A Hierarchical Modulation for Upgrading Digital Broadcast Systems

Size: px
Start display at page:

Download "A Hierarchical Modulation for Upgrading Digital Broadcast Systems"

Transcription

1 Pulished IEEE Transactions on Broadcasting, vol. 5, no., 005, pp. 3-9 A Hierarchical Modulation for Upgrading Digital Broadcast Systems Hong Jiang and Paul Wilford Bell Laoratories, Lucent Technologies Inc. 700 Mountain Ave, P.O. Box 636, Murray Hill, NJ Astract A hierarchical modulation scheme is proposed to upgrade an existing digital roadcast system, such as satellite TV, or satellite radio, y adding more data in its transmission. The hierarchical modulation consists of a asic constellation, which is the same as in the original system, and a secondary constellation, which carries the additional data for the upgraded system. The upgraded system with the hierarchical modulation is ackward compatile in the sense that receivers that have een deployed in the original system can continue receiving data in the asic constellation. New receivers can e designed to receive data carried in the secondary constellation, as well as those in the asic constellation. Analysis will e performed to show the tradeoff etween it rate of the data in secondary constellation and the penalty to the performance of receiving the asic constellation. Index Terms ackward compatiility, it rate, constellation mapping, digital roadcast, hierarchical modulation, iterative decoding, local repeaters, penalty analysis, QAM, QPSK, receiver design, system upgrade I. INTRODUCTION Digital roadcast systems have increasingly een deployed for services such as terrestrial digital TV, digital radio, satellite TV and radio, and digital cale TV. A digital roadcast system utilizes regulated frequency ands with fixed andwidths. The capacity of a digital roadcast system is limited y transmission power of the system and channel impairments. Since in a roadcast system, the same data is transmitted to all users, there is a tradeoff etween transmitted it rates and intended coverage areas. A digital roadcast system is usually designed with a it rate that can e relialy received y users in an intended coverage area for a given transmission power. Some digital roadcast systems are designed with a flexiility of transmitting with different it rates y allowing different modulating constellations (such as QPSK, 8PSK, 6QAM, 64QAM etc), and error correction codes of different coding rates. It is desirale for receivers in such a system to e capale of receiving data at all of the specified it rates. An advantage of such a system is that it is easy, at least in concept, to upgrade a deployed system to increase the it rate, simply y switching to a modulation with a larger constellation and/or an error correction code of higher rate. A disadvantage of such an arrangement is that all receivers have to e designed with capaility of receiving all specified rates, and hence such receivers may e expensive to manufacture. Many deployed systems, however, do not have such flexiility; they are designed with a fixed modulation scheme, and error correction codes of fixed rates. Examples of such systems are the original ATSC terrestrial 8VSB system, and some digital satellite radio and TV systems. Oftentimes, after such a system is deployed and in service for a period of time, there are rising needs to upgrade the system to provide more services than the system was originally designed. The needs for upgrading the system may arise for many reasons. There is a market pressure for a service provider to add more services in order to differentiate itself from its competitors. New services may also generate additional revenue. On the technical side, new algorithms may have een developed to allow higher it rate to e transmitted through the same channel, and at the same time, advances in technology make the implementation of the new algorithms feasile and cost-effective. This advance in algorithm development and technology makes it possile to uild a new generation of receivers that can have much etter performance under the same channel conditions. For example, the utilization of iterative decoding algorithms such as BCJR [,, 3] and the MIMO technology [4] can provide additional gains over receivers using traditional algorithms, or a single antenna. Backward compatiility is a major difficulty in increasing the it rate of a fixed rate digital roadcast system that has een already deployed for a period of time. Since the system has already een deployed, there

2 Coded secondary information its Coded asic information its QPSK Mapper (distance d ) I Q Secondary Mapper (distance d ) I' Q' Modulator x(t) Figure QPSK/6QAM Modulation are a large numer of receivers already used y suscriers that can only receive signals from the original system with the specific modulation and it rate. To replace these deployed receivers y new generation of receivers may e prohiitively expensive. Therefore, any upgrade of the system must e ackward compatile, in a way that the deployed receivers must continue to operate in the upgraded system, even though the deployed receivers may not e ale to receive the supplementary data that is added to the original system. In this paper, we propose a hierarchical modulation [5, 6, 0] method to increase the it rate of a deployed digital roadcast system. The upgraded system is ackward compatile, so that the upgrade is transparent to the deployed receivers of the original system. The hierarchical modulation has already een included in the DVB-T standard []. We will use the term asic information to mean data transmitted in the originally designed system, as is customary in the literature of hierarchical modulations. The data that is added in the upgraded system will e named secondary information. Thus, the originally designed system with deployed receivers transmits asic information only, while the upgraded system transmits oth asic and secondary information. Although the concept of this paper may e applied to hierarchical modulation of any constellations, we will limit our discussions to QPSK/6QAM hierarchical modulation in the remainder of this paper. The reason is twofold. First, most digital satellite systems use QPSK, and due to its small constellation size, a QPSK system not only has the most urgent need for, ut also can enefit the most from the addition of a secondary information channel. Secondly, the use of a specific hierarchical constellation, QPSK/6QAM in this case, simplifies the analysis. The remainder of this paper is organized as follows. In the next section, the hierarchical modulation for the asic and secondary information is descried. An analysis of the BER in terms of CNR and the ratio of minimum distances is given in Section III. Also, in Section III, penalties of the hierarchical modulation to the originally designed receivers are derived. In Section IV, a design of new generation receivers is presented for the hierarchical modulation in which an iterative decoding algorithm is used to provide additional channel gains for oth asic and secondary information its. The it rate at which the secondary information can e relialy received is also estimated. Finally in Section V, we address the issue of the local information transmission. II. QPSK/6QAM HIERARCHICAL MODULATION Hierarchical modulations were initially proposed to provide different classes of data to users with different reception conditions [5, 6, 0]. In that application, all users within the coverage range can relialy receive asic information, while users under more favorale conditions can receive additional refinement information. In the context of the current application of upgrading a deployed QPSK system, the hierarchical QPSK/6QAM modulation can e descried y the lock diagram in Figure. The asic and secondary information its are channel encoded. The coded asic information its are mapped to the QPSK constellation in the same way as the original QPSK system. The minimum distance etween points in the QPSK constellation is denoted y d. This represents the asic hierarchical constellation. The asic hierarchical constellation is next modified according to the coded secondary information its, and the comined hierarchical constellation is formed as shown in Figure (). The comined constellation is a 6QAM constellation with the minimum distance etween two points denoted y d. The mapping of the asic and secondary information its indicated in Figure () is a Karnaugh map style Gray mapping. In Figure (), the

3 two most significant its (in old face) represent the asic information its while the two remaining its represent the secondary information its Figure QPSK/6QAM Hierarchical Constellation (a) QPSK constellation () 6QAM constellation. The its in old face are asic information its, and the rest are secondary information its The two locks, QPSK Mapper and Secondary Mapper, in Figure may e comined into one. They are presented separately ecause the two locks clearly demonstrate the concept of the hierarchical modulation used for upgrading an already deployed system: the secondary information its are added to the transmission y modifying the constellation of the asic information. Let λ e the ratio of the minimum distances in the QPSK and 6QAM, d λ =. () d Q (a) 00 0 Q' d d () I I' λ is an important parameter to characterize the system. If λ = 0, it is the QPSK system, transmitting only the asic information. If λ =, it is the uniform 6QAM, in which the asic and secondary information its have same channel conditions. We will e only interested in the case with 0 < λ <, where the constellation is truly hierarchical. When λ is small, the four points in each quadrant of the constellation form a cloud. To the originally designed receivers, a cloud represents a point in the QPSK constellation. For example, any point in the first quadrant, (the ones laeled 0000, 000, 00, and 000 in Figure ()) is treated as the point 00 in the QPSK constellation. The variation among the points in a cloud has the same effect of white noise on the originally designed receivers. Therefore, in the upgraded system after the secondary information is added, the originally designed receivers will continue to operate and receive the asic information its, with the only difference eing that they may operate at a higher noise level. The additional noise due to the secondary information in the upgraded system imposes a penalty on the performance of originally designed receivers. We will analyze the penalty in terms of the hierarchy parameter λ in the next section. New receivers can e designed to operate in the hierarchical system. New receivers will e ale to distinguish points in the cloud, and extract oth the asic and secondary information its. We will address the issue of new receiver designs in section 4. For convenience, we define the following terminology: QPSK systems systems with QPSK modulation. They refer to the systems efore upgraded to the hierarchical modulation. QPSK receivers the originally designed receivers that are only capale of receiving the QPSK modulation or the asic information in the hierarchical modulation. Hierarchical systems systems with hierarchical modulation, referring to the upgraded systems with oth asic and secondary information. Hierarchical receivers the new receivers that are designed to operate in the QPSK/6QAM system, and are capale of receiving oth the asic and secondary information its. III. PENALTY ANALYSIS 3

4 The carrier to noise ratio (CNR) of the hierarchical constellation of Figure () is given y Es ( + λ ) d CNR = =, () N 0 N 0 where Es is the carrier power and N 0 is the channel noise power. When signals with the hierarchical constellation of Figure () are received y the QPSK receivers, the constellation is treated as QPSK constellation, with power d. To these receivers, the noise consists of two terms, the channel noise N 0, and the scattering of points in the secondary hierarchy constellation, λ d. We define the modulation noise ratio (MNR) to e the ratio of the power of QPSK constellation to the comined noise power, and it is given y d MNR = N 0 + λ d (3) = CNR. + λ ( + CNR) MNR can e considered as the CNR of the hierarchical constellation of Figure () as viewed y the QPSK receivers. It is a measure of the cleanness of the QPSK constellation as viewed y the QPSK receivers. The performance of these receivers, such as timing recovery and carrier recovery, may e characterized y MNR. Since the performance of these receivers is characterized y CNR in the QPSK system, the performances of these receivers efore and after the secondary information is added may e evaluated y comparing the values of CNR and MNR. The difference etween CNR and MNR is the penalty to the QPSK receivers. From equation (3), the penalty in MNR can e defined as P MNR = + λ ( + CNR), (4) CNR which is the ratio. MNR The penalty, a function of oth λ and CNR, represents the additional carrier power that is needed in the hierarchical system so that the QPSK receivers can see the same cleanness of the constellation as in the QPSK system. It is a measure of how much the QPSK receivers suffer due to the addition of the secondary information. The larger the penalty is, the worse these receivers will perform in the hierarchical system. A plot of P MNR vs. CNR for different values of λ is shown in Figure 3. In most deployed satellite roadcast systems such as satellite radio, or satellite TV, the minimum operating CNR is elow 7dB. That is, receivers can perform relialy at CNR higher than 7dB. As shown in Figure 3, at CNR = 7dB, the penalty is around 0.5dB for λ = 0., and PMNR 0. 5 db for λ = This means that for λ = 0., when the transmission power in the hierarchical system has a 7dB CNR, the QPSK receivers effectively get a QPSK constellation with equivalence of CNR = 6.75dB, ecause the penalty is 0.5dB. For λ = 0. 5, the QPSK receivers can receive a QPSK constellation equivalent to CNR = 6.5dB when the hierarchical constellation has CNR = 7dB. The penalty is even smaller at lower CNR. Although the penalty is higher at higher CNR, the Pmnr (db) lamda=0.05 lamda=0.0 lamda=0.5 lamda= CNR (db) Figure 3 Penalty in MNR penalty ecomes insignificant ecause there are enough margins in the CNR to meet the desired performance. These results show that the penalty to the QPSK receivers is acceptale for λ 0. 5 under most operating conditions. While MNR may e useful in evaluating performance of timing recovery and carrier recovery, it is not accurate for it error rate (BER) estimate. In the following, we will use another approach to estimate BER of the QPSK receivers in the hierarchical system over additive white Gaussian noise (AWGN) channels. BER computations of QPSK/6QAM over AWGN channels have een performed y Vitthaladevuni et al. [7]. The proaility of raw it error (without error correction coding) made y the QPSK receivers in the hierarchical system is given y 4

5 λ BER B = Q CNR + λ (5) + λ + Q CNR, + λ x where Q ( x) = erfc, and function erfc(x) is the complementary error function. In the QPSK system efore the secondary information its are added, the QPSK constellation is transmitted and the proaility of it error is BER QPSK = Q( CNR ). (6) A comparison of equation (5) with equation (6) reveals that, for a given CNR, the addition of the secondary information its in the hierarchical system causes the QPSK receivers to have a larger BER, and hence introduces a penalty to these receivers. This penalty in BER is denoted as P BER, and is defined y the following equation CNR λ Q = Q CNR PBER + λ (7) + λ + Q CNR. + λ The BER penalty P BER, also a function of λ and CNR, represents the additional carrier power that is needed in the hierarchical system so that the QPSK receivers can have the same BER as in QPSK system without the secondary information. More precisely, in the hierarchical system with the carrier to noise ratio of CNR, the QPSK receivers can achieve the same raw BER as in the QPSK system with a carrier to noise ratio CNR of. Plots of P BER for various values of λ and P BER CNR are shown in Figure 4. As shown in Figure 4, at raw BER of.e- (corresponding to CNR=7dB), the penalty in BER is less than 0.5dB for λ = 0. and less than 0.5dB for λ = In other words, for the QPSK receivers to achieve a raw BER of.e-, a 0.5dB higher signal power is needed in the hierarchical system than the QPSK system if λ = 0., and a 0.5dB higher signal power is needed if λ = The penalty is even smaller at higher BER. These results are consistent with the analysis of MNR penalty, and they again confirm that the penalty is acceptale for λ IV. DESIGN OF HIERARCHICAL RECEIVERS We now turn to address how to design new generation receivers to process and receive oth asic and secondary information in hierarchical constellation. New generation receivers must e ale to extract all its from the 6QAM constellation of Figure (). Since the asic and secondary information its are channel encoded differently (see elow), they need to e decoded separately y two decoders, and the two decoders can e used to aid each other. A lock diagram of a receiver is shown in Figure 5. After front-end demodulation, the recovered signal is sent to two separate decoders, one for the asic information its, and the other for secondary information its. Both decoders employ some Soft-In- Soft-Out (SISO) decoding algorithms, such as the BCJR algorithm [, 3]. The output of the decoders, usually in the form of proaility or likelihood for a it to e a 0 or, is used in the decision locks to extract the asic and information its, respectively..8 Per (db) lamda=0.05 lamda=0.0 lamda=0.5 lamda= E-0.E-0.E-03.E-04.E-05.E-06 Raw BER Figure 4 Penalty in BER 5

6 Basic Info SISO Decoder Decision Basic Info Bits Recovered Signal Secondary Info SISO Decoder Decision Secondary Info Bits Figure 5 New Generation Block Diagram The channel coding for the asic information is already specified in the original QPSK system, and therefore, the decoder for the asic information its must match the encoder of the original system ecause, one is not free to select a code for the asic information at the time of designing the hierarchical system. Commonly used error correction codes in deployed QPSK systems are RS-convolutional concatenated codes. Although most receivers in such systems use a Viteri-RS decoding, which has hard-decision output, SISO type decoding algorithms exist for RSconvolutional concatenated codes, see [, ]. Unlike the asic information channel, one is free to choose a channel coding for the secondary information its at the time when the hierarchical system is designed. Turo codes [8] or other advanced codes with high coding gain may e used for the secondary information its. These codes are well suited for an SISO type of decoding. We will not dwell on what specific decoding algorithms to use in the hierarchical receivers, ecause they are out of scope of this paper. Instead, we assume that an SISO decoder with a posteriori proaility (APP) decoding [, 3, 8] is used for each of the asic and secondary information decoders, and we propose an iterative method etween the two decoders to improve the performance of oth. In an APP decoding, a posteriori proaility P ( x = y), or P ( x = 0 y), is estimated, where x is the transmitted it, and y is the received symol. A posteriori proaility is the proaility that a transmitted it x is (or 0), given the received symol y. For details of APP decoding, we refer the reader to [, 3, 8] and the references listed therein. To perform the APP decoding, the following proailities need to e computed: ) The proaility that the received symol is y when the transmitted it is 0 and, respectively, P ( y x = ) and P ( y x = 0) ; (8) ) The proaility that the transmitted it is (or 0) x = ) or P ( x = 0). (9) In the following, we will present how to compute these values for the hierarchical modulation of Figure (). The mapping in Figure () allows the real and imaginary components, I and Q, of the received signal to e treated separately. Therefore, when considering proaility values in equations (8) and (9), we consider the real component, I, only, as the imaginary part can e treated identically. The constellation for the real component is shown in Figure 6. In Figure 6, a? represents a it carried y the imaginary component and it is irrelevant in the current discussion.?0??? 0?? 0?0? d d Figure 6 One dimentional hierarchical constellation Let x e the transmitted asic information it from real component, and x s e the transmitted secondary information it from real component. We will compute the proaility values in equations (8) and (9) for each of x and x s. The proaility that the received symol is y when the transmitted asic information it x is is given y More precise notation should e I I x and x s, in order to differentiate these with its from the imaginary component. However, the superscript I is omitted since we are only considering the real component, and there is no risk of confusion. 6

7 y x = ) = xs = ) y x =, xs = ) (0) + xs = 0) y x =, xs = 0). Similarly, the proaility that the received symol is y when the transmitted secondary information it x s is is given y y xs = ) = x = ) y x =, xs = ) () + x = 0) y x = 0, xs = ). The conditional proaility values in equations (0) and () are readily computed y using the proaility density function of Gaussian distriution, x f ( x) = exp, () σ π σ where σ is the noise power. It can e shown, y x =, xs = ) = f ( y + ( λ) d), (3) ecause x =, xs = corresponds to the point laeled?? in Figure 6, and the point is located at ( d d ) = ( λ) d. Similarly, y x =, x = 0) = f ( y + ( + λ) d ), y x y x s = 0, x = 0, x s s = ) = = 0) = f ( y ( λ) d f ( y ( + λ) d ), ). (4) Now, the proaility values P ( = ), P ( = 0), P ( x s = ), and x s = 0) of equations (0) and () need to e computed. It is in the computation of these values that the iteration etween the asic and secondary information decoders can significantly improve the performance of each decoder. The iteration etween the two decoders can e carried out in the following way: ) Initially, the decoders have no other knowledge on what is transmitted, and hence oth asic and secondary information decoders start with P ( xs = ) = xs = 0) =, (5) P ( x = ) = x = 0) =. (6) By using equations (0), () and (5) and (6), oth decoders proceed to perform APP decoding, and at the end, the asic information decoder computes the (0) (0) proaility values P ( x = ) and P ( x = 0). Similarly, the secondary information decoder computes (0) (0) the proaility values P s ( x s = ) and P s ( x s = 0). ) At iteration k, k=,,3,, the asic information decoder performs APP decoding y using x x ( k ) xs = Ps ( xs t =, 0. (7) ( k ) x = P ( x and equation (0). At the end of decoding, the decoder ( k ) ( k ) computes the values P ( x = ) and P ( x = 0). The secondary information decoder performs APP decoding y using ( k ) x = P ( x t =, 0. (8) ( k ) xs = Ps ( xs and equation (). At the end of decoding, the decoder ( k ) ( k ) computes the values Ps ( xs = ) and P s ( xs = 0). The iteration continues until a preset maximum numer of iterations, K, is reached. The values ( K ) ( K ) ( K ) P ( x = ), P ( x = 0), and P s ( xs = ) and ( K ) Ps ( xs = 0) are then used in the decision locks to determine the asic and secondary information its. It is worthwhile to note that there is a ias in the Karnaugh map style Gray mapping of Figure (). As Figure 6 and equations (3) and (4) demonstrate, it is more likely for a asic information it to e an error it when the secondary information it is than when the secondary information it is 0. For example, it is more likely for the point laeled?? to e mistaken as 0?? or 0?0? than the point laeled?0?. More precisely, the BER of asic information its when the secondary information it is is given y, λ BERB x s = = Q CNR + λ and the BER of asic information its when the secondary information it is 0 is given y 0. + λ BERB x s = = Q CNR + λ Therefore, the transmission of it in the secondary information is unfavorale to the asic information its. If such a ias is undesirale, a mapping in Figure 7 can e used as an alternative. In the mapping of Figure 7, an in the I component of the secondary information its is more likely to cause an error in the asic information, ut a 0 in the Q component of secondary information its is more likely to cause an error. Since I, Q channels are independent and identical, 0 and in the secondary information make the same contriution to the degrading of the asic information its. 7

8 Q' d d Figure 7 Balanced hierarchical constellation Next, we analyze the capacity of the channel that carries the secondary information its. It can e shown that the error proaility for the secondary information its over the AWGN channel is λ λ BER S = Q CNR + Q CNR + λ + λ + λ Q CNR. (9) + λ For small values of λ, as is needed to have a small penalty to the QPSK receivers, BER of the secondary information is much higher than that of the asic information. For the secondary information to e received with the same reliaility as the asic information, the channel coding for the secondary information must have a very high coding gain, and consequently, the effective it rate of the secondary information will e much lower than that of the asic information. We now proceed to give a heuristic estimate of the effective it rate of the secondary information its y using a technique of spread spectrum. An estimate of the proaility of errors for a QAM constellation is given in [9, p.338] as P K Q( BT η A CNR ). (0) In equation (0), K is some constant, B is the channel andwidth, and T is the symol duration and d min η A =, () σ 4 A I' where d min is the minimum distance etween the points of the constellation, and σ A = ( + λ ) d. For the asic information, T = T, d min = ( λ) d. () For the secondary information, T = Ts, d min = λ d. (3) Sustituting () and (3) into (0), we have the following estimates for the proailities of errors for the asic and secondary information ( λ) P K Q BT CNR (4) + λ λ P s K Q BTs CNR (5) + λ For the secondary information its to e received as relialy as the asic information its, we equate the right hand sides of equations (4) and (5) to get ( λ) Ts = T. (6) λ Since oth asic and secondary information symols carry the same numer of its (two its per symol), equation (6) gives the following relation etween the effective it rates of the asic and secondary information: λ itrate s = itrate. (7) ( λ) This means that for the asic and secondary information its to e received with same BER, the it rate of the secondary information, itrate s, needs to e a factor of λ of the asic information rate, itrate. ( λ) From this heuristic analysis, the secondary information can e relialy received at a rate that is.3% of the transmission rate of the asic information if λ = 0.. The rate of the secondary information can e increased to 3.% of the asic information rate if λ = 0.5. For example, for an existing QPSK satellite radio system with 00 channels of music, the hierarchical system can transmit additional data in equivalence of. channels, for a penalty of 0.5dB to the QPSK receivers, and additional data in equivalence of 3 channels for a penalty of 0.5dB. We note that these it rates are heuristic estimates. Similar estimates can also e derived y using the channel capacity of the AWGN channel [9, p.08] 8

9 Local Area local data local data New modulator Local Repeater Old Local Area local data local data New modulator Local Repeater Old Local Area 3 local data 3 local data 3 New modulator Local Repeater Old C = log ( + SNR). (8) However, the actual it rate of the secondary information depends on selections of the channel coding and decoding algorithms. The rate of the secondary channel may e increased y using larger values for λ, at the expense of more penalties for the QPSK receivers. A recommended tradeoff would e to use a small the value of λ when the upgraded system is initially introduced, in order to reduce the penalty to the QPSK receivers. As more new generation receivers are deployed, and the originally designed receivers are gradually phasing out, the value of λ can e increased to raise the it rate of the secondary information. V. LOCAL INFORMATION Figure 8 Transmission of local information In this section, we descrie how the hierarchical modulation can e used to transmit local information efficiently in a network with local repeaters. In satellite roadcast systems such as digital satellite radio, signals are transmitted to moile receivers. In some areas such as metropolitan regions, signals from the satellites are weak due to lockage such as tall uildings. It is a common practice to set up terrestrial repeaters in places where it is difficult to receive satellite signals. The terrestrial repeaters transmit the same data content as the satellites, ut with possily a different modulation format. With the aid of hierarchical modulation, the terrestrial repeaters can e used to provide local information that is of only interests to the local region covered y a repeater. Examples of local information include local news, traffic, weather and advertisements. Figure 8 shows how the hierarchical modulation can e used to provide the local information efficiently in systems with a gloal network and local repeaters. The local information can e modulated in the secondary hierarchy, either as a part, or the entirety of the secondary information. In this way, the local information can e generated locally, and it needs not e carried in the gloal network, hence improving the andwidth efficiency of the gloal network. When all local repeaters transmit in a same frequency and, they form a single frequency network (SFN). Since local information content may e different from repeater to repeater, there exist interferences 9

10 etween neighoring repeaters. To comat the interferences, the secondary information may e modulated with orthogonal pulses such as CDMA. A small numer of orthogonal codes can e predefined, so that each repeater in a cluster of neighoring repeaters, such as in a single metropolitan area, uses a different code, and no repeaters of same code will share an overlapping coverage region. The hierarchical receivers must e designed to e capale of demodulating all codes, and e ale to decide which repeater s local information is used as output. VI. CONCLUSION The analysis shows that the hierarchical modulation can e used effectively to upgrade a digital roadcast system in response to oth the demand for higher it rate that is made possile due to advances in technology and coding algorithm development, and the need to e ackward compatile to the already deployed old receivers. The added value of the paper is the analysis of the impact that hierarchical modulation has on the already deployed receivers versus the secondary information itrate. The hierarchical parameter λ can e used y the system operator to control the tradeoff etween the penalty to the already deployed receivers and the it rate of the added secondary information. This paper has een concerned with the modulation scheme. Another important issue to consider in the system upgrade is the channel coding for the secondary information, which, together with λ, will ultimately determine the actual it rate of the secondary information. The issue of channel coding has not een addressed in this paper. Further studies are warranted to find an optimal channel coding in conjunction with the hierarchical modulation. rate, IEEE Trans. Inform. Theory, vol. IT-0, pp , 974. [4] P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, V-BLAST: An architecture for realizing very high data rates over the Rich-scattering wireless channel, invited paper, Proc. ISSSE-98, Pisa, Italy, Sept. 9, 998. [5] T. Cover, Broadcast channels, IEEE Trans. on Inform. Theory, Vol IT-8, pp. -4, 97. [6] K. Ramchandran, A. Ortega, K. M. Uz, and M. Vetterli, Multiresolution roadcast for digital HDTV using joint source/channel coding, IEEE J. Select. Areas Commun., Vol, 993. [7] P. Vitthaladevuni and M. Alouini, BER computations of 4/M-QAM hierarchical constellations, IEEE Trans. Broadcasting, Vol. 47, pp. 8-39, 00. [8] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: turo-codes", Proc. of IEEE ICC '93, Geneva, pp , May 993. [9] E. Lee and D. Messerschmitt, Digital Communication, nd Ed., Kluwer Academic Pulishers, Boston, 994. [0] Alexander Schertz and Chris Weck, Hierarchical modulation - The transmission of two independent DVB- T multiplexes on a single frequency, EBU Technical Review, April 003. [] Gerhard Kramer, Private communication, 003. [] ETSI EN V.4., European Standard (Telecommunications series) Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television, 00. REFERENCES [] M. Lamarca, S. Sala and A. Martinez, Iterative decoding algorithms for RS-convolutional concatenated codes, Proceedings of International Symposium on Turo Codes, Brest, France, Septemer -5, 003. [] A. J. Viteri, An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes, IEEE J. Select. Areas Commun., Vol. 6, No., 998. [3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of linear codes for minimizing symol error 0

Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels

Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Qi Lu, Qingchong Liu Electrical and Systems Engineering Department Oakland University Rochester, MI 48309 USA E-mail:

More information

CNR Requirements for DVB-T2 Fixed Reception Based on Field Trial Results

CNR Requirements for DVB-T2 Fixed Reception Based on Field Trial Results CNR Requirements for DVB-T2 Fixed Reception Based on Field Trial Results Iñaki Eizmendi, Gorka Berjon-Eriz, Manuel Vélez, Gorka Prieto, Amaia Arrinda This letter presents the C/N requirements for DVB-T2

More information

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

More information

Digital Video Broadcasting By Satellite

Digital Video Broadcasting By Satellite Digital Video Broadcasting By Satellite Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. Apr. 2, 2012 ( Lane Department LDPCof Codes Computer

More information

AN INTRODUCTION TO DIGITAL MODULATION

AN INTRODUCTION TO DIGITAL MODULATION AN INTRODUCTION TO DIGITAL MODULATION This article provides readers a simple overview of the various popular methods used in modulating a digital signal. The relative merits of each of these modulation

More information

The Analysis of DVB-C signal in the Digital Television Cable Networks

The Analysis of DVB-C signal in the Digital Television Cable Networks The Analysis of DVB-C signal in the Digital Television Cable Networks Iulian UDROIU (1, Nicoleta ANGELESCU (1,Ioan TACHE (2, Ion CACIULA (1 1- "VALAHIA" University of Targoviste, Romania 2- POLITECHNICA

More information

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Recent Advances in Electrical Engineering and Electronic Devices Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Ahmed El-Mahdy and Ahmed Walid Faculty of Information Engineering

More information

BENEFITS OF USING MULTIPLE PLP IN DVB-T2

BENEFITS OF USING MULTIPLE PLP IN DVB-T2 BENEFITS OF USING MULTIPLE PLP IN DVB-T2 ENENSYS Technologies, France : http://www.enensys.com DVB-T2 has already achieved incredible success for delivering digital terrestrial television. More than 28

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

RESULTS OF TESTS WITH DOMESTIC RECEIVER IC S FOR DVB-T. C.R. Nokes BBC R&D, UK ABSTRACT

RESULTS OF TESTS WITH DOMESTIC RECEIVER IC S FOR DVB-T. C.R. Nokes BBC R&D, UK ABSTRACT RESULTS OF TESTS WITH DOMESTIC RECEIVER IC S FOR DVB-T C.R. Nokes BBC R&D, UK ABSTRACT Digital terrestrial television services using the DVB-T standard will be launched later this year in the UK, followed

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

More information

BER Performance Analysis of SSB-QPSK over AWGN and Rayleigh Channel

BER Performance Analysis of SSB-QPSK over AWGN and Rayleigh Channel Performance Analysis of SSB-QPSK over AWGN and Rayleigh Channel Rahul Taware ME Student EXTC Department, DJSCOE Vile-Parle (W) Mumbai 056 T. D Biradar Associate Professor EXTC Department, DJSCOE Vile-Parle

More information

ISI Mitigation in Image Data for Wireless Wideband Communications Receivers using Adjustment of Estimated Flat Fading Errors

ISI Mitigation in Image Data for Wireless Wideband Communications Receivers using Adjustment of Estimated Flat Fading Errors International Journal of Engineering and Management Research, Volume-3, Issue-3, June 2013 ISSN No.: 2250-0758 Pages: 24-29 www.ijemr.net ISI Mitigation in Image Data for Wireless Wideband Communications

More information

Performance Improvement of DS-CDMA Wireless Communication Network with Convolutionally Encoded OQPSK Modulation Scheme

Performance Improvement of DS-CDMA Wireless Communication Network with Convolutionally Encoded OQPSK Modulation Scheme International Journal of Advances in Engineering & Technology, Mar 0. IJAET ISSN: 3-963 Performance Improvement of DS-CDMA Wireless Communication Networ with Convolutionally Encoded OQPSK Modulation Scheme

More information

4 Digital Video Signal According to ITU-BT.R.601 (CCIR 601) 43

4 Digital Video Signal According to ITU-BT.R.601 (CCIR 601) 43 Table of Contents 1 Introduction 1 2 Analog Television 7 3 The MPEG Data Stream 11 3.1 The Packetized Elementary Stream (PES) 13 3.2 The MPEG-2 Transport Stream Packet.. 17 3.3 Information for the Receiver

More information

PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND 620 790 MHz

PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND 620 790 MHz Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE

More information

DVB-T BER MEASUREMENTS IN THE PRESENCE OF ADJACENT CHANNEL AND CO-CHANNEL ANALOGUE TELEVISION INTERFERENCE

DVB-T BER MEASUREMENTS IN THE PRESENCE OF ADJACENT CHANNEL AND CO-CHANNEL ANALOGUE TELEVISION INTERFERENCE DVB-T MEASUREMENTS IN THE PRESENCE OF ADJACENT CHANNEL AND CO-CHANNEL ANALOGUE TELEVISION INTERFERENCE M. Mª Vélez (jtpveelm@bi.ehu.es), P. Angueira, D. de la Vega, A. Arrinda, J. L. Ordiales UNIVERSITY

More information

Technical Overview of Single Frequency Network

Technical Overview of Single Frequency Network White paper Technical Overview of Single Frequency Network Executive Summary: This paper describes the principles of Single Frequency Network. Scarcity of available spectrum & bandwidth is one of the main

More information

PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS

PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUM OF REFERENCE SYMBOLS Benjamin R. Wiederholt The MITRE Corporation Bedford, MA and Mario A. Blanco The MITRE

More information

Hierarchical. modulation. 1. Principles of DVB-T and hierarchical modulation. 1.1. Parameters of DVB-T

Hierarchical. modulation. 1. Principles of DVB-T and hierarchical modulation. 1.1. Parameters of DVB-T Hierarchical modulation the transmission of two independent DVB-T multiplexes on a single frequency Alexander Schertz and Chris Weck Institut für Rundfunktechnik (IRT) Hierarchical modulation a variant

More information

ISDB-T T Transmission Technologies and Emergency Warning System

ISDB-T T Transmission Technologies and Emergency Warning System ISDB-T T Seminar ISDB-T T Transmission Technologies and Emergency Warning System 12 de Febrero 2008 Universidad Ricardo Palma, Lima, Perú DiBEG, JAPAN Hiroyuki FURUTA (NHK) Digital broadcasting experts

More information

Teaching Convolutional Coding using MATLAB in Communication Systems Course. Abstract

Teaching Convolutional Coding using MATLAB in Communication Systems Course. Abstract Section T3C2 Teaching Convolutional Coding using MATLAB in Communication Systems Course Davoud Arasteh Department of Electronic Engineering Technology, LA 70813, USA Abstract Convolutional codes are channel

More information

A Performance Study of Wireless Broadband Access (WiMAX)

A Performance Study of Wireless Broadband Access (WiMAX) A Performance Study of Wireless Broadband Access (WiMAX) Maan A. S. Al-Adwany Department of Computer & Information Engineering, College of Electronics Engineering University of Mosul Mosul, Iraq maanaladwany@yahoo.com

More information

Lezione 6 Communications Blockset

Lezione 6 Communications Blockset Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive

More information

DVB-T. The echo performance of. receivers. Theory of echo tolerance. Ranulph Poole BBC Research and Development

DVB-T. The echo performance of. receivers. Theory of echo tolerance. Ranulph Poole BBC Research and Development The echo performance of DVB-T Ranulph Poole BBC Research and Development receivers This article introduces a model to describe the way in which a single echo gives rise to an equivalent noise floor (ENF)

More information

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications 0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier

More information

CODED SOQPSK-TG USING THE SOFT OUTPUT VITERBI ALGORITHM

CODED SOQPSK-TG USING THE SOFT OUTPUT VITERBI ALGORITHM CODED SOQPSK-TG USING THE SOFT OUTPUT VITERBI ALGORITHM Daniel Alam Department of Electrical Engineering & Computer Science University of Kansas Lawrence, KS 66045 danich@ku.edu Faculty Advisor: Erik Perrins

More information

Capacity Limits of MIMO Channels

Capacity Limits of MIMO Channels Tutorial and 4G Systems Capacity Limits of MIMO Channels Markku Juntti Contents 1. Introduction. Review of information theory 3. Fixed MIMO channels 4. Fading MIMO channels 5. Summary and Conclusions References

More information

New markets HEVC DVB T2 Germany. Herbert Tillmann

New markets HEVC DVB T2 Germany. Herbert Tillmann New markets HEVC DVB T2 Germany Herbert Tillmann Why DVB-T2 and HEVC? Media Consumption and Digital Terrestrial Broadcast The gain in efficiency of DVB-T2 Programs per Multiplex (portable, mobile) Broadcast

More information

INTER CARRIER INTERFERENCE CANCELLATION IN HIGH SPEED OFDM SYSTEM Y. Naveena *1, K. Upendra Chowdary 2

INTER CARRIER INTERFERENCE CANCELLATION IN HIGH SPEED OFDM SYSTEM Y. Naveena *1, K. Upendra Chowdary 2 ISSN 2277-2685 IJESR/June 2014/ Vol-4/Issue-6/333-337 Y. Naveena et al./ International Journal of Engineering & Science Research INTER CARRIER INTERFERENCE CANCELLATION IN HIGH SPEED OFDM SYSTEM Y. Naveena

More information

Vector Signal Analyzer FSQ-K70

Vector Signal Analyzer FSQ-K70 Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM

More information

1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions

1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions Rec. ITU-R SM.853-1 1 RECOMMENDATION ITU-R SM.853-1 NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM.853-1 (1992-1997) The ITU Radiocommunication Assembly, considering a) that the concept of necessary

More information

An error recovery transmission mechanism for mobile multimedia

An error recovery transmission mechanism for mobile multimedia An error recovery transmission mechanism for moile multimedia Min Chen *, Ang i School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China Astract This paper presents a channel

More information

DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services

DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services Application Note DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services Overview As cable operators move to digital simulcast and all digital networks, the majority

More information

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2 On the Traffic Capacity of Cellular Data Networks T. Bonald 1,2, A. Proutière 1,2 1 France Telecom Division R&D, 38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France {thomas.bonald, alexandre.proutiere}@francetelecom.com

More information

Evolution from Voiceband to Broadband Internet Access

Evolution from Voiceband to Broadband Internet Access Evolution from Voiceband to Broadband Internet Access Murtaza Ali DSPS R&D Center Texas Instruments Abstract With the growth of Internet, demand for high bit rate Internet access is growing. Even though

More information

CDMA TECHNOLOGY. Brief Working of CDMA

CDMA TECHNOLOGY. Brief Working of CDMA CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile

More information

ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING

ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING Development of a Software Tool for Performance Evaluation of MIMO OFDM Alamouti using a didactical Approach as a Educational and Research support in Wireless Communications JOSE CORDOVA, REBECA ESTRADA

More information

5.1 audio. How to get on-air with. Broadcasting in stereo. the Dolby "5.1 Cookbook" for broadcasters. Tony Spath Dolby Laboratories, Inc.

5.1 audio. How to get on-air with. Broadcasting in stereo. the Dolby 5.1 Cookbook for broadcasters. Tony Spath Dolby Laboratories, Inc. 5.1 audio How to get on-air with the Dolby "5.1 Cookbook" for broadcasters Tony Spath Dolby Laboratories, Inc. This article is aimed at television broadcasters who want to go on-air with multichannel audio

More information

Mobile Digital TV (DVB-H/SH) and 2 nd Generation DVB Systems (DVB-S2/C2/T2)

Mobile Digital TV (DVB-H/SH) and 2 nd Generation DVB Systems (DVB-S2/C2/T2) Digital Television and Radio Systems (NDTV) Laboratory Exercise no. 9 Mobile Digital TV (DVB-H/SH) and 2 nd Generation DVB Systems (DVB-S2/C2/T2) The purpose of this laboratory exercise is to obtain overview

More information

ADJACENT AND CO-CHANNEL INTERFERENCE DISTURBANCES FROM A DIGITAL TERRESTRIAL TELEVISION SIGNAL(COFDM-8K System) ON ANALOGUE PAL SYSTEMS

ADJACENT AND CO-CHANNEL INTERFERENCE DISTURBANCES FROM A DIGITAL TERRESTRIAL TELEVISION SIGNAL(COFDM-8K System) ON ANALOGUE PAL SYSTEMS ADJACENT AND CO-CHANNEL INTERFERENCE DISTURBANCES FROM A DIGITAL TERRESTRIAL TELEVISION SIGNAL(COFDM-8K System) ON ANALOGUE PAL SYSTEMS A. Arrinda (jtparsaa@bi.ehu.es), M. Mª Vélez, P. Angueira, D. de

More information

IRD GUIDELINES FOR THE DVB-T (S) PLATFORM AUSTRIA. Profile. Zapping. Released. Version 1.0 Zapping 04.04.2006. IRD_Guidelines_Zapping_V10.

IRD GUIDELINES FOR THE DVB-T (S) PLATFORM AUSTRIA. Profile. Zapping. Released. Version 1.0 Zapping 04.04.2006. IRD_Guidelines_Zapping_V10. IRD GUIDELINES FOR THE DVB-T (S) PLATFORM AUSTRIA Profile Zapping Released IRD_Guidelines_Zapping_V10.doc 1/14 ORS Notice This document is ORS property and may not be reproduced and diffused without the

More information

Why and how Germany is going HEVC! Herbert Tillmann

Why and how Germany is going HEVC! Herbert Tillmann DVB T2 and HEVC in Germany Why and how Germany is going HEVC! Herbert Tillmann Why DVB-T2 and HEVC? Media Consumption and Digital Terrestrial Broadcast The gain in efficiency of DVB-T2 Programs per Multiplex

More information

Evolution of the Air Interface From 2G Through 4G and Beyond

Evolution of the Air Interface From 2G Through 4G and Beyond Evolution of the Air Interface From 2G Through 4G and Beyond Presentation to IEEE Ottawa Section / Alliance of IEEE Consultants Network (AICN) - 2nd May 2012 Frank Rayal BLiNQ Networks/ Telesystem Innovations

More information

A New Digital Communications Course Enhanced by PC-Based Design Projects*

A New Digital Communications Course Enhanced by PC-Based Design Projects* Int. J. Engng Ed. Vol. 16, No. 6, pp. 553±559, 2000 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2000 TEMPUS Publications. A New Digital Communications Course Enhanced by PC-Based Design Projects*

More information

DVB-T2 in relation to the DVB-x2 Family of Standards

DVB-T2 in relation to the DVB-x2 Family of Standards DVB-T2 in relation to the DVB-x2 Family of Standards Nick Wells (BBC R&D, Chairman of DVB TM-T2 working group) Abstract DVB-T2 is a second-generation standard for terrestrial broadcasting aimed at broadcasting

More information

MIMO detector algorithms and their implementations for LTE/LTE-A

MIMO detector algorithms and their implementations for LTE/LTE-A GIGA seminar 11.01.2010 MIMO detector algorithms and their implementations for LTE/LTE-A Markus Myllylä and Johanna Ketonen 11.01.2010 2 Outline Introduction System model Detection in a MIMO-OFDM system

More information

Efficient Data Recovery scheme in PTS-Based OFDM systems with MATRIX Formulation

Efficient Data Recovery scheme in PTS-Based OFDM systems with MATRIX Formulation Efficient Data Recovery scheme in PTS-Based OFDM systems with MATRIX Formulation Sunil Karthick.M PG Scholar Department of ECE Kongu Engineering College Perundurau-638052 Venkatachalam.S Assistant Professor

More information

DVB-T. C/N in a static Rayleigh channel. C/N values for portable single and diversity reception. Measurement method.

DVB-T. C/N in a static Rayleigh channel. C/N values for portable single and diversity reception. Measurement method. C/N values for portable single and diversity reception Raul Schramm IRT It has been shown that the minimum C/N values for good-quality portable reception in a static Rayleigh channel as given in the ETSI

More information

Addressing the Challenges of Deploying Single Frequency Networks DVB-T & DVB-T2. Application Note

Addressing the Challenges of Deploying Single Frequency Networks DVB-T & DVB-T2. Application Note Addressing the Challenges of Deploying Single Frequency Networks DVB-T & DVB-T2 Application Note Contents Introduction... 3 SFN Echo Scenarios... 4 Post-echo scenario... 4 Pre-echo scenario... 4 Pre-echoes

More information

Digital Television Broadcasting Systems Testing in Brazil

Digital Television Broadcasting Systems Testing in Brazil Digital Television Broadcasting Systems Testing in Brazil Kiev, Ukraine - 13-15 November 2000 Interregional Seminar on the Transition from SECAM to Digital TV Broadcasting Renato Maroja - maroja@cpqd.com.br

More information

Towards the Next Generation Video Broadcasting

Towards the Next Generation Video Broadcasting Towards the Next Generation Video Broadcasting Ming Liu, Jean-François Hélard, Maryline Hélard, Matthieu Crussière To cite this version: Ming Liu, Jean-François Hélard, Maryline Hélard, Matthieu Crussière.

More information

Regulation on the quality and universal service of communications networks and services

Regulation on the quality and universal service of communications networks and services FICORA 58 B/2014 M 1 (8) Unofficial translation Regulation on the quality and universal service of communications networks and services Issued in Helsinki on 19 December 2014 The Finnish Communications

More information

TR 036 TV PROGRAMME ACCOMMODATION IN A DVB-T2 MULTIPLEX FOR (U)HDTV WITH HEVC VIDEO CODING TECHNICAL REPORT VERSION 1.0

TR 036 TV PROGRAMME ACCOMMODATION IN A DVB-T2 MULTIPLEX FOR (U)HDTV WITH HEVC VIDEO CODING TECHNICAL REPORT VERSION 1.0 TV PROGRAMME ACCOMMODATION IN A DVB-T2 MULTIPLEX FOR (U)HDTV WITH HEVC VIDEO CODING TECHNICAL REPORT VERSION 1.0 Geneva March 2016 Page intentionally left blank. This document is paginated for two sided

More information

DVB-T and DVB-T2 Transmitter Test Challenges

DVB-T and DVB-T2 Transmitter Test Challenges DVB-T and DVB-T2 Transmitter Test Challenges Application Note Introduction Over the past 10 years, DVB-T has become the most widely adopted and deployed terrestrial digital video standard. It is now well

More information

MEDIA TECHNOLOGY & INNOVATION. General issues to be considered when planning SFNs

MEDIA TECHNOLOGY & INNOVATION. General issues to be considered when planning SFNs EBU TECHNICAL MEDIA TECHNOLOGY & INNOVATION 13/03/09 General issues to be considered when planning SFNs 1. SFN networks In a Single Frequency Network (SFN), all transmitters in the network use the same

More information

Whitepaper. 802.11n The Next Generation in Wireless Technology

Whitepaper. 802.11n The Next Generation in Wireless Technology Whitepaper 802.11n The Next Generation in Wireless Technology Introduction Wireless technology continues to evolve and add value with its inherent characteristics. First came 802.11, then a & b, followed

More information

ISDB-T Digital terrestrial broadcasting in Japan

ISDB-T Digital terrestrial broadcasting in Japan BROADCASTING TV Test Transmitter R&S SFQ / R&S SFL ISDB-T Digital terrestrial broadcasting in Japan The transition from analog to digital broadcast transmission is occurring everywhere: in broadband communication

More information

PAPR and Bandwidth Analysis of SISO-OFDM/WOFDM and MIMO OFDM/WOFDM (Wimax) for Multi-Path Fading Channels

PAPR and Bandwidth Analysis of SISO-OFDM/WOFDM and MIMO OFDM/WOFDM (Wimax) for Multi-Path Fading Channels PAPR and Bandwidth Analysis of SISO-OFDM/WOFDM and MIMO OFDM/WOFDM (Wimax) for Multi-Path Fading Channels Ahsan Adeel Lecturer COMSATS Institute of Information Technology Islamabad Raed A. Abd-Alhameed

More information

What s The Difference Between Bit Rate And Baud Rate?

What s The Difference Between Bit Rate And Baud Rate? What s The Difference Between Bit Rate And Baud Rate? Apr. 27, 2012 Lou Frenzel Electronic Design Serial-data speed is usually stated in terms of bit rate. However, another oftquoted measure of speed is

More information

Performance of Multicast MISO-OFDM Systems

Performance of Multicast MISO-OFDM Systems Performance of Multicast MISO-OFDM Systems Didier Le Ruyet Electronics and Communications Lab CNAM, 292 rue Saint Martin 75141, Paris, France Email: leruyet@cnamfr Berna Özbek Electrical and Electronics

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 341

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 341 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 341 Multinode Cooperative Communications in Wireless Networks Ahmed K. Sadek, Student Member, IEEE, Weifeng Su, Member, IEEE, and K.

More information

Optimum Frequency-Domain Partial Response Encoding in OFDM System

Optimum Frequency-Domain Partial Response Encoding in OFDM System 1064 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 51, NO 7, JULY 2003 Optimum Frequency-Domain Partial Response Encoding in OFDM System Hua Zhang and Ye (Geoffrey) Li, Senior Member, IEEE Abstract Time variance

More information

Measurements on MPEG2 and DVB-T signals (1)

Measurements on MPEG2 and DVB-T signals (1) Measurements on MPEG2 and DVB-T signals (1) With the expansion of multi-frequency networks (MFNs) and single-frequency networks (SFNs) for DVB-T*, there is a growing demand for measuring instruments and

More information

COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES IN BANDS IV AND V

COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES IN BANDS IV AND V European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES

More information

A STUDY ON DIGITAL VIDEO BROADCASTING TO A HANDHELD DEVICE (DVB-H), OPERATING IN UHF BAND

A STUDY ON DIGITAL VIDEO BROADCASTING TO A HANDHELD DEVICE (DVB-H), OPERATING IN UHF BAND A STUDY ON DIGITAL VIDEO BROADCASTING TO A HANDHELD DEVICE (DVB-H), OPERATING IN UHF BAND Farhat Masood National University of Sciences and Technology, Pakistan farhatmasood@hotmail.com ABSTRACT In this

More information

HSDPA Mobile Broadband Data A Smarter Approach to UMTS Downlink Data

HSDPA Mobile Broadband Data A Smarter Approach to UMTS Downlink Data HSDPA Mobile Broadband Data A Smarter Approach to UMTS Downlink Data UMTS mobile wireless systems have enjoyed widespread uptake of high-quality circuit-switched applications like voice and video telephony.

More information

Improved user experiences are possible with enhanced FM radio data system (RDS) reception

Improved user experiences are possible with enhanced FM radio data system (RDS) reception Improved user experiences are possible with enhanced FM radio data system (RDS) reception Aravind Ganesan, Senior Systems Engineer, and Jaiganesh Balakrishnan, Senior Member of Technical Staff, Wireless

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency

More information

CARLETON UNIVERSITY Department of Systems and Computer Engineering. SYSC4700 Telecommunications Engineering Winter 2014. Term Exam 13 February 2014

CARLETON UNIVERSITY Department of Systems and Computer Engineering. SYSC4700 Telecommunications Engineering Winter 2014. Term Exam 13 February 2014 CARLETON UNIVERSITY Department of Systems and Computer Engineering SYSC4700 Telecommunications Engineering Winter 2014 Term Exam 13 February 2014 Duration: 75 minutes Instructions: 1. Closed-book exam

More information

for the Operation of Digital Cable Television Systems

for the Operation of Digital Cable Television Systems Technical Conditions Technical Conditions for the Operation of Digital Cable Television Systems Document No: ComReg 98/66R Date: December, 2002 An Coimisiún um Rialáil Cumarsáide Commission for Communications

More information

CDMA Network Planning

CDMA Network Planning CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications

More information

SURVEY OF LTE AND LTE ADVANCED SYSTEM

SURVEY OF LTE AND LTE ADVANCED SYSTEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 5, May 2014, 1-6 Impact Journals SURVEY OF LTE AND LTE ADVANCED

More information

How To Understand And Understand The Power Of A Cdma/Ds System

How To Understand And Understand The Power Of A Cdma/Ds System CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular

More information

Implementing Digital Wireless Systems. And an FCC update

Implementing Digital Wireless Systems. And an FCC update Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

POWER AND SPECTRUM EFFICIENT ACCESS SERVICES USING DYNAMIC LINKS

POWER AND SPECTRUM EFFICIENT ACCESS SERVICES USING DYNAMIC LINKS POWER AND SPECTRUM EFFICIENT ACCESS SERVICES USING DYNAMIC LINKS Dr. Richard Gedney, Dr. William Thesling, and Mark Vanderaar Efficient Channel Coding (ECC), Inc. 600 Safeguard Plaza, Suite 100 Brooklyn

More information

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error

More information

ERLANG CAPACITY EVALUATION IN GSM AND CDMA CELLULAR SYSTEMS

ERLANG CAPACITY EVALUATION IN GSM AND CDMA CELLULAR SYSTEMS ERLANG CAPACITY EVALUATION IN GSM AND CDMA CELLULAR SYSTEMS Ch Usha Kumari 1, G Sasi Bhushana Rao and R Madhu Department of Electronics and Communication Engineering, Andhra University College of Engineering,

More information

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile

More information

Link Budget Analysis: Digital Modulation, Part 1. Atlanta RF Services, Software & Designs

Link Budget Analysis: Digital Modulation, Part 1. Atlanta RF Services, Software & Designs Link Budget Analysis: Digital Modulation, art 1 May-013 www.atlantarf.com resentation Content Link Budget Analysis: Digital Modulation, art 1 1. Sources of Communication Data.. Metrics for Choice of Modulation.

More information

Alberto Morello and Vittoria Mignone RAI, Radiotelevisione Italiana

Alberto Morello and Vittoria Mignone RAI, Radiotelevisione Italiana DVB-S2 ready for lift off Alberto Morello and Vittoria Mignone RAI, Radiotelevisione Italiana DVB-S2 is the second-generation specification for satellite broadcasting developed by the DVB (Digital Video

More information

For Articulation Purpose Only

For Articulation Purpose Only E305 Digital Audio and Video (4 Modular Credits) This document addresses the content related abilities, with reference to the module. Abilities of thinking, learning, problem solving, team work, communication,

More information

EVALUATION OF A DVB-T COMPLIANT DIGITAL TERRESTRIAL TELEVISION SYSTEM

EVALUATION OF A DVB-T COMPLIANT DIGITAL TERRESTRIAL TELEVISION SYSTEM EVALUATION OF A DVB-T COMPLIANT DIGITAL TERRESTRIAL TELEVISION SYSTEM C R Nokes, I R Pullen and J E Salter (BBC) ABSTRACT The BBC, in common with other UK broadcasters, intends to start digital terrestrial

More information

Keysight Technologies DVB-T and DVB-T2 Receiver Test Challenges. Application Note

Keysight Technologies DVB-T and DVB-T2 Receiver Test Challenges. Application Note Keysight Technologies DVB-T and DVB-T2 Receiver Test Challenges Application Note Introduction Over the past 10 years, DVB-T has become the most widely adopted and deployed terrestrial digital video standard.

More information

Sigma- Delta Modulator Simulation and Analysis using MatLab

Sigma- Delta Modulator Simulation and Analysis using MatLab Computer and Information Science; Vol. 5, No. 5; 2012 ISSN 1913-8989 E-ISSN 1913-8997 Published by Canadian Center of Science and Education Sigma- Delta Modulator Simulation and Analysis using MatLab Thuneibat

More information

PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES RECOMMENDATION ITU-R M.1188

PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES RECOMMENDATION ITU-R M.1188 Rec. ITU-R M.1188 1 PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES Rec. ITU-R M.1188 RECOMMENDATION ITU-R M.1188 IMPACT OF PROPAGATION ON THE DESIGN OF NON-GSO MOBILE-SATELLITE

More information

1-MINIMUM REQUIREMENT SPECIFICATIONS FOR DVB-T SET-TOP-BOXES RECEIVERS (STB) FOR SDTV

1-MINIMUM REQUIREMENT SPECIFICATIONS FOR DVB-T SET-TOP-BOXES RECEIVERS (STB) FOR SDTV 1-MINIMUM REQUIREMENT SPECIFICATIONS FOR DVB-T SET-TOP-BOXES RECEIVERS (STB) FOR SDTV Standard definition television Terminology SHALL (mandatory): Denotes that the item is mandatory. SHOULD (recommended):

More information

International co-ordination of DVB-T frequencies in Europe

International co-ordination of DVB-T frequencies in Europe ITU-D Seminar Kiev, 13-15 November 2000 THE TRANSITION FROM SECAM TO DIGITAL BROADCASTING International co-ordination of DVB-T frequencies in Europe By J. Doeven; Nozema, The Netherlands 1. Introduction

More information

Keysight Technologies DVB-T and DVB-T2 Transmitter Test Challenges. Application Note

Keysight Technologies DVB-T and DVB-T2 Transmitter Test Challenges. Application Note Keysight Technologies DVB-T and DVB-T2 Transmitter Test Challenges Application Note Introduction Over the past 10 years, DVB-T has become the most widely adopted and deployed terrestrial digital video

More information

What is 802.11? Why are standards important?

What is 802.11? Why are standards important? What is 802.11? The 802.11 standards are a group of evolving specifications defined by the Institute of Electrical and Electronic Engineers (IEEE). Commonly referred to as Wi Fi the 802.11 standards define

More information

Measurement, Modeling and Simulation of Power Line Channel for Indoor High-speed Data Communications

Measurement, Modeling and Simulation of Power Line Channel for Indoor High-speed Data Communications Measurement, Modeling and Simulation of Power Line Channel for Indoor High-speed Data Communications Jong-ho Lee, Ji-hoon Park', Hyun-Suk Lee, Gi-Won Leett and Seong-cheol Kim School of Electrical and

More information

PLANNING DVB-T2 Advance and Challenge

PLANNING DVB-T2 Advance and Challenge Advance and Challenge This White Paper provides an overview of major techniques used in and their impact on service planning and operation of this new transmission technology. White Paper October 2010

More information

DVB-C2 a new Transmission System for Hybrid Fibre Coax Networks

DVB-C2 a new Transmission System for Hybrid Fibre Coax Networks ICT-MobileSummit 2009 Conference Proceedings Paul Cunningham and Miriam Cunningham (Eds) IIMC International Information Management Corporation, 2009 ISBN: 978-1-905824-12-0 DVB-C2 a new Transmission System

More information

Overview ISDB-T for sound broadcasting Terrestrial Digital Radio in Japan. Shunji NAKAHARA. NHK (Japan Broadcasting Corporation)

Overview ISDB-T for sound broadcasting Terrestrial Digital Radio in Japan. Shunji NAKAHARA. NHK (Japan Broadcasting Corporation) Overview ISDB-T for sound broadcasting Terrestrial Digital Radio in Japan Shunji NAKAHARA NHK (Japan Broadcasting Corporation) 2003/11/04 1 Contents Features of ISDB-T SB system Current status of digital

More information

Analysis of the bandwidth efficiency of DVB-S2 in a typical data distribution network

Analysis of the bandwidth efficiency of DVB-S2 in a typical data distribution network Analysis of the bandwidth efficiency of DVB-S2 in a typical data distribution network Dirk Breynaert, Maximilien d Oreye de Lantremange, Newtec (CCBN2005, Beijing, March 21-23 2005 - modified) Abstract:

More information

Optimal batch scheduling in DVB-S2 satellite networks

Optimal batch scheduling in DVB-S2 satellite networks Optimal batch scheduling in DVB-S2 satellite networks G. T. Peeters B. Van Houdt and C. Blondia University of Antwerp Department of Mathematics and Computer Science Performance Analysis of Telecommunication

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information