Production Planning and Control, Vol.12, N 4, pp , 2001

Size: px
Start display at page:

Download "Production Planning and Control, Vol.12, N 4, pp.362-371, 2001"

Transcription

1 ACommonCycleApproachtoLotSchedulinginMultistage ManufacturingSystems LAAS-CNRS,7AvenueduColonelRoche,31077ToulouseFRANCE Jean-ClaudeHennet assumptionofconstantdemandratesforalltheend-products.underthecommoncycleapproach, productionplanningprobleminajob-shop.thecyclicnatureoftheproblemisrelatedtothea-priori ACyclicEconomicLot-SizingandSchedulingProblem(CELSP)isformulatedtosolveamultistage Abstract thedemandoverthecommoncyclehorizon.thepapershowsthattheceslpcanbesolvedina eachgenericjobconsistsofproducinganassociatedend-productinthequantityrequiredtomeet decomposedwayandthatitssolutioncaneasilybeimplementedandadjustedtolimitedvariations Multistagemanufacturingsystems,planning,scheduling,optimization. ofdemands. Keywords 1

2 describethemultistagestructureoftheproducts. 1INTRODUCTION Thisstudyisdevotedtotheorganizationofproductioninmanufacturingsystemsproducingfamilies ofproductsthroughseveralprocessingandassemblystages.aninput-outputapproachisusedto usefulforcontrollingandmonitoringthesystem,butintermsofproductionorganization,itmay points,respectivelyrelatedtoproductsandprocesses.descriptionofamanufacturingsysteminterms ofprocessesfocusesonthepropertiesoftheexistingresources,whichareforinstancethemachines, pallets,carriersandworkteams.suchadescriptionisdictatedbytheexistingfacilities.itisvery Productionactivityinamanufacturingsystemcanbedescribedfromtwocomplementaryview- improveeciencyonlymarginally. Then,inthelate1980's,Grubbstromandhisco-authors(GrubbstromandOvrin,1992;GrubbstromandMolinder,1994)haveintroducedlead-timesintheirinput-outputbasedmodels,underthe formofconstantdelays.asimilarapproachhasbeenusedbyhennet(hennet,1998;hennetand elsofproductionandinventorysystemshasbecomeclassicalsincetheworkofveinott(veinott,1969). ysisoftheproductsstructure:primaryproductsaretransformedintoend-productsthroughoneorsev- eralstageswhichcombineandtransformproducts.theuseofinput-outputanalysistoconstructmod- Aproduct-relateddescriptionofamanufacturingsystemisobtainedthroughaninput-outputanal- Barthes,1998)tobuildclosed-loopplanningpolicies. andcostparametersassociatedwiththeresources,itaimsatsolvingthecombinedlot-sizingand hasinputnodes,outputnodesandnocycle.suchadescriptioncanbeveryuseful,inparticularfor re-engineeringandre-designpurposes.thisstudyusesaninput-outputrepresentationofmultistage manufacturingsystems,todeneorre-denejobsandtaskstobeperformed.thenusingtheproperties Graphically,amultistagemanufacturingstructurecanberepresentedbyagozintograph,which schedulingproblem. iterativeresolutionofstandardjob-shopschedulingproblems. ingproblem(elmaghraby,1978)),whichisknowntobenp-hard,andforwhichthesearchforan optimalprocedureisstillanopenproblem(bourlandandyano,1997).however,underthecommoncycleapproach,themultiresourceelsphasbeenreduced(ouennicheandboctor,1998)toan ThisproblemisamultiresourceextensionoftheclassicalELSP(EconomicLotsizingandSchedul- 2

3 introducedin(bomberger,1966)tosolvetheelsp.intheccapproach,eachtaskisperformed exactlyonceineachcycle.somesucientconditionsofoptimalityoftheccassumptionhavebeen establishedin(gallego,1990).inaddition,computationalexperienceshowsthatccschedulesare closetooptimalwhenprocessingtimesarenottoodierentandthattheyoftencomparefavorably TheCommonCycle(CC)approachisthesimplestversionoftheBasicPeriod(BP)assumption, undertheassumptionofconstantdemandrates.then,itisshownthatanormalizedscheduling toheuristicsusedtosolvethemorecomplexproblemsbasedonlessrestrictivebp(basicperiod) problemcanbesolvedrst,independentlyofthevalueofthecommoncycleperiod.theoptimal assumptions. valueoftheperiodisthencomputedbyanexplicitformulaoftheeoqtype. themultiresourceelspundertheccapproach.somebasicpropertiesofthecelspareestablished, TheCyclicEconomicLotsizingandSchedulingProblem(CELSP)studiedinthispaperdescribes 2AMultistageModel problemcanbeeasilyadaptedtolimitedvariationsofthedemand. Intermsofimplementation,thecomputedsolutionofthecombinedlot-sizingandscheduling 2.1TheInput-OutputApproach ABillofMaterialscanbeconstructedtosummarizetheinputandoutputowsofamanufacturing systemoversomeworkinghorizon,t.vectortddenotesthecumulatedexternaloutputvectorand TQthecumulatedproduction/supplyvectoroverT.Then,astaticLeontief-typerepresentationof thesystemovertis: (R S)isnotfullrow-rank,itrepresentsthepossibilitytoobtainthesamecombinationofoutputs whererandsarenonnegativematrices.ristheoutputmatrix(forinternalandexternaltransformations)andsthe(internal)consumptionmatrix.thenetproductionmatrix,(r S)relatesdtoQ. Forgeneralmanufacturingsystems,matricesRandShavethesamerectangularstructure.Ifmatrix (R S)TQ=Td (1) throughdierentactivities.if(r S)isnotfullcolumn-rank,itcorrespondstothepossibilityto substitutesomeproductioninputsbysomeotherones. 3

4 ufacturingactivityhasseveralinputproducts,andproductsofthesametypemaybeusedbyseveral activities.howeverthereisaone-to-onecorrespondencebetweenoutputproductsandactivities:each productionofoneunitofproducticonsumescomponentsj=1;:::;minquantitiesji,forj=1;:::;m. manufacturingactivityhasexactlyoneoutputproduct.accordingtoagivenmanufacturingrecipe, Theproductstructuresstudiedinthispaperarerepresentedbygeneralacyclicgraphs.Eachman- Furthermore,thegraphoftheproductstructurehasnocycle. index,matrixristheidentitymatrix,i,andmatrixsisthenonnegativematrix=((ji)). whichtypicallycharacterizetheeldofapplicationofrequirementsplanning,andparticularlymrp assemblygraphsaresquarematrices.ifactivitiesandassociatedoutputproductshavethesame techniques(seee.g.(baker,1993)).theinputandoutputmatricesrepresentingsuchgeneralized SuchconvergentmanufacturingstructurescanberepresentedbyGozintographs(Vazsonyi,1955), levellforproductswhicharecomponentsofproductsoflevelsstriclylessthanlandofatleastone levell 1product.Levellsisthemaximalnumberofstagesinthemanufacturingprocess. Anexamplewithm=5,n=2isdescribedbythegozintographofFig.1. Productscanthenbepartitionedintolevels(seee.g.(Salomon,1991)).Level0isforendproducts, 1 Level 2 : primary products A B Productsbeingorderedinagreementwiththeincreasingorderoftheirlevel,theinputmatrix Figure1:Anexampleofamultistageproductstructure Level 1 : intermediate product C Level 0 : end products D E

5 isalower-triangularnonnegativematrixwithzerosonthemaindiagonal: Thefollowingresultcanthenbestated: =26400:::0 m1:::m;m : (2) Input-Outputproductionmodel: Any(nonnegative)demandvectorTdcanbesatisedoverTwithinthedomainofvalidityofthe Theorem1 (3).Thenetproductionmatrix,(I )hasallitso-diagonalelementsnonpositive.itmaybe ToprovetheTheorem,itsucestoprovetheexistenceofanonnegativevectorQsolutionofequation Proof (I )TQ=Td; (3) ofanm-matrix(alsocalledaclasskmatrix(kohleretal.,1975))tobeanessentiallynonpositive matrixwithallitsprincipalminorspositive.therefore,matrix(i )isanm-matrix(berman triangular,anditsdiagonalelementsareequalto1.therefore,det(i )=1,andmoregenerally, alltheprincipalminorsofmatrix(i )areequalto1.itisawell-knowncharacteristicproperty calledanessentiallynonpositivematrix(bermanandplemmons,1979).furthermore,itislower- (BermanandPlemmons,1979). ratedcanbefullledusingthenonnegativeproduction/supplyratevectorq,uniquelydenedby: andplemmons,1979).thisimplies,inparticular,thatitsinverse(i ) 1isanonnegativematrix Adirectconsequenceofthispropertyisthat,aslongasthemodelapplies,anynonnegativedemand Q=(I ) 1d (4) 5

6 Nonnegativityofmatrix(I ) 1canbeeasilycheckeddirectly: Thefollowingrelationsareobtained,form>2.: 8<:bi+1;i=i+1;ifori=1;:::m 1 (I ) 1=26410:::0 bm1:::bm;m 11 b bi+k;i=i+k;i+pj=1;:::;k 1i+k;i+jbi+j;ifori=1;:::m 2;k=2;:::;m i: : Fromtheserelations,itcomesbyinductionthatsincematrixisnonnegative,matrix(I ) 1is alsononnegative. mustalsotakeintoaccounttheconstraintsandcostsrelatedtotheuseofparticularresources. ofthismodelinproductionplanningisthereforeveryappealing.however,arealisticproductionplan yieldingvectorqtwithinthetimehorizont,usingtheresourcesavailable.aninput-outputanalysis thusprovidesasimplemodeltodeterminetheproductionrequirementsofalltheproducts.theuse TheLeontiefmodel(4)appliesovertimeperiodTifthereexistsafeasibleproductionschedule Theconsideredproductionplanningproblemisdescribedbythefollowingparameters: 2.2ProductionPlanning products, productsaretheend-products,andthem nremainingproductsareintermediateandprimary -,theinput-outputmatrixofthesystem,withdimensionmm -nnumberofend-products -didemandrateforend-producti(i=1;:::;n);ddenotesthedemandratevector. -mnumberofproducts(primary,intermediateandend-products).byconvention,thenrst -hjunitaryinventoryholdingcostofproductj;j=1;:::;mperunitoftime pacityconstraintsusuallyrequiresaniterativeadjustmentprocess.recently,someattemptshavebeen niques,productionandstoragearenotgloballyoptimized.inaddition,satisfactionofproductionca- -pjproductionrateofproductj;j=1;:::;m -fjsetupcostofproductj;j=1;:::;m. InMaterialRequirementPlanning(MRP)andManufacturingResourcePlanning(MRPII)tech- 6

7 madetobuildmathematicalmodelsoftherequirementplanningmethod(gravesetal.,1998;grubbstromandmolinder,1994;hennetandbarthes,1998).inparticular,thedynamicmodelof(graves etal.,1998)describestheforecastupdatingprocessinarollinghorizonframework,andthemodelin constraints(forinstancethemultilevellotsizingproblem)orintegratethemunderasimpliedform. (HennetandBarthes,1998)representsproductionplanningasatrackingproblem. Onthecontrary,problemswithsmalltimebuckets,suchastheContinuousSetupLotsizingProblem acrucialrole(salomon,1991).modelswithlargetimebucketseitherdonotintegratetheresource timeframework.inthesemodels,thelengthoftheelementaryperiod,calledthetimebucket,plays Mostdeterministiclotsizingmodelsforproductionplanninghavebeenformulatedinthediscrete (CSLP),representmoreaccuratelytheresourceconstraintsoftheschedulingproblem.Butthey rapidlybecomeuntractablewhenthetimehorizonisincreased,becauseofthelargenumberofboolean variablesinvolvedintheirformulation. addressthelotsizingandschedulingissuesthroughtheresolutionofacycliceconomiclotsizing times,whichmaybeconsideredacceptableinsomeplanningproblems,becomesclearlyunrealisticat therealtimelevel.hence,inthecontextofrepetitivemultistageproduction,itisproposedtojointly beintegratedintotheplanningmodeltoguaranteefeasibility.also,theassumptionofconstantlead- Asstressedin(Rouxetal.,1999)foramulti-sitejob-shopproblem,realschedulingdecisionsmust Muckstadt,1994).Input-outputmodelsarecombinedwithcyclicschedulingconstraintstoformulate andschedulingproblem(celsp).themodellingapproachissimilartotheoneusedin(loerchand thelot-sizingdecisionprobleminamultistagemanufacturingsystemunderfairlystabledemands.in addition,thedenitionofthecelsprequirestheknowledgeoftheresourceassignmentpolicy.the consideredmanufacturingcontextisajob-shopwhereeachproductionactivity,denedbyitsoutput product,j,withj2(1;:::;m),mustbecompletedonaparticularresource,r.aresourcemaybe assignedtoseveralactivities. forend-products.thisratherunrealisticassumptionisusedtobuildanominalproductionschedule overanoptimizedproductionperiod.theproblemofadjustmentoftherealscheduletorealdemand 3CyclicLotScheduling ThemultistageCELSPisnowadressedundertheassumptionofconstantdemandrates(di,i=1;:::;n) 7

8 study,theexistenceofsafetystocksisimplicit,andtherealdemandsforproductsmayapplytoall theproductsandmaycoversafetystocksregulationaroundtheirnominallevels,aswellasactual usefulforoptimizingthedistributionofsafetystockswithinamultistageproductionmodel.inthis isconsideredinsection4.inadditiontotheseadjusments,andtolimittheirimportance,theuseof externaldemandvariations. safetystocksisclassicaltocompensatefordemanductuations.input-outputmodelsareparticularly 3.1GenericJobsandGenericTasks whichisk-periodichasbeenprovedusingtimedpetrinets(carlierandchretienne,1988).butdueto theproblemcomplexity,manyauthorshaverestrictedtheclassofinvestigatedschedulestoperiodic(or innitelyoften.forsucharecurrentjob-shopschedulingproblem,theexistenceofanoptimalsolution overaninnitetimehorizoncanbecharacterizedbyasetofgenerictasksthathavetobeperformed Asthedemandratesaresupposedconstant,thecostminimizingsolutionofthelotschedulingproblem 1-periodic)solutions(HanenandMunier,1995).Inparticular,thecommoncycleapproachhasbeen theoperationsmustbeperformedexactlyoncewithintheselectedtimehorizon.theyarecalledthe developedforsimultaneousdeterminationoflotsizesandschedules(ouennicheandboctor,1998). sucestocharacterizetheschedulewithinonetimehorizonhavingthelengthoftheperiod,t.all Underthecommoncycleapproach,theproductionschedulingpolicyisanundenitelylongperiodical repetitionofthesamesequencesoftasksonthedierentmachines.todenesuchaschedule,it generictasks.someschedulingpropertieswillbeestablishedtosimplifythetreatmentofthismodel. therelevantentitiesforprecedenceconstraintsarethegenerictaskswithineachgenericjob,notthe Itthenbecomesnecessarytodeveloptheinput-outputgraphintosubgraphs.Eachsubgraphrepresents agenericjob. amountsofproducts.thisisparticularlyclearforintermediateproductsusedbyseveralendproducts. Whenusingtheinput-outputmodel,oneencountersadicultytoformulateschedulingconstraints: inquantitytdi.thegenerictaskswhichconstitutejobiareassociatedwithallthepathsofthe gozintographhavingproductiastheirterminalnode.thus,byconstruction,thesubgraphofeach producti,theassociatedoperationisproductionofquantityjllitdiofproductj.inthesubgraph jobisapureassemblygraph.forinstance,ifthereisapathoflength2,say(j;l;i)fromproductjto Eachgenericjobi(i=1;:::;n)isassociatedwiththeendproducti(i=1;:::;n),tobeproduced 8

9 othersublotsofthesamecomponent,andpossiblytothesublotsoftheothercomponentsproduced totheothergenerictasksofthesamejobthroughprecedenceconstraints.butitisalsorelatedtothe nentwithinaperiodissplitintosublots.anactivityproducingasublotisagenerictask.itisrelated ofjobj,thereisaprecedenceconstraintbetweenoperation(j;l;i)andoperation(l;i). bythesameresourceifthisisasharedresource. Ifseveralgenericjobsrequirethesametypeofcomponents,thentheproductionlotofthiscompo- tasks1,3,5,7,8. andcomposedoftasks2,4,6,9,10andtheotheroneassociatedwithend-product(e)andcomposedof graphoffig.2.thisdevelopedgraphdescribestwogenericjobs:oneassociatedwithend-product(d) Inagreementwiththisdenitionofgenericjobs,thegozintographofFig.1isdevelopedintothe Product A on Resource 3 Figure2:GraphdevelopingthegraphofFig.1 6 Product B Resource Product C Resource 1 disjunctiveresourcesharingconstraints:resource1isusedtoproduceproductsdande,resource2 constraintsbetweenthesublotsofthesameproduct(productsa,b,c)anddashedzonesrepresenting sentingthegozintoparameters.twotypeofdashedzonesareconsidered;dashedzonesrepresenting Inthedevelopedgraph,arcscorrespondtoprecedenceconstraints,withvaluationsstillrepre- 2 1 Product D Product E isusedtoproduceproductsbandc,andresource3isusedtoproduceproducta. 9

10 tojobiifi=j(s):itisthestartingoperationofapath(j;:::;i)endingatnodeiintheprecedence graphofgenerictasks. Letpdenotethetotalnumberofgenericmanufacturingtasks.Agenerictasks2(1;:::;p)belongs i=sinquantitydit.thedurationofterminaltasksisst,with endproductarethesame. itsassociatedpathreducestonodei.forsimplicity,theindexofaterminaltaskandoftheassociated Thus,atasks2(1;:::;n)isaterminaltask.Suchataskconsistsinproducingtheend-product Thengenerictasksproducingtheend-productsarecalledterminaltasks.Ifsisaterminaltask, isdenedbythepath(j;l;:::;i),thentask(s)isdenedby(l;:::;i).tasksconsistsinproducing thedevelopedprecedencegraph(thegraphoffig.2fortheexample).itisdenoted(s).iftasks Ifs2(n+1;:::;p),thenitisnotaterminaltask,andthereisauniquegenerictaskaftersin s=ds=psfors=1;:::;n: (5) productj=p(s)inquantityqst,withqs=jll0idi: Thedurationofgenerictasks2(n+1;:::;p)issT,with ThemainvariablesoftheCELSParethedurationofthecommoncycleperiodTand,withina 3.2ProblemFormulations=qs=pjforj=P(s): (6) typicaltimeintervalwithdurationt,thegenericperiod[0;t],thestarttimest(s)ofgenerictasks assignedtoproductionofproductj. productj:(j)=fs;p(s)=jg:thecardinalityof(j),whichisthenumberofgenerictasks producingj,isdenoted!j.theresourcer= (s)ofthegenerictasksproducingjistheresource Let(j)denotethesetofgenerictasksofproduction(orsupply)ofthesameintermediate(orprimary) s2(1;:::;p).thesubsequentdatesoftaskssimilartosaret(s)+ktwithk=1;2;:::. rg:thecardinalityoftheset(r)isdenotedr.10 taskstobecompletedonaparticularresource,r,isdenoted(r)anddenedby:(r)=fs; (s)= Resourceconstraintscanbecombinedwithdisjunctiveconstraintsonsublots.Thesetofgeneric

11 3.2.1Theproblemconstraints Constraintsareformulatedoverthegenericperiod. Resourceconstraints PrecedenceconstraintsT(s)+sTT(t)ifsprecedest,s>n Resourcesaresupposedsimpleandunitary.Resourceconstraintsapplytothegenerictasksofthe sameproductandtothegenerictasksofthevariousproductsusingthesameresource. T(s)+sTTfors2(1;:::;n) (7) (8) tointroduceauxiliarybooleanvariablesxskunderthefollowingconvention: Toobtainaconjunctivelinearformulationofsuchdisjunctiveconstraints,aclassicaltechniqueis xsk=8><>:1iftasksisinthekthposition T(s)+sT T(t)T(2 xsk xt;k+1) 8s;t; (s)= (t)=r;k=1;:::;r 1: withr 0otherwise Xk=1xsk=18ssuchthatr= (s) onresourcer= (s) (10) (11) (9) particularbyalargeconstant,usuallydenotedm.suchaformulationwitha"bigm"isoftenused attherighthandsideoftheinequality,couldbereplacedbyanypositivescalarlargerthant,in Notethatinformulation(10)ofdisjunctiveconstraints,variableTwhichappearsmultiplicatively Xs2rxsk=18r2(1;:::;R);k2(1;:::r): forresourceconstraintsinjob-shopschedulingproblems(e.g.in(ouennicheandboctor,1998)).here, (12) No-waitconstraintswithinlots theuseofvariabletinplaceofmin(10)isduetotheinterpretationoftheproblemasacyclic schedulingproblemforwhichtheheightbetweentwoinstancesofatask(denedasin(hanenand Munier,1995))isequalto1forallthegenerictasks,underthecommoncycleapproach. Withinthegenericperiod,sublotsofthesamecomponentcorrespondtoitsuseindierentstages 11

12 evaluatedin(mckoyandp.j.egbelu,1999).inparticular,ithasbeenshownthatthenon-grouping continuouslyprocessedwithinoneaggregatedlot.thesetwostrategieshavebeencomparedand strategymaynotablydecreasecycletimes,butthatthisadvantagehastobebalancedagainstthe fordierentendproducts.twodierentstrategiesmaybeinvestigatedforthesequencingofsublots: theymaybeprocessedseparately,asiftheywererelatedtodierentcomponents,ortheymaybe increaseinthenumberofsetups. Itisthusassumedthatallthesublotsofthesamelotshouldbeproducedinsequencewithout interruption,inordertohaveonlyoneset-upcostfortheconsideredproductwithineachperiod. Thissectionshowshowtheconstraintsofthegroupingstrategymaybeintegratedinthemodel. LetTb(j)denotethestartdateofproductj,possiblydenedasthelatestdatesuchthat: Theconstraintsofnon-idlingwithinlotstaketheform: andlette(j)denotethecompletiondateofproductj,possiblydenedastheearliestdatesuchthat: Te(j)T(s)+sT8s2(j): Tb(j)T(s)8s2(j); (14) (13) 3.2.2TheObjectiveFunctionTe(j) Tb(j)=TX Theobjectiveistominimizethesumofsetupcostsandinventoryholdingcostsperunitoftime.It s2(j)s: (15) canbedecomposedintothreeterms:j=c1+c2+c3 -set-upcostsperunitoftime:c1=(pmj=1fj)=t withc1;c2;c3denedasfollows: -inventoryholdingcostsforendproductsperunitoftime:c2=tk2withk2=pni=1hi(1 di=pi)di=2 -inventoryholdingcostsforintermediateandprimaryproductsperunitoftime: (16) (OuennicheandBoctor,1998). c3=pps=n+1hjqs(t((s)) T(s)+qsT=2pj qst=2pl)withj=p(s)andl=p((s)). Theexpressionsofinventoryholdingcostsperunitoftimearesimilartotheonesobtainedin 12

13 Itisproposedtoreformulatetheproblemunderthechangesofvariables: 3.3ADecomposedResolutionMethod latedasfollows: Thenewvariablesarecallednormalizeddates.Constraints(7),(8),(10),(15)arethenreformu- Z(s)=T(s)=Tfors=1;:::;p;Zb(j)=Tb(j)=T;Ze(j)=Te(j)=Tforj=1;:::;m: Z(s)+sZ(t)ifsbeforet,s2(n+1;:::;p) Z(s)+s1fors2(1;:::;n) (17) Constraints(9),(11),(12)remainunchanged.Thetermc3inJ(16)canbere-writtenintheform: Z(s)+s Z(t)(2 xsk xt;k+1)8s;t; (s)= (t)=r;k=1;:::;r 1: Ze(j) Zb(j)=X s2(j)s: (20) (18) (19) c3=tk3fork3=pps=n+1hjqs(z((s)) Z(s)+qs=2pj qs=2pl),withj=p(s)andl=p((s)). TheCELSPcanbesolvedoptimallyinadecomposedway: -solverstanormalizedschedulingproblemwithvariablesz(s)andxsk ThisnewformulationoftheconstraintsoftheCELSPallowstostatethefollowingTheorem: -computetheoptimalvalueoftbyaneoq-typeformula: Theorem2 -computetheoptimalstarttimesofoptimalproductionlotsbyt(s)=tz(s). Proof T=vut(mXj=1fj)=(k2+k3): (21) variabletdoesnotappearintheconstraintsandissimplyamultiplyingfactorinthecriterionterm thenormalizedcelsp.moreover,theonlytermofcriterionjinvolvingvariablesz(s)isc3,as VariableT>0isnotinvolvedinanyoftheconstraints(17),(18),(19),(20),(9),(11),(12)of 13

14 thefollowinglinearcriteriontobeminimized:c=pps=n+1hjqs(z((s)) Z(s)): notfeasible.asthenextstep,assumingthattheproblemisfeasible,theoptimalvalueoftcanbe c3,theoptimalsolutionofthecelspwithrespecttovariablesz(s)andxskcanbeindependently explicitelyobtainedthroughtheoptimalityconditionsofcriterionjwithrespecttot.itisthen obtainedbysolvingthenormalizedschedulingproblemdenedbytheaforelistedconstraintsandby expressedbytheeoq-typeformula(21)statedinthetheorem. InfeasibilityofthenormalizedschedulingproblemmayhappenonlyifthecompleteCELSPis parameterintheexpressionofdisjunctiveconstraintsconsiderablyimprovesthenumericalrobustness oftheresolutionprocess. problemcaneasilybesolvedbymixedlinearprogramming.thefactofavoidingtheuseofa"bigm" Asforanyjob-shopschedulingproblem,thecurseofdimensionalityimposestouseheuristics Aslongasthenumberofbooleanvariablesxskdoesnotgettoolarge,thenormalizedscheduling more. usedinthiscasebuttheoptimalityofthevalueoftcomputedbyformula(21)isnotguaranteedany numberofjobsgetslarge,asitisgenerallythecaseinpractice.thedecomposedmethodcanstillbe ratherthananoptimalresolutiontechniqueinsolvingthenormalizedschedulingproblemwhenthe Thedicultytousetheresultsoflot-sizingandschedulingoptimisationproblemsinindustrialapplicationshasbeenstressedbymanyauthors(M.Ben-Daya,1999;Brandimarteetal.,1995).Thisis oftheproblemdata.clearly,demanductuationsareanimportantcauseofchangesintheproblem data.inmanyindustries,theseuctuationsarecontrolledthroughamasterproductionschedule (MPS)overarollingtimehorizon.IncreasingthelengthofthefrozenpartoftheMPShasbeen mainlyduetothecombinedeectofthehighsensitivityofthesolutionsandofthehighvariability showntobeacriticalfactortoreducethenervousnessofthemrpsystem(zhaoandlee,1996). areretatedtomachinefailureanddeterioration,qualityinspectionandmaintenance.theimportance ofthesefactorshasbeenshowntobeparticularlyhighinmultistagemanufacturingsystems(m.ben- Apartfromvariationsofdemandratesforendproducts,someofthemainreasonsfordatachanges 4AReactiveScheduler 14

15 changesareconsidered,itispossibletoobtaingoodimplementablesolutionsbyadaptationofthe nominaloptimizedsolution. Daya,1999). 1.Theadaptedsolutionischosenperiodical,withthesameperiodTasinthenominalsolution. However,aslongasthedemandandproductionpatternremainsstationaryandthatlimiteddata thenominalone.thiscanbeachievedbyreplacing,inthenormalizedgenericschedulingproblem, constraints(19)bythesetofprecedenceconstraintsdescribingthenominalsequenceoftaskson resources. 3.Theadaptedsolutionisobtainedbysolvingthemodiednormalizedgenericschedulingproblem 2.Thesequenceoftasksoneachmachineischosenidenticalintheadaptedsolutionandin usingthecurrentdataandtheassumptionsof1and2. 5NumericalEvaluation itonlyinvolvesconjunctiveconstraintsandrealvariables. Themodiednormalizedgenericschedulingproblemismuchsimplerthantheoriginalonebecause stages.intherststage,thecompleteproblemissolvedforthenominalvaluesofdemandand Thepracticalimplementationoftheproposedlot-sizingandschedulingtechniqueproceedsintwo productionrates.thesecondstageisthereal-timeadjustmentofthesolutioninresponsetoreal uctuationsofdemandandproductionrates.suchanadjustmentispossibleonlyifproduction overload.themethodisnowillustratedonthemultistageproductstructureoffig.1andfig.2,under dierentsetsofdata. 5.1Thenominaloptimalschedule capacityovertheperiodisnotexceeded.furtheradjustmentsarerequiredinthecaseofcapacity Foreachproductj,theunitholdingcostishj=0:01. demandratesforintermediateproductsarenull,andthevectorofproductionratesis[ ]. Atthenominalpoint,demandrateforproductEisd1=0:8,demandrateforproductDisd2=0:5, 15

16 chartoffig.3,withvariablesz(q)expressedaspercentagesoftheperiod. TheoptimalnominalsolutionofthenormalizedschedulingproblemisdisplayedthroughtheGantt obtainedusingtheeoq-typeexpression(21)ist'14:0timeunits. Thesumofxedcostsforthe5productshasbeentakenequalto1000.Then,thevalueofT Figure3:Ganttchartforagenericperiod cent.thesolutionsobtainedfortheoptimalandforthesimpliedschedulingproblemarereported Inthedataofthenumericalexample,vectorsdandparenowrandomlyvariedupto10to50per 5.2Thereactiveschedule Resource 3 Resource 2 Resource % 20% 40% 60% 80% 100% time axis ontable1.maximal disturbance level 10% 20% 30% 40% 50% 16 Number of infeasible solutions 0/10 0/10 2/10 3/10 6/10 Average relative suboptimality of the schedule < 10-4 < Average relative difference in the period length 4% 7% 10% 12% 18% Suboptimality gap using the nominal period 0.1% 0.5% 0.9% 1.3% 1.7%

17 imposingthatthesequenceoftasksoneachmachineidenticaltotheoneobtainedforthenominal Twotypesofsimplicationcanbemadetoadjustthescheduletoreal-timeconstraints. Accordingtotheapproachdevelopedintheprecedingsection,therstsimplicationconsistsin Table1 setofdata.suchasimplicationleadstoconsiderablesavingsincomputationaltime.thesimplied thissimplicationismerelymarginal(lessthan1=1000inrelativevalue). schedulingproblemtobesolvedovereachperiodisastandardlinearprogramonlyhavingcontinuous variables.onthecontrary,theoriginalschedulingproblemalsoinvolvesthebooleanvariablesxsk period.fromthecomputationalviewpoints,thesavingsarenegligiblesinceagoodapproximationof denedin(9).onthesmallsizeexampleconsideredhere,thecomputationaltimeisdecreasedbya theoptimalvalueoftheperiodisobtainedbyapplyingtheeoq-typeformula(21)totheproblem factorrangingfrom20to100.itisclearfromtable1thattheaveragecriteriondeteriorationdueto dataandthesolutionofthesimpliedschedulingproblem.table1showsthatfordatavariationsup to50percent,theaveragerelativedierenceintheperiodlengthiscloseto20percent.andthatit Thesecondsimplicationconsistsofusingthenominalperiodinsteadoftheoptimaloneateach inducesasuboptimalitygapofalmost2percent.thus,fromthepureoptimalityviewpoint,itwould beecienttoadjusteachperiodandtheproductionlotsizesaccordingly.however,fromapratical viewpoint,itiscertainlypreferabletomaintaintheproductionperiodatitsnominalvalueaslongas Theproposedreactiveschedulingtechniquehastobeadjustedtodealwiththecaseswhennofeasible thechangesindataremainlowanddonotinvolveaclearstationarytrend. 5.3Adjustmenttoreal-timeconditions solutionexists.thiscasefrequentlyoccursunderimportantvariationsofdemandloadand/orproductionrates.thecomputedfrequenciesofoccurenceofsuchcasesarereportedonthesecondrow oftable1. notfeasible,and,fromthepracticalviewpointthereisnorealrestrictioninassessingfeasibilityonly solutionwhiletheoriginalschedulingproblemisfeasible,thiscasehasneverbeenencounteredinthe experiments.thus,ingeneral,bothproblemscanbesimultaneouslyconsideredaseitherfeasibleor Itisimportanttonotethat,althoughthesimpliedschedulingproblemmayhavenofeasible 17

18 orbacklogs.thecyclicapproachisnotnaturallywell-suitedfordealingwithsuchcases.however, job-shop,eitherbecauseofexcessivedemandratesorlowproductivity.ifthesystemdoesnotpossess extraresources,theonlysolutiontothisproblemistoproducelessthanthedemand,withlosssales fromthesolutionofthesimpliedproblem. theceslpcanbemodiedtotreatthiscase. Theabsenceofasolutiontothegenericschedulingproblemcorrespondstoanoverloadofthe normalizedgenericschedulingproblemisnotfeasible,afeasiblemakespanproblemcanbeformulated. thesimpliedschedulingproblem,exceptforconstraints(18),whicharereplacedby(23): Thenormalizedmakespanvalue,denoted,canbeminimisedunderalltheschedulingconstraintsof portionalityfactorleadstothereductionofallthegenerictaskdurationssbythisfactor.ifthe Itcanbeobservedfromequations(5),(6)thatreducingallthedemandratesbythesamepro- Z(s)+sZ(t)ifsbeforetinthenominalschedule,s2(n+1;:::;p) Z(s)+sfors2(1;:::;n) Minimizesubjectto (22) thereisnowaitingtimealongthispath,thevalueofthemakespancanbelimitedto1(or1 )by Theoptimalvalueofthemakespanisthelengthofthecriticalpathinthegraphoftasks.As Ze(j) Zb(j)=X s2(j)s: (24) (23) dividingallthedemandratedby(resp.by easilysolved.then,accordingtothecompanypolicy,theremainingdemandratevector,(1 )d maycorrespondtolostsalesortobacklogsforthefollowingperiod. thenbere-formulatedunderthereduceddemandrates.thisproblemisclearlyfeasibleandcanbe 1 ).Thenormalizedgenericschedulingproblemcan reliabilityoftheequipmentsandworkteams.suchdisturbancesmustbetakenintoaccountwhen 6Conclusions buildingthelot-sizingandschedulingpolicy,speciallyinthecaseofmultistageproduction,forwhich disturbancesareoftenampliedthroughtheproductstructure. Mostofthemodernmanufacturingcompaniesoperateinvariablecompetitivemarkets,withthe consequenceofhavingtoreacttouctuatingdemands.anotherfactorofdisturbancesistheimperfect 18

19 withtheadaptivityadvantageofadjustingthelengthsoftaskstotherealevolutionofdemandand productivity. Theapproachfollowedinthispapercombinestherepetitivepropertiesofcyclictasksequencing problemintoanormalizedschedulingproblem,whichcanbesolvedrstandindependently,andalot sizingproblem.itisofcurrentpracticetoseparatelytreattheproblemsoflot-sizingandscheduling, constantdemandandproductionrates.thecommoncycleapproachallowstodecomposethecyclic butusuallywiththelot-sizingproblemtreatedrst.here,byfocusingtheanalysisonstoragecosts, Anormalizedlot-sizingandschedulingproblemhasrstbeenformulatedundertheassumptionof forsolvingthehighlydisturbedcases,forwhichthemanufacturingsystemisoverloaded. ithasbeenestablishedthatschedulingdecisionshaveanimportantinuenceonlot-sizingdecisions. thenominalsequencingoftasksonresourcesbutchangingthedatesanddurationsoftasks.the eciencyofthisadjusmentschemehasbeenshownnumerically.amethodhasnallybeenproposed Arapidandecientadjustmentofthenominalscheduletorealdataisobtainedbymaintaining References Baker,K.R.(1993).Requirementsplanning.In:HandbooksinOperationsResearchandManagement Berman,A.andR.J.Plemmons(1979).NonNegativeMatricesintheMathematicalSciences.AcademicPress. Science,vol.4,S.C.Graves,A.H.G.RinnooyKan,P.H.ZipkinEds..North-Holland.pp.571{ 628. Bourland,K.E.andC.A.Yano(1997).Acomparisonofsolutionapproachesforthexed-sequence Bomberger,E.(1966).Adynamicprogrammingapproachtoalotsizeschedulingproblem.ManagementScience,Vol.12,pp Brandimarte,P.,W.UkovitchandA.Villa(1995).Factorylevelaggregatescheduling:Bridgingthe economiclotschedulingproblem.iietransactions,vol.29,pp gapbetweenoptimizedschedulingandrealtimecontrol.in:optimizationmodelsandconcepts inproductionmanagement,p.brandimarteanda.villaeds..gordonandbreachpublishers. pp.187{

20 Carlier,J.andP.Chretienne(1988).Timedpetrinetsschedules.In:AdvancesinPetriNets:Lecture Elmaghraby,S.E.(1978).Theeconomiclotschedulingproblem(elsp):reviewandextensions.ManagementScience,Vol.24,pp Gallego,G.(1990).Anextensiontotheclassofeasyeconomiclotschedulingproblems.IIETransactions,vol.22,pp NotesinComputerScience,No.340.Springer.pp.62{84. Graves,S.C.,D.B.KletterandW.B.Hetzel(1998).Adynamicmodelforrequirementplanningwith Grubbstrom,R.W.andA.Molinder(1994).Materialrequirementplanningemployinginput-output applicationtosupplychainoptimization.operationsresearch,vol.46,suppno.3,pp.s35-s49. Grubbstrom,R.W.andP.Ovrin(1992).Intertemporalgeneralizationoftherelationshipbetween analysisandlaplacetransforms.intl.j.productioneconomics,vol.35,pp Hanen,C.andA.Munier(1995).Cyclicschedulingonparallelprocessors:Anoverview.In:Scheduling materialrequirementplanningandinput-outputanalysis.intl.j.productioneconomics,vol. 26,pp Hennet,J.C.(1998).Afeedbackcontrolapproachtomultistageproductionplanningbasedoninputoutputanalysis.In:LAASReportNo98159,12thInternationalConferenceonInput-Output TheoryanditsApplications,P.Chretienne,E.G.Coman,J.K.Lenstra,Z.LiuEds.JohnWiley andsonsltd.pp.193{226. Hennet,J.C.andI.Barthes(1998).Closed-loopplanningofmulti-levelproductionunderresource Kohler,G.J.,A.B.WhinstonandG.P.Wright(1975).OptimizationoverLeontiefsubstitutionsystems. constraints.in:proceedingsoftheifacsymposiumincom'98,nancy,(france). Techniques,New-York(USA),18-22Mai1998,14p. Loerch,A.G.andJ.A.Muckstadt(1994).Anapproachtoproductionplanningandschedulingin NorthHolland/AmericanElsevier. M.Ben-Daya,A.Rahim(1999).Multi-stagelotsizingmodelswithimperfectprocessesandinspection errors.productionplanningandcontrol,vol.10,pp cyclicallyscheduledmanufacturingsystems.int.journalofproductionresearch,vol32,pp

Symmetrical short circuit on Synchronous Machine

Symmetrical short circuit on Synchronous Machine Introduction Short circuit study is one of the basic power system analysis problems. It is also known as fault analysis. When a fault occurs in a power system, bus voltages reduces and large current flows

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

Linear Programming: Chapter 5 Duality

Linear Programming: Chapter 5 Duality Linear Programming: Chapter 5 Duality Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Resource

More information

Lesson 19: Equations for Tangent Lines to Circles

Lesson 19: Equations for Tangent Lines to Circles Classwork Opening Exercise A circle of radius 5 passes through points ( 3, 3) and (3, 1). a. What is the special name for segment? b. How many circles can be drawn that meet the given criteria? Explain

More information

If n is odd, then 3n + 7 is even.

If n is odd, then 3n + 7 is even. Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that

More information

Consequently, for the remainder of this discussion we will assume that a is a quadratic residue mod p.

Consequently, for the remainder of this discussion we will assume that a is a quadratic residue mod p. Computing square roots mod p We now have very effective ways to determine whether the quadratic congruence x a (mod p), p an odd prime, is solvable. What we need to complete this discussion is an effective

More information

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science Adam J. Lee adamlee@cs.pitt.edu 6111 Sennott Square Lecture #20: Bayes Theorem November 5, 2013 How can we incorporate prior knowledge? Sometimes we want to know

More information

Chapter 9. Miscellaneous Applications

Chapter 9. Miscellaneous Applications hapter 9 53 Miscellaneous Applications In this chapter we consider selected methods where complex variable techniques can be employed to solve various types of problems In particular, we consider the summation

More information

Stochastic Models for Inventory Management at Service Facilities

Stochastic Models for Inventory Management at Service Facilities Stochastic Models for Inventory Management at Service Facilities O. Berman, E. Kim Presented by F. Zoghalchi University of Toronto Rotman School of Management Dec, 2012 Agenda 1 Problem description Deterministic

More information

SJS DATA INTEGRATION LIMITED Financial Accounts 2013-09-30 REGISTERED NUMBER: 08214170 (England and Wales)

SJS DATA INTEGRATION LIMITED Financial Accounts 2013-09-30 REGISTERED NUMBER: 08214170 (England and Wales) SJS DATA INTEGRATION LIMITED Financial Accounts 2013-09-30 REGISTERED NUMBER: 08214170 (England and Wales) Abbreviated Unaudited Accounts for the Period 13 September 2012 to 30 September 2013 for SJS DATA

More information

Rolle s Theorem. q( x) = 1

Rolle s Theorem. q( x) = 1 Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Two Fundamental Theorems about the Definite Integral

Two Fundamental Theorems about the Definite Integral Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than

More information

Lecture: Financing Based on Market Values II

Lecture: Financing Based on Market Values II Lecture: Financing Based on Market Values II Lutz Kruschwitz & Andreas Löffler Discounted Cash Flow, Section 2.4.4 2.4.5, Outline 2.4.4 Miles-Ezzell- and Modigliani-Miller Miles-Ezzell adjustment Modigliani-Miller

More information

Notes: Chapter 2 Section 2.2: Proof by Induction

Notes: Chapter 2 Section 2.2: Proof by Induction Notes: Chapter 2 Section 2.2: Proof by Induction Basic Induction. To prove: n, a W, n a, S n. (1) Prove the base case - S a. (2) Let k a and prove that S k S k+1 Example 1. n N, n i = n(n+1) 2. Example

More information

7. Cauchy s integral theorem and Cauchy s integral formula

7. Cauchy s integral theorem and Cauchy s integral formula 7. Cauchy s integral theorem and Cauchy s integral formula 7.. Independence of the path of integration Theorem 6.3. can be rewritten in the following form: Theorem 7. : Let D be a domain in C and suppose

More information

Position Auctions with Externalities

Position Auctions with Externalities Position Auctions with Externalities Patrick Hummel 1 and R. Preston McAfee 2 1 Google Inc. phummel@google.com 2 Microsoft Corp. preston@mcafee.cc Abstract. This paper presents models for predicted click-through

More information

Word templates are available for many of our journals, but please check the Instructions for Authors page of the journal before you use them.

Word templates are available for many of our journals, but please check the Instructions for Authors page of the journal before you use them. Submitting Your Manuscript to ScholarOne Manuscripts: A Guide To submit your manuscript, you will need the following files: A Title page file with the names of all authors and co-authors* Main document

More information

The Real Estate Enterprise Supply Chain Logistics Model Research

The Real Estate Enterprise Supply Chain Logistics Model Research , pp.75-84 http://dx.doi.org/10.14257/ijunesst.2015.8.12.08 The Real Estate Enterprise Supply Chain Logistics Model Research Jian-ping You Central South University csuyoujianping@126.com Abstract To overcome

More information

AXIS AWARDS APPLICATION PREPARATION DOCUMENT

AXIS AWARDS APPLICATION PREPARATION DOCUMENT AXIS AWARDS APPLICATION PREPARATION DOCUMENT INSTRUCTIONS PLEASE READ CAREFULLY This document lists all the questions in the online application form. Use this document to help prepare your application

More information

Mathematical Induction

Mathematical Induction Mathematical Induction Victor Adamchik Fall of 2005 Lecture 1 (out of three) Plan 1. The Principle of Mathematical Induction 2. Induction Examples The Principle of Mathematical Induction Suppose we have

More information

z-scores AND THE NORMAL CURVE MODEL

z-scores AND THE NORMAL CURVE MODEL z-scores AND THE NORMAL CURVE MODEL 1 Understanding z-scores 2 z-scores A z-score is a location on the distribution. A z- score also automatically communicates the raw score s distance from the mean A

More information

Intersection Dimension and Maximum Degree

Intersection Dimension and Maximum Degree Intersection Dimension and Maximum Degree N.R. Aravind and C.R. Subramanian The Institute of Mathematical Sciences, Taramani, Chennai - 600 113, India. email: {nraravind,crs}@imsc.res.in Abstract We show

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Maths Home Learning Task. Year 9. Task 3: Shapes Galore

Maths Home Learning Task. Year 9. Task 3: Shapes Galore Maths Home Learning Task Year 9 Task 3: Shapes Galore Name Tutor Group Teacher Given out: Monday 29 February Hand in: Monday 7 March Parent Comment Staff Comment Level ATL Target Instructions: Please read

More information

CHAPTER FIVE. 5. Equations of Lines in R 3

CHAPTER FIVE. 5. Equations of Lines in R 3 118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

Proof of Infinite Number of Fibonacci Primes. Stephen Marshall. 22 May Abstract

Proof of Infinite Number of Fibonacci Primes. Stephen Marshall. 22 May Abstract Proof of Infinite Number of Fibonacci Primes Stephen Marshall 22 May 2014 Abstract This paper presents a complete and exhaustive proof of that an infinite number of Fibonacci Primes exist. The approach

More information

Iterations of sum of powers of digits

Iterations of sum of powers of digits International Journal of Computer Discovered Mathematics Volume 0 (2015) No.0 pp.1-4 c IJCDM Received 12 June 2015. Published on-line 12 June 2015 DOI: web site: c The Author(s) 2015. This article is published

More information

Retirement Financial Planning: A State/Preference Approach. William F. Sharpe 1 February, 2006

Retirement Financial Planning: A State/Preference Approach. William F. Sharpe 1 February, 2006 Retirement Financial Planning: A State/Preference Approach William F. Sharpe 1 February, 2006 Introduction This paper provides a framework for analyzing a prototypical set of decisions concerning spending,

More information

A Factoring and Discrete Logarithm based Cryptosystem

A Factoring and Discrete Logarithm based Cryptosystem Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 11, 511-517 HIKARI Ltd, www.m-hikari.com A Factoring and Discrete Logarithm based Cryptosystem Abdoul Aziz Ciss and Ahmed Youssef Ecole doctorale de Mathematiques

More information

CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction. Linda Shapiro Winter 2015 CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction Linda Shapiro Winter 2015 Background on Induction Type of mathematical proof Typically used to establish a given statement for all natural

More information

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming.

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming. Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, 2011 Lecture 6 In which we introduce the theory of duality in linear programming 1 The Dual of Linear Program Suppose that we

More information

A Rough-Cut Capacity Planning Model with Overlapping

A Rough-Cut Capacity Planning Model with Overlapping 1 A Rough-Cut Capacity Planning Model with Overlapping Baydoun G. 1, Haït A. 2 and Pellerin R. 1 1 École Polytechnique de Montréal, Montréal, Canada georges.baydoun, robert.pellerin@polymlt.ca 2 University

More information

A Logic-Based Approach to Cloud Computing

A Logic-Based Approach to Cloud Computing A Logic-Based Approach to Cloud Computing Jan Van den Bussche (Hasselt University, Belgium) joint work with Tom Ameloot and Frank Neven 1 Origins of Cloud Computing Large websites (Amazon, Google, Facebook)

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.2 Mathematical Induction I Copyright Cengage Learning. All rights reserved.

More information

Implementations of tests on the exogeneity of selected. variables and their Performance in practice ACADEMISCH PROEFSCHRIFT

Implementations of tests on the exogeneity of selected. variables and their Performance in practice ACADEMISCH PROEFSCHRIFT Implementations of tests on the exogeneity of selected variables and their Performance in practice ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag

More information

6 The Literature Review

6 The Literature Review 6 The Literature Review The literature review is important because: It describes how the proposed research is related to prior research in statistics. It shows the originality and relevance of your research

More information

Math 421, Homework #5 Solutions

Math 421, Homework #5 Solutions Math 421, Homework #5 Solutions (1) (8.3.6) Suppose that E R n and C is a subset of E. (a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as defined in Definition

More information

Geometry of the 3D Pythagoras Theorem

Geometry of the 3D Pythagoras Theorem Journal of Mathematics Research; Vol. 8, No. 6; December 2016 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education Geometry of the 3D Pythagoras Theorem 1 Berlin, Germany

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

Single Stage Light Business Case Template

Single Stage Light Business Case Template Better Business Cases Single Stage Light Business Case Template Prepared by: Prepared for: Date: Version: Status: Better Business Cases Single Stage Light Business Case Template Document Control Document

More information

The 4-ordered Hamiltonicity. in planar graphs

The 4-ordered Hamiltonicity. in planar graphs The 4ordered Hamiltonicity and the spanning linkedness in planar graphs Kenta Ozeki (National Institute of Informatics, Japan) (JST, ERATO, Kawarabayashi Large Graph Project) kordered (Hamiltonian) G:graph

More information

Green Big Data. A Green IT / Green IS Perspective on Big Data

Green Big Data. A Green IT / Green IS Perspective on Big Data Green Big Data A Green IT / Green IS Perspective on Big Data Agenda 1. Starting Point and Research Question 2. Subject of Analysis 3. Research Methodology 4. Results 5. Conclusion Green Big Data 2 Starting

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

More information

b) Describe the difference between open- and closed-loop control.

b) Describe the difference between open- and closed-loop control. Page 1 LAST NAME FIRST NAME MATRIKELNO. Problem 1 (eachwith2points) a) Draw the basic structure of the classical control loop and denote the signals disturbance, desired (reference) value, and control

More information

Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring

Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring Breaking Generalized Diffie-Hellman Modulo a Composite is no Easier than Factoring Eli Biham Dan Boneh Omer Reingold Abstract The Diffie-Hellman key-exchange protocol may naturally be extended to k > 2

More information

Multi-Armed Bandit Problems

Multi-Armed Bandit Problems Machine Learning Coms-4771 Multi-Armed Bandit Problems Lecture 20 Multi-armed Bandit Problems The Setting: K arms (or actions) Each time t, each arm i pays off a bounded real-valued reward x i (t), say

More information

A new continuous dependence result for impulsive retarded functional differential equations

A new continuous dependence result for impulsive retarded functional differential equations CADERNOS DE MATEMÁTICA 11, 37 47 May (2010) ARTIGO NÚMERO SMA#324 A new continuous dependence result for impulsive retarded functional differential equations M. Federson * Instituto de Ciências Matemáticas

More information

Lecture 2: Probability

Lecture 2: Probability Lecture 2: Probability Assist. Prof. Dr. Emel YAVUZ DUMAN MCB1007 Introduction to Probability and Statistics İstanbul Kültür University Outline 1 Introduction 2 Sample Spaces 3 Event 4 The Probability

More information

AMBIGUOUS CLASSES IN QUADRATIC FIELDS

AMBIGUOUS CLASSES IN QUADRATIC FIELDS MATHEMATICS OF COMPUTATION VOLUME, NUMBER 0 JULY 99, PAGES -0 AMBIGUOUS CLASSES IN QUADRATIC FIELDS R. A. MOLLIN Dedicated to the memory ofd. H. Lehmer Abstract. We provide sufficient conditions for the

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

MAGIC CUBES. Since antiquity mathematicians (and not only them) have taken an interest in constructing

MAGIC CUBES. Since antiquity mathematicians (and not only them) have taken an interest in constructing MAGIC CUBES Marian TRENKLER Since antiquity mathematicians (and not only them) have taken an interest in constructing magic squares. Probably the rst magic square ever created is the one shown in Fig.1.

More information

A TM. Recall the A TM language: A TM = { M, w M is a TM and M accepts w.} is undecidable. Theorem: The language. p.2/?

A TM. Recall the A TM language: A TM = { M, w M is a TM and M accepts w.} is undecidable. Theorem: The language. p.2/? p.1/? Reducibility We say that a problem Q reduces to problem P if we can use P to solve Q. In the context of decidability we have the following templates : If A reduces to B and B is decidable, then so

More information

Danielle M. Varda, PhD University of Colorado Denver School of Public Affairs. Lead. Solve. Change

Danielle M. Varda, PhD University of Colorado Denver School of Public Affairs. Lead. Solve. Change Danielle M. Varda, PhD University of Colorado Denver School of Public Affairs Lead. Solve. Change Network Leadership/Management We need new tools/methods to evaluate partnerships. Current Assumption =

More information

Limitations of the spatial model*

Limitations of the spatial model* Public Choice 58:161-167 (1988) Kluwer Academic Publishers Limitations of the spatial model* AMIHAI GLAZER BERNARD GROFMAN School of Social Sciences, University of California, Irvine, CA 92717 Abstract.

More information

Math 113 HW #9 Solutions

Math 113 HW #9 Solutions Math 3 HW #9 Solutions 4. 50. Find the absolute maximum and absolute minimum values of on the interval [, 4]. f(x) = x 3 6x 2 + 9x + 2 Answer: First, we find the critical points of f. To do so, take the

More information

arxiv:math/0112298v1 [math.st] 28 Dec 2001

arxiv:math/0112298v1 [math.st] 28 Dec 2001 Annuities under random rates of interest revisited arxiv:math/0112298v1 [math.st] 28 Dec 2001 Krzysztof BURNECKI, Agnieszka MARCINIUK and Aleksander WERON Hugo Steinhaus Center for Stochastic Methods,

More information

Diesel Cycle Analysis

Diesel Cycle Analysis Engineering Software P.O. Box 1180, Germantown, MD 20875 Phone: (301) 540-3605 FAX: (301) 540-3605 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Diesel Cycle Analysis Diesel Cycle

More information

Question 2: How do you evaluate a limit from a graph?

Question 2: How do you evaluate a limit from a graph? Question 2: How do you evaluate a limit from a graph? In the question before this one, we used a table to observe the output values from a function as the input values approach some value from the left

More information

1.3 Induction and Other Proof Techniques

1.3 Induction and Other Proof Techniques 4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.

More information

Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Picture. Right Triangle. Acute Triangle. Obtuse Triangle Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

More information

Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Picture. Right Triangle. Acute Triangle. Obtuse Triangle Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

More information

CHAPTER 4 ASYMPTOTIC THEORY FOR LINEAR REGRESSION MODELS WITH I.I.D. OBSERVATIONS

CHAPTER 4 ASYMPTOTIC THEORY FOR LINEAR REGRESSION MODELS WITH I.I.D. OBSERVATIONS CHAPTER 4 ASYMPTOTIC THEORY FOR LINEAR REGRESSION MODELS WITH I.I.D. OBSERVATIONS Key words: Asymptotics, Almost sure convergence, Central limit theorem, Convergence in distribution, Convergence in quadratic

More information

Constraints and Shortfalls in Engineering Design Practice

Constraints and Shortfalls in Engineering Design Practice Constraints and Shortfalls in Engineering Design Practice Lars Hein 1, Zhun Fan 2 1 IPU, Produktionstorvet, Building 425, DK-2800 Kgs. Lyngby, Denmark. 2 Department of Mechanical Engineering, DTU, Nils

More information

Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1

Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1 Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes

More information

Competition and Fraud in Online Advertising Markets

Competition and Fraud in Online Advertising Markets Competition and Fraud in Online Advertising Markets Bob Mungamuru 1 and Stephen Weis 2 1 Stanford University, Stanford, CA, USA 94305 2 Google Inc., Mountain View, CA, USA 94043 Abstract. An economic model

More information

An Integrated Production Inventory System for. Perishable Items with Fixed and Linear Backorders

An Integrated Production Inventory System for. Perishable Items with Fixed and Linear Backorders Int. Journal of Math. Analysis, Vol. 8, 2014, no. 32, 1549-1559 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.46176 An Integrated Production Inventory System for Perishable Items with

More information

ARTICLE IN PRESS Nonlinear Analysis ( )

ARTICLE IN PRESS Nonlinear Analysis ( ) Nonlinear Analysis ) Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A question concerning a polynomial inequality and an answer M.A. Qazi a,,

More information

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

arxiv:1112.0829v1 [math.pr] 5 Dec 2011 How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

More information

An Adaptive Decoding Algorithm of LDPC Codes over the Binary Erasure Channel. Gou HOSOYA, Hideki YAGI, Toshiyasu MATSUSHIMA, and Shigeichi HIRASAWA

An Adaptive Decoding Algorithm of LDPC Codes over the Binary Erasure Channel. Gou HOSOYA, Hideki YAGI, Toshiyasu MATSUSHIMA, and Shigeichi HIRASAWA 2007 Hawaii and SITA Joint Conference on Information Theory, HISC2007 Hawaii, USA, May 29 31, 2007 An Adaptive Decoding Algorithm of LDPC Codes over the Binary Erasure Channel Gou HOSOYA, Hideki YAGI,

More information

15 Prime and Composite Numbers

15 Prime and Composite Numbers 15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such

More information

Predicate Logic. PHI 201 Introductory Logic Spring 2011

Predicate Logic. PHI 201 Introductory Logic Spring 2011 Predicate Logic PHI 201 Introductory Logic Spring 2011 This is a summary of definitions in Predicate Logic from the text The Logic Book by Bergmann et al. 1 The Language PLE Vocabulary The vocabulary of

More information

Using Wireless Measurements in Control Applications

Using Wireless Measurements in Control Applications Using Wireless Measurements in Control Applications Terry Blevins, Mark Nixon, Marty Zielinski Emerson Process Management Keywords: PID Control, Industrial Control, Wireless Transmitters ABSTRACT Wireless

More information

Monthly Macro Misalignment Monitor for Egypt Sep 28, 2012

Monthly Macro Misalignment Monitor for Egypt Sep 28, 2012 Monthly Macro Misalignment Monitor for Egypt Sep 8, 1 Monthly currency misalignments are displayed in the compass graph using the gaps in selected monthly variables, their nowcasts, or interpolations.

More information

A note on properties for a complementary graph and its tree graph

A note on properties for a complementary graph and its tree graph A note on properties for a complementary graph and its tree graph Abulimiti Yiming Department of Mathematics Institute of Mathematics & Informations Xinjiang Normal University China Masami Yasuda Department

More information

Differentiating under an integral sign

Differentiating under an integral sign CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or

More information

EFFICIENT KNOWLEDGE BASE MANAGEMENT IN DCSP

EFFICIENT KNOWLEDGE BASE MANAGEMENT IN DCSP EFFICIENT KNOWLEDGE BASE MANAGEMENT IN DCSP Hong Jiang Mathematics & Computer Science Department, Benedict College, USA jiangh@benedict.edu ABSTRACT DCSP (Distributed Constraint Satisfaction Problem) has

More information

AB2.2: Curves. Gradient of a Scalar Field

AB2.2: Curves. Gradient of a Scalar Field AB2.2: Curves. Gradient of a Scalar Field Parametric representation of a curve A a curve C in space can be represented by a vector function r(t) = [x(t), y(t), z(t)] = x(t)i + y(t)j + z(t)k This is called

More information

Hydraulic Positioning Unit with Internal Mechanical Position Feedback

Hydraulic Positioning Unit with Internal Mechanical Position Feedback ISBN 978-1-84626-xxx-x Proceedings of 2011 International Conference on Optimization of the Robots and Manipulators (OPTIROB 2011) Sinaia, Romania, 26-28 Mai, 2011, pp. xxx-xxx Hydraulic Positioning Unit

More information

EHP Financial Assurance Calculator. User guide

EHP Financial Assurance Calculator. User guide User guide Prepared by: Energy Regulation & Implementation, State of Queensland, 2014. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright

More information

FACTORING AFTER DEDEKIND

FACTORING AFTER DEDEKIND FACTORING AFTER DEDEKIND KEITH CONRAD Let K be a number field and p be a prime number. When we factor (p) = po K into prime ideals, say (p) = p e 1 1 peg g, we refer to the data of the e i s, the exponents

More information

GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G. Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

More information

Chapter 7. BANDIT PROBLEMS.

Chapter 7. BANDIT PROBLEMS. Chapter 7. BANDIT PROBLEMS. Bandit problems are problems in the area of sequential selection of experiments, and they are related to stopping rule problems through the theorem of Gittins and Jones (974).

More information

Access to Community Laboratory Services. Marc Chabot, MEng MBA Manager of Commercial Strategy and Customer Insight ChabotM@dynacare.

Access to Community Laboratory Services. Marc Chabot, MEng MBA Manager of Commercial Strategy and Customer Insight ChabotM@dynacare. Access to Community Laboratory Services Marc Chabot, MEng MBA Manager of Commercial Strategy and Customer Insight ChabotM@dynacare.ca Project Overview Staff, Budget & Training National collection network

More information

Lecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if

Lecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if Lecture 5 : Continuous Functions Definition We say the function f is continuous at a number a if f(x) = f(a). (i.e. we can make the value of f(x) as close as we like to f(a) by taking x sufficiently close

More information

In-Class Game. The Pythagorean Theorem Game (Lesson 3-4)

In-Class Game. The Pythagorean Theorem Game (Lesson 3-4) TEACHING SUGGESTIONS The Pythagorean Theorem Game (Lesson 3-4) Separate the class into groups of four. The Pythagorean Theorem Game master, p. 8 The Pythagorean Theorem Game Board master, p. 9 The Pythagorean

More information

Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

More information

Direct Proof Division into Cases

Direct Proof Division into Cases Direct Proof Division into Cases Lecture 16 Section 4.4 Robb T. Koether Hampden-Sydney College Mon, Feb 11, 2013 Robb T. Koether (Hampden-Sydney College) Direct Proof Division into Cases Mon, Feb 11, 2013

More information

Batch Scheduling of Deteriorating Products

Batch Scheduling of Deteriorating Products Decision Making in Manufacturing and Services Vol. 1 2007 No. 1 2 pp. 25 34 Batch Scheduling of Deteriorating Products Maksim S. Barketau, T.C. Edwin Cheng, Mikhail Y. Kovalyov, C.T. Daniel Ng Abstract.

More information

the form as set out. Full Economic Costing is not payable on these awards. Retrospective application (where the individual has already commenced

the form as set out. Full Economic Costing is not payable on these awards. Retrospective application (where the individual has already commenced PATHOLOGICAL SOCIETY & JEAN SHANKS FOUNDATION PATHOLOGICAL RESEARCH TRAINING FELLOWSHIPS SCHEME GUIDANCE TO APPLICANTS This is a national scheme designed to increase the research skills, ability and interest

More information

Since [L : K(α)] < [L : K] we know from the inductive assumption that [L : K(α)] s < [L : K(α)]. It follows now from Lemma 6.

Since [L : K(α)] < [L : K] we know from the inductive assumption that [L : K(α)] s < [L : K(α)]. It follows now from Lemma 6. Theorem 7.1. Let L K be a finite extension. Then a)[l : K] [L : K] s b) the extension L K is separable iff [L : K] = [L : K] s. Proof. Let M be a normal closure of L : K. Consider first the case when L

More information

Control Systems with Actuator Saturation

Control Systems with Actuator Saturation Control Systems with Actuator Saturation Analysis and Design Tingshu Hu Zongli Lin With 67 Figures Birkhauser Boston Basel Berlin Preface xiii 1 Introduction 1 1.1 Linear Systems with Actuator Saturation

More information

SPSS Multivariable Linear Models and Logistic Regression

SPSS Multivariable Linear Models and Logistic Regression 1 SPSS Multivariable Linear Models and Logistic Regression Multivariable Models Single continuous outcome (dependent variable), one main exposure (independent) variable, and one or more potential confounders

More information

Production and Inventory Management

Production and Inventory Management Production and Inventory Management ARNOLDO C. HAX Massachusetts Institute of Technology DAN CANDEA Polytechnic Institute of Cluj-Napoca TECHNISCHE HOCHSCHULE DARMSTADT FoaiberGirii 1 Gesam th ibl iot

More information

Removing Partial Inconsistency in Valuation- Based Systems*

Removing Partial Inconsistency in Valuation- Based Systems* Removing Partial Inconsistency in Valuation- Based Systems* Luis M. de Campos and Serafín Moral Departamento de Ciencias de la Computación e I.A., Universidad de Granada, 18071 Granada, Spain This paper

More information

KeyEscrowinMutuallyMistrustingDomains?

KeyEscrowinMutuallyMistrustingDomains? KeyEscrowinMutuallyMistrustingDomains? Abstract.Inthispaperwepresentakeyescrowsystemwhichmeets L.Chen,D.GollmannandC.J.Mitchell possiblerequirementsforinternationalkeyescrow,wheredierentdomainsmaynottrusteachother.inthissystemmultiplethirdparties,

More information