Table of Contents. Chapter No. 1 Introduction 1. iii. xiv. xviii. xix. Page No.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Table of Contents. Chapter No. 1 Introduction 1. iii. xiv. xviii. xix. Page No."

Transcription

1 Table of Contents Title Declaration by the Candidate Certificate of Supervisor Acknowledgement Abstract List of Figures List of Tables List of Abbreviations Chapter Chapter No. 1 Introduction 1 ii iii iv vi xiv xviii xix Page No. 1.1 Introduction Sentiment Analysis: Basic Concepts Sentiment and Subjectivity Classification Sentiment Classification at Document Level Sentiment Classification at Sentence Level Opinion Mining and Summarization Past Scenario of Collecting Opinions and their 25 Analysis Sentiment Analysis as Text Classification Problem Sentiment Analysis as Feature Classification Growth of Social Media and Its Impact on User 28 Demands Elements of Social Media Types of Data Generation in Social Media 34 Environment Requirements of using Social Media Contents in 35

2 Business Challenges to Handle Large Social Media Contents Reasons behind Sentiment Analysis of Social Media 39 Contents 1.5 Economic Consequences of Sentiment Analysis- 40 Impact on Individual, Society & Organization 1.6 Need for Automated Sentiment Analysis Current Status, Challenges in Sentiment Analysis Benefits of Automation of Opinion Analysis Problem on Hand Research Objectives Scope of Research Work Major Contributions of This Thesis Organization of Thesis 53 2 Review of Literature Introduction Literature Review on Opinion Mining or Sentiment 57 Analysis Concept 2.3 Review of Traditional Sentiment Analysis Research 60 Directions Text Classification Feature Selection Review of Opinion Mining or Sentiment Analysis 78 Systems 2.5 Treating Sentiment Analysis as Multi-Faceted Problem Problems with Opinion Mining Systems Data Mining in the Field of Opinion Mining: Study Introduction Relevant Data Mining Algorithms Requirement of Automated Sentiment Mining System Development 94

3 2.9 Findings of Literature Review 95 3 Role of Features in Sentiment Analysis Introduction Features Words and Stems Details of Term Frequency Occurrences and Inverse 103 Document Frequency Occurrences Binary versus Term Frequency Occurrences Based on 105 Weights Negations Feature Selection Techniques Frequency Based Selection Part of Speech Based Selection Lexicon-Based Selection Feature-Based Sentiment Analysis Feature Extraction Conclusion Summary of Findings Design of Automated Sentiment Discovery System 4.1 Introduction Reason behind Automation in Sentiment Analysis Architectural Design of Research Work Theoretical Formulation Mathematical Formulation Algorithms Used to Build System Model Generation of Mathematical Model based on 138 Set Theory 4.4 Modeling of Proposed Research Work as System Proposed System

4 4.4.2 Data Collection and Preprocessing Opinion Mining Engine Opinion Status Conclusion Implementation of Automated Sentiment Discovery System 5.1 Introduction System Requirements Identified Software Used for System Development Use of Python (Programming Language) Use of WordNet Use of Oracle Database Use of NLTK Use of WEKA Version Use of StarUML (Open Source UML/MDA Platform) 170 version Module wise Implementation Data Collection and Data Preprocessing Feature Extraction Phase Opinion Orientation Engine Generation of Opinion Status Discussion Summary Performance Evaluation of Automated Sentiment or Opinion Discovery System 6.1 Introduction Evaluation Parameters for OMS Evaluation Test Setup Data Set

5 6.5 Usefulness of Amazon Review Dataset Introduction Criticism against Amazon Review Data Set Supporting Facts of Amazon Review Data Set Data Collection and Data Preprocessing Analysis of 202 Test Data 6.7 Opinion Mining Result Analysis for FBS and OB 207 Systems 6.8 Performance Analysis of the Proposed Research Work Introduction Performance Analysis for developed Automated 218 Sentiment System 6.9 Results based F-Score Performance Measure Comparative Evaluation of Research Work with FBS and OB OMS Summary and Conclusion Summary and Conclusion Recommendations Future Scope Limitations of Research Work 267 Appendix A: Publications Bibliography

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. ~ Spring~r

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. ~ Spring~r Bing Liu Web Data Mining Exploring Hyperlinks, Contents, and Usage Data With 177 Figures ~ Spring~r Table of Contents 1. Introduction.. 1 1.1. What is the World Wide Web? 1 1.2. ABrief History of the Web

More information

Index Contents Page No. Introduction . Data Mining & Knowledge Discovery

Index Contents Page No. Introduction . Data Mining & Knowledge Discovery Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.

More information

lop Building Machine Learning Systems with Python en source

lop Building Machine Learning Systems with Python en source Building Machine Learning Systems with Python Master the art of machine learning with Python and build effective machine learning systems with this intensive handson guide Willi Richert Luis Pedro Coelho

More information

An Introduction to Data Mining

An Introduction to Data Mining An Introduction to Intel Beijing wei.heng@intel.com January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail

More information

TABLE OF CONTENT IDENTIFICATION OF CORE COMPETENCIES FOR 35 SOFTWARE ENGINEERS

TABLE OF CONTENT IDENTIFICATION OF CORE COMPETENCIES FOR 35 SOFTWARE ENGINEERS TABLE OF CONTENT DECLARATION BY THE SCHOLAR SUPERVISOR S CERTIFICATE ACKNOWLEDGEMENTS ABSTRACT LIST OF FIGURES LIST OF TABLES iv vi xiv xvi xviii xix CHAPTER-1 INTRODUCTION 1 1.1 BASIS FOR THE NEED FOR

More information

PRODUCT REVIEW RANKING SUMMARIZATION

PRODUCT REVIEW RANKING SUMMARIZATION PRODUCT REVIEW RANKING SUMMARIZATION N.P.Vadivukkarasi, Research Scholar, Department of Computer Science, Kongu Arts and Science College, Erode. Dr. B. Jayanthi M.C.A., M.Phil., Ph.D., Associate Professor,

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association

More information

IT services for analyses of various data samples

IT services for analyses of various data samples IT services for analyses of various data samples Ján Paralič, František Babič, Martin Sarnovský, Peter Butka, Cecília Havrilová, Miroslava Muchová, Michal Puheim, Martin Mikula, Gabriel Tutoky Technical

More information

DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER

DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER Kluwer Academic Publishers Boston/Dordrecht/London TABLE OF CONTENTS FOREWORD ACKNOWLEDGEMENTS XIX XXI

More information

Sentiment analysis on news articles using Natural Language Processing and Machine Learning Approach.

Sentiment analysis on news articles using Natural Language Processing and Machine Learning Approach. Sentiment analysis on news articles using Natural Language Processing and Machine Learning Approach. Pranali Chilekar 1, Swati Ubale 2, Pragati Sonkambale 3, Reema Panarkar 4, Gopal Upadhye 5 1 2 3 4 5

More information

How much does word sense disambiguation help in sentiment analysis of micropost data?

How much does word sense disambiguation help in sentiment analysis of micropost data? How much does word sense disambiguation help in sentiment analysis of micropost data? Chiraag Sumanth PES Institute of Technology India Diana Inkpen University of Ottawa Canada 6th Workshop on Computational

More information

Probabilistic topic models for sentiment analysis on the Web

Probabilistic topic models for sentiment analysis on the Web University of Exeter Department of Computer Science Probabilistic topic models for sentiment analysis on the Web Chenghua Lin September 2011 Submitted by Chenghua Lin, to the the University of Exeter as

More information

Sentiment analysis on tweets in a financial domain

Sentiment analysis on tweets in a financial domain Sentiment analysis on tweets in a financial domain Jasmina Smailović 1,2, Miha Grčar 1, Martin Žnidaršič 1 1 Dept of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia 2 Jožef Stefan International

More information

Contents. No. Detail Page Title page of the thesis. List of tables List of charts Candidate's Declaration Certificate of the Guide

Contents. No. Detail Page Title page of the thesis. List of tables List of charts Candidate's Declaration Certificate of the Guide Contents No. Detail Page Title page of the thesis i Contents ii List of tables xi List of charts xv Candidate's Declaration xvi Certificate of the Guide xvii Preface xviii Acknowledgement xix Abbreviations

More information

LIST OF FIGURES. Figure No. Caption Page No.

LIST OF FIGURES. Figure No. Caption Page No. LIST OF FIGURES Figure No. Caption Page No. Figure 1.1 A Cellular Network.. 2 Figure 1.2 A Mobile Ad hoc Network... 2 Figure 1.3 Classifications of Threats. 10 Figure 1.4 Classification of Different QoS

More information

Association Rule Mining: Exercises and Answers

Association Rule Mining: Exercises and Answers Association Rule Mining: Exercises and Answers Contains both theoretical and practical exercises to be done using Weka. The exercises are part of the DBTech Virtual Workshop on KDD and BI. Exercise 1.

More information

CITY UNIVERSITY OF HONG KONG 香港城市大學. News Impact Analysis in Algorithmic Trading 新聞在算法交易中的影響分析

CITY UNIVERSITY OF HONG KONG 香港城市大學. News Impact Analysis in Algorithmic Trading 新聞在算法交易中的影響分析 CITY UNIVERSITY OF HONG KONG 香港城市大學 News Impact Analysis in Algorithmic Trading 新聞在算法交易中的影響分析 Submitted to Department of Computer Science 電腦科學系 in Partial Fulfillment of the Requirements for the Degree

More information

Software Architecture Document

Software Architecture Document Software Architecture Document Natural Language Processing Cell Version 1.0 Natural Language Processing Cell Software Architecture Document Version 1.0 1 1. Table of Contents 1. Table of Contents... 2

More information

A Comparative Study on Sentiment Classification and Ranking on Product Reviews

A Comparative Study on Sentiment Classification and Ranking on Product Reviews A Comparative Study on Sentiment Classification and Ranking on Product Reviews C.EMELDA Research Scholar, PG and Research Department of Computer Science, Nehru Memorial College, Putthanampatti, Bharathidasan

More information

VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter

VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter Gerard Briones and Kasun Amarasinghe and Bridget T. McInnes, PhD. Department of Computer Science Virginia Commonwealth University Richmond,

More information

The University of Jordan

The University of Jordan The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S

More information

Bagged Ensemble Classifiers for Sentiment Classification of Movie Reviews

Bagged Ensemble Classifiers for Sentiment Classification of Movie Reviews www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3 Issue 2 February, 2014 Page No. 3951-3961 Bagged Ensemble Classifiers for Sentiment Classification of Movie

More information

TEXT ANALYTICS INTEGRATION

TEXT ANALYTICS INTEGRATION TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment

More information

COMP9321 Web Application Engineering

COMP9321 Web Application Engineering COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411

More information

Sentiment Analysis of Equities using Data Mining Techniques and Visualizing the Trends

Sentiment Analysis of Equities using Data Mining Techniques and Visualizing the Trends www.ijcsi.org 265 Sentiment Analysis of Equities using Data Mining Techniques and Visualizing the Trends Shradha Tulankar 1, Dr Rahul Athale 2, Sandeep Bhujbal 3 1 Department of Advanced Software and Computing

More information

An intelligent tool for expediting and automating data mining steps. Ourania Hatzi, Nikolaos Zorbas, Mara Nikolaidou and Dimosthenis Anagnostopoulos

An intelligent tool for expediting and automating data mining steps. Ourania Hatzi, Nikolaos Zorbas, Mara Nikolaidou and Dimosthenis Anagnostopoulos An intelligent tool for expediting and automating data mining steps Ourania Hatzi, Nikolaos Zorbas, Mara Nikolaidou and Dimosthenis Anagnostopoulos Outline Data Mining, current tools An intelligent tool

More information

Study Plan for the Bachelor Degree in Computer Information Systems

Study Plan for the Bachelor Degree in Computer Information Systems Study Plan for the Bachelor Degree in Computer Information Systems The Bachelor Degree in Computer Information Systems/Faculty of Information Technology and Computer Sciences is granted upon the completion

More information

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Ernst van Waning Senior Sales Engineer May 28, 2010 Agenda SPSS, an IBM Company SPSS Statistics User-driven product

More information

What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO

What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO What is Data Mining? Data Mining (Knowledge discovery in database) Data Mining: "The non trivial extraction of implicit, previously unknown, and potentially useful information from data" William J Frawley,

More information

Advanced analytics at your hands

Advanced analytics at your hands 2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously

More information

Big Data and Analytics: Challenges and Opportunities

Big Data and Analytics: Challenges and Opportunities Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif

More information

A Survey on Product Aspect Ranking

A Survey on Product Aspect Ranking A Survey on Product Aspect Ranking Charushila Patil 1, Prof. P. M. Chawan 2, Priyamvada Chauhan 3, Sonali Wankhede 4 M. Tech Student, Department of Computer Engineering and IT, VJTI College, Mumbai, Maharashtra,

More information

MEng, BSc Applied Computer Science

MEng, BSc Applied Computer Science School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions

More information

Knowledge Discovery from patents using KMX Text Analytics

Knowledge Discovery from patents using KMX Text Analytics Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs anton.heijs@treparel.com Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers

More information

Movie Classification Using k-means and Hierarchical Clustering

Movie Classification Using k-means and Hierarchical Clustering Movie Classification Using k-means and Hierarchical Clustering An analysis of clustering algorithms on movie scripts Dharak Shah DA-IICT, Gandhinagar Gujarat, India dharak_shah@daiict.ac.in Saheb Motiani

More information

Contents. Dedication List of Figures List of Tables. Acknowledgments

Contents. Dedication List of Figures List of Tables. Acknowledgments Contents Dedication List of Figures List of Tables Foreword Preface Acknowledgments v xiii xvii xix xxi xxv Part I Concepts and Techniques 1. INTRODUCTION 3 1 The Quest for Knowledge 3 2 Problem Description

More information

COURSE RECOMMENDER SYSTEM IN E-LEARNING

COURSE RECOMMENDER SYSTEM IN E-LEARNING International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 159-164 COURSE RECOMMENDER SYSTEM IN E-LEARNING Sunita B Aher 1, Lobo L.M.R.J. 2 1 M.E. (CSE)-II, Walchand

More information

Hexaware E-book on Predictive Analytics

Hexaware E-book on Predictive Analytics Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,

More information

IT2404 Systems Analysis and Design (Compulsory)

IT2404 Systems Analysis and Design (Compulsory) Systems Analysis and Design (Compulsory) BIT 1 st YEAR SEMESTER 2 INTRODUCTION This is one of the 4 courses designed for Semester 1 of Bachelor of Information Technology Degree program. CREDITS: 04 LEARNING

More information

Using Data Mining Methods to Predict Personally Identifiable Information in Emails

Using Data Mining Methods to Predict Personally Identifiable Information in Emails Using Data Mining Methods to Predict Personally Identifiable Information in Emails Liqiang Geng 1, Larry Korba 1, Xin Wang, Yunli Wang 1, Hongyu Liu 1, Yonghua You 1 1 Institute of Information Technology,

More information

Sentiment analysis using emoticons

Sentiment analysis using emoticons Sentiment analysis using emoticons Royden Kayhan Lewis Moharreri Steven Royden Ware Lewis Kayhan Steven Moharreri Ware Department of Computer Science, Ohio State University Problem definition Our aim was

More information

MEng, BSc Computer Science with Artificial Intelligence

MEng, BSc Computer Science with Artificial Intelligence School of Computing FACULTY OF ENGINEERING MEng, BSc Computer Science with Artificial Intelligence Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give

More information

YGK Payroll System LEE LING LING

YGK Payroll System LEE LING LING YGK Payroll System LEE LING LING A thesis submitted in partially fulfilment of the requirement for the award of degree of Bachelor of Computer Science (Computer System and Networking) Faculty of Computer

More information

life science data mining

life science data mining life science data mining - '.)'-. < } ti» (>.:>,u» c ~'editors Stephen Wong Harvard Medical School, USA Chung-Sheng Li /BM Thomas J Watson Research Center World Scientific NEW JERSEY LONDON SINGAPORE.

More information

TIM 50 - Business Information Systems

TIM 50 - Business Information Systems TIM 50 - Business Information Systems Lecture 15 UC Santa Cruz March 1, 2015 The Database Approach to Data Management Database: Collection of related files containing records on people, places, or things.

More information

MIS 510 MOOC CENTRAL FINAL PROJECT REPORT

MIS 510 MOOC CENTRAL FINAL PROJECT REPORT MIS 510 MOOC CENTRAL FINAL PROJECT REPORT Amogh Ravish Elma Pinto Elton D Souza Pradeep Nagendra MAY 14, 2014 Table of Contents Overview... 2 Project Objectives... 2 Targeted Users... 2 Competitor Analysis...

More information

The Data Warehouse Challenge

The Data Warehouse Challenge The Data Warehouse Challenge Taming Data Chaos Michael H. Brackett Technische Hochschule Darmstadt Fachbereichsbibliothek Informatik TU Darmstadt FACHBEREICH INFORMATIK B I B L I O T H E K Irwentar-Nr.:...H.3...:T...G3.ty..2iL..

More information

DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.

DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM. DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,

More information

Optimization Based Data Mining in Business Research

Optimization Based Data Mining in Business Research Optimization Based Data Mining in Business Research Praveen Gujjar J 1, Dr. Nagaraja R 2 Lecturer, Department of ISE, PESITM, Shivamogga, Karnataka, India 1,2 ABSTRACT: Business research is a process of

More information

In this presentation, you will be introduced to data mining and the relationship with meaningful use.

In this presentation, you will be introduced to data mining and the relationship with meaningful use. In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine

More information

Performance Evaluation Techniques for an Automatic Question Answering System

Performance Evaluation Techniques for an Automatic Question Answering System Performance Evaluation Techniques for an Automatic Question Answering System Tilani Gunawardena, Nishara Pathirana, Medhavi Lokuhetti, Roshan Ragel, and Sampath Deegalla Abstract Automatic question answering

More information

Masters in Information Technology

Masters in Information Technology Computer - Information Technology MSc & MPhil - 2015/6 - July 2015 Masters in Information Technology Programme Requirements Taught Element, and PG Diploma in Information Technology: 120 credits: IS5101

More information

The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2

The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016) The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2 1 School of

More information

Xin Wang. Operational. Transportation Flanning. of Modern Freight. Forwarding Companies. Vehicle Routing under. Consideration of Subcontracting

Xin Wang. Operational. Transportation Flanning. of Modern Freight. Forwarding Companies. Vehicle Routing under. Consideration of Subcontracting Xin Wang Operational Transportation Flanning of Modern Freight Forwarding Companies Vehicle Routing under Consideration of Subcontracting and Request Exchange Foreword by Prof. Dr.-Ing. Herbert Kopfer

More information

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) 305 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference

More information

MAHATMA GANDHI UNIVERSITY

MAHATMA GANDHI UNIVERSITY MAHATMA GANDHI UNIVERSITY MASTER OF COMPUTER APPLICATIONS REGULATIONS and SCHEME for AFFILIATED COLLEGES and SCHOOL OF TECHNOLOGY AND APPLIED SCIENCES (From 2011 admission onwards) 1. Conditions for Admission

More information

Web Content Mining. Dr. Ahmed Rafea

Web Content Mining. Dr. Ahmed Rafea Web Content Mining Dr. Ahmed Rafea Outline Introduction The Web: Opportunities & Challenges Techniques Applications Introduction The Web is perhaps the single largest data source in the world. Web mining

More information

Nagarjuna College Of

Nagarjuna College Of Nagarjuna College Of Information Technology (Bachelor in Information Management) TRIBHUVAN UNIVERSITY Project Report on World s successful data mining and data warehousing projects Submitted By: Submitted

More information

Sentiment analysis of Twitter microblogging posts. Jasmina Smailović Jožef Stefan Institute Department of Knowledge Technologies

Sentiment analysis of Twitter microblogging posts. Jasmina Smailović Jožef Stefan Institute Department of Knowledge Technologies Sentiment analysis of Twitter microblogging posts Jasmina Smailović Jožef Stefan Institute Department of Knowledge Technologies Introduction Popularity of microblogging services Twitter microblogging posts

More information

Automatic Text Analysis Using Drupal

Automatic Text Analysis Using Drupal Automatic Text Analysis Using Drupal By Herman Chai Computer Engineering California Polytechnic State University, San Luis Obispo Advised by Dr. Foaad Khosmood June 14, 2013 Abstract Natural language processing

More information

NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages

NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages Pedro P. Balage Filho and Thiago A. S. Pardo Interinstitutional Center for Computational Linguistics (NILC) Institute of Mathematical

More information

DATABASE MANAGEMENT SYSTEMS LAB

DATABASE MANAGEMENT SYSTEMS LAB DATABASE MANAGEMENT SYSTEMS LAB Photos: Equipment List: Sl.No Name of Equipment Quantity 1 2 Server : HP ML350E G8, Processor: INTEL XEON Processor, RAM: 32 GB, Hard disk : 4TB, Monitor : 17 LCD, Monitor,

More information

Note to the Project Guides MSC (CS-FOSS) Final Semester Projects

Note to the Project Guides MSC (CS-FOSS) Final Semester Projects Note to the Project Guides MSC (CS-FOSS) Final Semester Projects The students of MSC (CS-FOSS) of students are now in the final semester and will be doing their project work this semester. This is one

More information

TIETS34 Seminar: Data Mining on Biometric identification

TIETS34 Seminar: Data Mining on Biometric identification TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland Youming.Zhang@uta.fi Course Description Content

More information

USER S MANUAL. Software Architecture Risk Assessment (SARA) Tool. Khader Basha Shaik. Jan, 2007

USER S MANUAL. Software Architecture Risk Assessment (SARA) Tool. Khader Basha Shaik. Jan, 2007 USER S MANUAL Software Architecture Risk Assessment (SARA) Tool Khader Basha Shaik Jan, 2007 USER'S MANUAL TABLE OF CONTENTS Page # 1 GENERAL INFORMATION... 1-1 1.1 System Overview...1-1 1.2 Pre-requisites

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF APPENDICES ii iii iv v vi

More information

Master of Science Advanced Software Services. Courses description

Master of Science Advanced Software Services. Courses description Master of Science Advanced Software Services Courses description Architecture of Service Oriented Information Systems The course explains the concept of the different architectural views (e.g. function

More information

Developing. and Securing. the Cloud. Bhavani Thuraisingham CRC. Press. Taylor & Francis Group. Taylor & Francis Croup, an Informs business

Developing. and Securing. the Cloud. Bhavani Thuraisingham CRC. Press. Taylor & Francis Group. Taylor & Francis Croup, an Informs business Developing and Securing the Cloud Bhavani Thuraisingham @ CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an Informs business AN AUERBACH

More information

Strategic Management System for Effective Health Care Planning (SMS-EHCP)

Strategic Management System for Effective Health Care Planning (SMS-EHCP) 674 Strategic Management System for Effective Health Care Planning (SMS-EHCP) 1 O. I. Omotoso, 2 I. A. Adeyanju, 3 S. A. Ibraheem 4 K. S. Ibrahim 1,2,3,4 Department of Computer Science and Engineering,

More information

Master s Thesis Handbook

Master s Thesis Handbook TALLINN UNIVERSITY OF TECHNOLOGY Faculty of Information Technology Department of Informatics Chair of Information Systems Master s Thesis Handbook e-governance Technologies and Services International Master

More information

A customer relationship management tool for sea-freight forwarders

A customer relationship management tool for sea-freight forwarders Title A customer relationship management tool for sea-freight forwarders Advisor(s) Wong, TN Author(s) Chow, Pui-shing.; 周 沛 誠. Citation Issued Date 2004 URL http://hdl.handle.net/10722/30236 Rights The

More information

Tai Kam Fong, Jackie. Master of Science in E-Commerce Technology

Tai Kam Fong, Jackie. Master of Science in E-Commerce Technology Trend Following Algorithms in Automated Stock Market Trading by Tai Kam Fong, Jackie Master of Science in E-Commerce Technology 2011 Faculty of Science and Technology University of Macau Trend Following

More information

KEY SKILLS LEVEL 3 IMPROVING OWN LEARNING & PERFORMANCE CANDIDATE WORKBOOK

KEY SKILLS LEVEL 3 IMPROVING OWN LEARNING & PERFORMANCE CANDIDATE WORKBOOK KEY SKILLS LEVEL 3 IMPROVING OWN LEARNING & PERFORMANCE CANDIDATE WORKBOOK Centre Number: Centre Name:.. Candidate Number:. Candidate Name: Part A These are the skills you need to know before you begin

More information

Computer Science: Principles

Computer Science: Principles The College Board Computer Science: Principles Computational Thinking Practices Big Ideas, Key Concepts, and Supporting Concepts 2011 The College Board. All rights reserved. Computer Science: Principles

More information

Mining Opinion Features in Customer Reviews

Mining Opinion Features in Customer Reviews Mining Opinion Features in Customer Reviews Minqing Hu and Bing Liu Department of Computer Science University of Illinois at Chicago 851 South Morgan Street Chicago, IL 60607-7053 {mhu1, liub}@cs.uic.edu

More information

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina

Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina Graduate Co-op Students Information Manual Department of Computer Science Faculty of Science University of Regina 2014 1 Table of Contents 1. Department Description..3 2. Program Requirements and Procedures

More information

Teaching Big Data and Analytics to Undergraduate and Graduate Students

Teaching Big Data and Analytics to Undergraduate and Graduate Students Teaching Big Data and Analytics to Undergraduate and Graduate Students in Information Systems Engineering Mark Last, Lior Rokach, and Bracha Shapira Big Data and Analytics EdCon 2013, Las Vegas, Nevada

More information

Practice of Thesis Projects

Practice of Thesis Projects Practice of Thesis Projects Goal of a thesis Ba thesis: a report written individually in which: A clear research question is formulated based on a problem definition and a given objective; The student

More information

for the bachelor's and master's degree programs 1 in at the Vienna University of Economics and Business Administration (WU)

for the bachelor's and master's degree programs 1 in at the Vienna University of Economics and Business Administration (WU) 1 COURSE STRUCTURE for the bachelor's and master's degree programs 1 in INFORMATION SYSTEMS (WIRTSCHAFTSINFORMATIK) at the Vienna University of Economics and Business Administration (WU) (as passed by

More information

Why is Internal Audit so Hard?

Why is Internal Audit so Hard? Why is Internal Audit so Hard? 2 2014 Why is Internal Audit so Hard? 3 2014 Why is Internal Audit so Hard? Waste Abuse Fraud 4 2014 Waves of Change 1 st Wave Personal Computers Electronic Spreadsheets

More information

SIPAC. Signals and Data Identification, Processing, Analysis, and Classification

SIPAC. Signals and Data Identification, Processing, Analysis, and Classification SIPAC Signals and Data Identification, Processing, Analysis, and Classification Framework for Mass Data Processing with Modules for Data Storage, Production and Configuration SIPAC key features SIPAC is

More information

REQUIREMENTS FOR AUTOMATED FAULT AND DISTURBANCE DATA ANALYSIS

REQUIREMENTS FOR AUTOMATED FAULT AND DISTURBANCE DATA ANALYSIS REQUIREMENTS FOR AUTOMATED FAULT AND DISTURBANCE DATA ANALYSIS Mladen Kezunovic *, Texas A&M University Tomo Popovic, Test Laboratories International, Inc. Donald R. Sevcik, CenterPoint Energy Aniruddha

More information

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES

More information

CSC 177 Fall 2014 Team Project Final Report

CSC 177 Fall 2014 Team Project Final Report CSC 177 Fall 2014 Team Project Final Report Project Title, Data Mining on Farmers Market Data Instructor: Dr. Meiliu Lu Team Members: Yogesh Isawe Kalindi Mehta Aditi Kulkarni CSc 177 DM Project Cover

More information

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing

More information

Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier

Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier Data Mining: Concepts and Techniques Jiawei Han Micheline Kamber Simon Fräser University К MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF Elsevier Contents Foreword Preface xix vii Chapter I Introduction I I.

More information

The Masters of Science in Information Systems & Technology

The Masters of Science in Information Systems & Technology The Masters of Science in Information Systems & Technology College of Engineering and Computer Science University of Michigan-Dearborn A Rackham School of Graduate Studies Program PH: 313-593-5361; FAX:

More information

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY SCHOOL FOR HUMAN RESOURCE DEVELOPMENT

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY SCHOOL FOR HUMAN RESOURCE DEVELOPMENT JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY SCHOOL FOR HUMAN RESOURCE DEVELOPMENT STRUCTURE FOR RESEARCH PROJECT AND THESIS FOR GRADUATE STUDENTS 1. STRUCTURE OF RESEARCH PROPOSAL A) Title page

More information

A CRF-based approach to find stock price correlation with company-related Twitter sentiment

A CRF-based approach to find stock price correlation with company-related Twitter sentiment POLITECNICO DI MILANO Scuola di Ingegneria dell Informazione POLO TERRITORIALE DI COMO Master of Science in Computer Engineering A CRF-based approach to find stock price correlation with company-related

More information

A Study and Comparison of Sentiment Analysis Methods for Reputation Evaluation

A Study and Comparison of Sentiment Analysis Methods for Reputation Evaluation A Study and Comparison of Sentiment Analysis Methods for Reputation Evaluation Anaïs Collomb (anais.collomb@insa-lyon.fr) Crina Costea (crina.costea@insa-lyon.fr) Damien Joyeux (damien.joyeux@insa-lyon.fr)

More information

Chapter 5. Warehousing, Data Acquisition, Data. Visualization

Chapter 5. Warehousing, Data Acquisition, Data. Visualization Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives

More information

Mining Text Data for Useful Information in Higher Education John Zilvinskis Indiana University

Mining Text Data for Useful Information in Higher Education John Zilvinskis Indiana University Mining Text Data for Useful Information in Higher Education John Zilvinskis Indiana University Institutional Researchers Credo We have not succeeded in answering all our problems indeed we sometimes feel

More information

The Prophecy-Prototype of Prediction modeling tool

The Prophecy-Prototype of Prediction modeling tool The Prophecy-Prototype of Prediction modeling tool Ms. Ashwini Dalvi 1, Ms. Dhvni K.Shah 2, Ms. Rujul B.Desai 3, Ms. Shraddha M.Vora 4, Mr. Vaibhav G.Tailor 5 Department of Information Technology, Mumbai

More information

A Regression Approach for Forecasting Vendor Revenue in Telecommunication Industries

A Regression Approach for Forecasting Vendor Revenue in Telecommunication Industries A Regression Approach for Forecasting Vendor Revenue in Telecommunication Industries Aida Mustapha *1, Farhana M. Fadzil #2 * Faculty of Computer Science and Information Technology, Universiti Tun Hussein

More information

Explanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms

Explanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms Explanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms Y.Y. Yao, Y. Zhao, R.B. Maguire Department of Computer Science, University of Regina Regina,

More information

Use of Data Mining Techniques to Improve the Effectiveness of Sales and Marketing

Use of Data Mining Techniques to Improve the Effectiveness of Sales and Marketing Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 4, April 2015,

More information

PPInterFinder A Web Server for Mining Human Protein Protein Interaction

PPInterFinder A Web Server for Mining Human Protein Protein Interaction PPInterFinder A Web Server for Mining Human Protein Protein Interaction Kalpana Raja, Suresh Subramani, Jeyakumar Natarajan Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar

More information

1. Classification problems

1. Classification problems Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification

More information

GLS UNIVERSITY. Faculty of Computer Technology Master of Computer Applications (MCA) Programme

GLS UNIVERSITY. Faculty of Computer Technology Master of Computer Applications (MCA) Programme GLS UNIVERSITY Faculty of Computer Technology Master of Computer Applications (MCA) Programme 1. GLS University s Master of Computer Applications programme is a three-year full-time postgraduate programme

More information

Supervised DNA barcodes species classification: analysis, comparisons and results. Tutorial. Citations

Supervised DNA barcodes species classification: analysis, comparisons and results. Tutorial. Citations Supervised DNA barcodes species classification: analysis, comparisons and results Emanuel Weitschek, Giulia Fiscon, and Giovanni Felici Citations If you use this procedure please cite: Weitschek E, Fiscon

More information