGE EXCITATION REFERENCE.ULATOR OUTPUT LOW SPAN DRIFT: ±ppm/ C max LOW OFFSET DRIFT:.µV/ C HIGH
Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)
Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have
Current-Transformer Phase-Shift Compensation and Calibration
Application Report SLAA122 February 2001 Current-Transformer Phase-Shift Compensation and Calibration Kes Tam Mixed Signal Products ABSTRACT This application report demonstrates a digital technique to
Wireless Subwoofer TI Design Tests
Wireless Subwoofer TI Design Tests This system design was tested for THD+N vs. frequency at 5 watts and 30 watts and THD+N vs. power at 00. Both the direct analog input and the wireless systems were tested.
Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM
Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES AC averaging technique used to rectify, amplify, and filter 50 Hz to 400 Hz sine-wave signals. Accepts inputs of between 20 mv to 550 V rms to give
SN54F157A, SN74F157A QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS
SNFA, SNFA QUADRUPLE -LINE TO -LINE DATA SELECTORS/MULTIPLEXERS SDFS0A MARCH 8 REVISED OCTOBER Buffered Inputs and Outputs Package Optio Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and
Texas Instruments. FB PS LLC Test Report HVPS SYSTEM AND APPLICATION TEAM REVA
Texas Instruments FB PS LLC Test Report HVPS SYSTEM AND APPLICATION TEAM REVA 12/05/2014 1 General 1.1 PURPOSE Provide the detailed data for evaluating and verifying the FB-PS-LLC. The FB-PS-LLC is a Full
Motor Speed Measurement Considerations When Using TMS320C24x DSPs
Application Report SPRA771 - August 2001 Motor Speed Measurement Considerations When Using TMS320C24x DSPs Shamim Choudhury DCS Applications ABSTRACT The TMS320C24x generation of DSPs provide appropriate
AN48. Application Note DESIGNNOTESFORA2-POLEFILTERWITH DIFFERENTIAL INPUT. by Steven Green. 1. Introduction AIN- AIN+ C2
Application Note DESIGNNOTESFORA2-POLEFILTERWITH DIFFERENTIAL INPUT by Steven Green C5 AIN- R3 C2 AIN C2 R3 C5 Figure 1. 2-Pole Low-Pass Filter with Differential Input 1. Introduction Many of today s Digital-to-Analog
Multi-Transformer LED TV Power User Guide. Anderson Hsiao
Multi-Transformer LED TV Power User Guide Anderson Hsiao Operation Range Input Range: 90Vac~264Vac 47Hz~63Hz Dimming Range: Reverse Signal 0V ~ 5V 100Hz ~200Hz 1%~100% Output Range :STBY-5V 20mA~1A 5V
SN28838 PAL-COLOR SUBCARRIER GENERATOR
Solid-State Reliability Surface-Mount Package NS PACKAE (TOP VIEW) description The SN28838 is a monolithic integrated circuit designed to interface with the SN28837 PALtiming generator in order to generate
TS321 Low Power Single Operational Amplifier
SOT-25 Pin Definition: 1. Input + 2. Ground 3. Input - 4. Output 5. Vcc General Description The TS321 brings performance and economy to low power systems. With high unity gain frequency and a guaranteed
LF442 Dual Low Power JFET Input Operational Amplifier
LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while
bq2114 NiCd or NiMH Gas Gauge Module with Charge-Control Output Features General Description Pin Descriptions
Features Complete bq2014 Gas Gauge solution for NiCd or NiMH battery packs Charge-control output allows communication to external charge controller (bq2004) Battery information available over a single-wire
Using the Texas Instruments Filter Design Database
Application Report SLOA062 July, 2001 Bruce Carter Using the Texas Instruments Filter Design Database High Performance Linear Products ABSTRACT Texas Instruments applications personnel have decades of
THE RIGHT-HALF-PLANE ZERO --A SIMPLIFIED EXPLANATION
THE RGHT-HALF-PLANE ZERO --A SMPLFED EXPLANATON n small signal loop analysis, poles and zeros are normally located in the left half of the complex s-plane. The Bode plot of a conventional or lefthalf-plane
High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection
a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements
APPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 1100 Tucson, AZ 8 Street Address: 0 S. Tucson Blvd. Tucson, AZ 80 Tel: (0) -1111 Twx: 910-9-111 Telex: 0-91 FAX (0) 889-110 Immediate Product Info: (800) 8-1
IrDA Transceiver with Encoder/Decoder
PRELIMINARY IrDA Transceiver with Encoder/Decoder FEATURES Micropower in the Sleep Mode, (2µA) 3V to 5V Operation Wide Dynamic Receiver Range from 200nA to 50mA Typical Direct Interface to IrDA Compatible
Smart Battery Module with LEDs and Pack Supervisor
Features Complete smart battery management solution for Li-Ion battery packs Accurate measurement of available battery capacity Provides overvoltage, undervoltage, and overcurrent protection Designed for
AMC1100: Replacement of Input Main Sensing Transformer in Inverters with Isolated Amplifier
Application Report SLAA552 August 2012 AMC1100: Replacement of Input Main Sensing Transformer in Inverters with Isolated Amplifier Ambreesh Tripathi and Harmeet Singh Analog/Digital Converters ABSTRACT
UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)
General-purpose single operational amplifier Datasheet - production data N DIP8 (plastic package) D SO8 (plastic micropackage) Pin connections (top view) 1 - Offset null 1 2 - Inverting input 3 - Non-inverting
Controlling TAS5026 Volume After Error Recovery
Application Report SLEA009 March 2003 Controlling TAS5026 Volume After Error Recovery Jorge S. Melson Hwang Soo, Son HPA Digital Audio Applications ABSTRACT The TAS5026 monitors the relationship between
Op amp DC error characteristics and the effect on high-precision applications
Op amp DC error characteristics and the effect on high-precision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated - January 01, 2014 This article discusses the DC limitations of
A Differential Op-Amp Circuit Collection
Application Report SLOA0 July 00 Bruce Carter A Differential OpAmp Circuit Collection High Performance Linear Products ABSTRACT All opamps are differential input devices. Designers are accustomed to working
SN54HC191, SN74HC191 4-BIT SYNCHRONOUS UP/DOWN BINARY COUNTERS
Single Down/Up Count-Control Line Look-Ahead Circuitry Enhances Speed of Cascaded Counters Fully Synchronous in Count Modes Asynchronously Presettable With Load Control Package Options Include Plastic
4-20mA Current Transmitter with RTD EXCITATION AND LINEARIZATION
-ma Current Transmitter with RTD XCITATION AND LINARIZATION FATURS LSS THAN ±% TOTAL ADJUSTD RROR, C TO + C RTD XCITATION AND LINARIZATION TWO OR THR-WIR RTD OPRATION WID SUPPLY RANG: V to V HIGH PSR:
Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
Obsolete Product(s) - Obsolete Product(s)
Vertical deflection booster for 3 App TV/monitor applications with 0 V flyback generator Features Figure. Heptawatt package Power amplifier Flyback generator Stand-by control Output current up to 3.0 App
TL084 TL084A - TL084B
A B GENERAL PURPOSE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORTCIRCUIT PROTECTION HIGH INPUT IMPEDANCE
AAT3520/2/4 MicroPower Microprocessor Reset Circuit
General Description Features PowerManager The AAT3520 series of PowerManager products is part of AnalogicTech's Total Power Management IC (TPMIC ) product family. These microprocessor reset circuits are
MAS.836 HOW TO BIAS AN OP-AMP
MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic
LM556 LM556 Dual Timer
LM556 LM556 Dual Timer Literature Number: SNAS549 LM556 Dual Timer General Description The LM556 Dual timing circuit is a highly stable controller capable of producing accurate time delays or oscillation.
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
µa7800 SERIES POSITIVE-VOLTAGE REGULATORS
SLS056J MAY 976 REISED MAY 2003 3-Terminal Regulators Output Current up to.5 A Internal Thermal-Overload Protection High Power-Dissipation Capability Internal Short-Circuit Current Limiting Output Transistor
CUSTOM GOOGLE SEARCH PRO. User Guide. User Guide Page 1
CUSTOM GOOGLE SEARCH PRO User Guide User Guide Page 1 Important Notice reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services
LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description
Three terminal adjustable current sources Features Operates from 1V to 40V 0.02%/V current regulation Programmable from 1µA to 10mA ±3% initial accuracy Description The LM134/LM234/LM334 are 3-terminal
OPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.
HA5104/883 April 2002 Features This Circuit is Processed in Accordance to MILSTD 883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1. Low Input Noise Voltage Density at 1kHz. 6nV/ Hz (Max)
Application Report. 1 Description of the Problem. Jeff Falin... PMP Portable Power Applications ABSTRACT
Application Report SLVA255 September 2006 Minimizing Ringing at the Switch Node of a Boost Converter Jeff Falin... PMP Portable Power Applications ABSTRACT This application report explains how to use proper
SEMICONDUCTOR TECHNICAL DATA
SEMICONDUCTOR TECHNICAL DATA Order this document by MPX5050/D The MPX5050 series piezoresistive transducer is a state of the art monolithic silicon pressure sensor designed for a wide range of applications,
APPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Tel: (602) 746-1111 Twx: 910-952-111 Telex: 066-6491 FAX (602) 889-1510 Immediate
SN54ALS191A, SN74ALS191A SYNCHRONOUS 4-BIT UP/DOWN BINARY COUNTERS
Single own/ Up Count-Control Line Look-Ahead Circuitry Enhances Speed of Cascaded Counters Fully Synchronous in Count Modes Asynchronously Presettable With Load Control Package Optio Include Plastic Small-Outline
Precision, Unity-Gain Differential Amplifier AMP03
a FEATURES High CMRR: db Typ Low Nonlinearity:.% Max Low Distortion:.% Typ Wide Bandwidth: MHz Typ Fast Slew Rate: 9.5 V/ s Typ Fast Settling (.%): s Typ Low Cost APPLICATIONS Summing Amplifiers Instrumentation
Floating Point C Compiler: Tips and Tricks Part I
TMS320 DSP DESIGNER S NOTEBOOK Floating Point C Compiler: Tips and Tricks Part I APPLICATION BRIEF: SPRA229 Karen Baldwin Digital Signal Processing Products Semiconductor Group Texas Instruments June 1993
NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator
NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator Description: The NTE923 and NTE923D are voltage regulators designed primarily for series regulator applications. By themselves, these devices
Single Supply Op Amp Circuits Dr. Lynn Fuller
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)
High Voltage Current Shunt Monitor AD8212
High Voltage Current Shunt Monitor AD822 FEATURES Adjustable gain High common-mode voltage range 7 V to 65 V typical 7 V to >500 V with external pass transistor Current output Integrated 5 V series regulator
AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)
Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:
Using Op Amps As Comparators
TUTORIAL Using Op Amps As Comparators Even though op amps and comparators may seem interchangeable at first glance there are some important differences. Comparators are designed to work open-loop, they
www.jameco.com 1-800-831-4242
Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description
TL783C, TL783Y HIGH-VOLTAGE ADJUSTABLE REGULATOR
HIGH-VOLTAGE USTABLE REGULATOR SLVS36C SEPTEMBER 1981 REVISED APRIL 1997 Output Adjustable From 1.25 V to 125 V When Used With an External Resistor Divider 7-mA Output Current Full Short-Circuit, Safe-Operating-Area,
Description. Output Stage. 5k (10k) - + 5k (10k)
THAT Corporation Low Noise, High Performance Audio Preamplifier IC FEATURES Low Noise: 1 nv/hz input noise (60dB gain) 34 nv/hz input noise (0dB gain) (1512) Low THD+N (full audio bandwidth): 0.0005% 40dB
MC33079. Low noise quad operational amplifier. Features. Description
Low noise quad operational amplifier Datasheet production data Features Low voltage noise: 4.5 nv/ Hz High gain bandwidth product: 15 MHz High slew rate: 7 V/µs Low distortion: 0.002% Large output voltage
Low Cost Instrumentation Amplifier AD622
Data Sheet FEATURES Easy to use Low cost solution Higher performance than two or three op amp design Unity gain with no external resistor Optional gains with one external resistor (Gain range: 2 to 000)
Binary Search Algorithm on the TMS320C5x
TMS320 DSP DESIGNER S NOTEBOOK Binary Search Algorithm on the TMS320C5x APPLICATION BRIEF: SPRA238 Lawrence Wong Digital Signal Processing Products Semiconductor Group Texas Instruments May 1994 IMPORTANT
A Differential Op-Amp Circuit Collection
Application Report SLOA0A April 00 A Differential OpAmp Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT All opamps are differential input devices. Designers are accustomed to
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
High Speed, Low Cost, Triple Op Amp ADA4861-3
High Speed, Low Cost, Triple Op Amp ADA486-3 FEATURES High speed 73 MHz, 3 db bandwidth 625 V/μs slew rate 3 ns settling time to.5% Wide supply range: 5 V to 2 V Low power: 6 ma/amplifier. db flatness:
24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER
49% FPO 24-Bit, 96kHz BiCMOS Sign-Magnitude DIGITAL-TO-ANALOG CONVERTER TM FEATURES SAMPLING FREQUEY (f S ): 16kHz to 96kHz 8X OVERSAMPLING AT 96kHz INPUT AUDIO WORD: 20-, 24-Bit HIGH PERFORMAE: Dynamic
Building the AMP Amplifier
Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;
LM709 LM709 Operational Amplifier
LM709 LM709 Operational Amplifier Literature Number: SNOS659A LM709 Operational Amplifier General Description The LM709 series is a monolithic operational amplifier intended for general-purpose applications
A Single-Supply Op-Amp Circuit Collection
Application Report SLOA058 November 2000 A SingleSupply OpAmp Circuit Collection Bruce Carter OpAmp Applications, High Performance Linear Products One of the biggest problems for designers of opamp circuitry
Multipurpose Analog PID Controller
Multipurpose Analog PID Controller Todd P. Meyrath Atom Optics Laboratory Center for Nonlinear Dynamics University of Texas at Austin c 00 March 4, 00 revised December 0, 00 See disclaimer This analog
Features. Ordering Information. * Underbar marking may not be to scale. Part Identification
MIC86 Teeny Ultra Low Power Op Amp General Description The MIC86 is a rail-to-rail output, input common-mode to ground, operational amplifier in Teeny SC7 packaging. The MIC86 provides 4kHz gain-bandwidth
PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages
DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected
CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features.
CA73, CA73C Data Sheet April 1999 File Number 788. Voltage Regulators Adjustable from V to 37V at Output Currents Up to 1mA without External Pass Transistors The CA73 and CA73C are silicon monolithic integrated
A Low-Cost VCA Limiter
The circuits within this application note feature THAT218x to provide the essential function of voltage-controlled amplifier (VCA). Since writing this note, THAT has introduced a new dual VCA, as well
Data sheet acquired from Harris Semiconductor SCHS067B Revised July 2003
Data sheet acquired from Harris Semiconductor SCHS067B Revised July 2003 The CD4502B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages
