Radiation Therapy in the Management of Brain Metastases From Renal Cell Carcinoma

Size: px
Start display at page:

Download "Radiation Therapy in the Management of Brain Metastases From Renal Cell Carcinoma"

Transcription

1 Radiation Therapy in the Management of Brain Metastases From Renal Cell Carcinoma Review Article [1] May 01, 2006 Oncology Journal [2], Kidney Cancer [3], Renal Cell Carcinoma [4] By Lucius S. Doh, MD [5], Robert Amato, DO [6], Arnold C. Paulino, MD [7], and Bin S. Teh, MD [8] Brain metastases from renal cell carcinoma (RCC) cause significant morbidity and mortality. More effective treatment approaches are needed. Traditionally, whole-brain radiotherapy has been used for palliation. With advances in radiation oncology, stereotactic radiosurgery and hypofractionated stereotactic radiotherapy have been utilized for RCC brain metastases, producing excellent outcomes. This review details the role of radiotherapy in various subgroups of patients with RCC brain metastases as well as the associated toxicities and outcomes. Newer radiosensitizers (eg, motexafin gadolinium [Xcytrin]) and chemotherapeutic agents (eg, temozolomide [Temodar]) used in combination with radiotherapy will also be discussed. he incidence of renal cell carcinoma (RCC) has increased for more than 2 decades. The cause of the increase is not known, but improved diagnostic techniques and early detection are suspected to be contributors.[1] According to the US census and cancer statistics, carcinoma of the kidneys affected approximately 36,160 lives in 2005,[2,3] more than 80% of whom had RCC. A third of the patients with RCC have evidence of metastases at the time of the diagnosis, and up to half of the patients treated for localized disease eventually develop a recurrence.[4] Approximately 4% to 17% of all RCC patients eventually develop brain metastases, with 50% of these suffering from multiple lesions.[5] Untreated, patients with brain metastasis from RCC have a poor prognosis and a mean survival of 3.2 months.[6] The distribution of RCC brain metastases, as with many other types of brain metastases, parallels brain weight and blood flow.[7] T Radioresistance RCC is considered to be radioresistant. Conventional radiation therapy has not been effective in controlling this type of tumor in the curative or adjuvant settings. The lack of effectiveness may well be due to the intrinsic radioresistance of the tumor. In the linear-quadratic model, a low alpha-beta ratio implies radioresistance. Recent experiments with human cell lines of RCC have revealed a low alpha-beta ratio, ranging from 2.6 to (Table 1).[8-10] The exact cellular mechanisms of radioresistance in RCC remain elusive, but various intranuclear and extranuclear molecular markers (including p53, BRCA1, BRCA2, HER2/neu, Bcl-2, PI-3k, ataxia telangiectasia kinase, IFG-I, HER1, HER2, VEGF, and ECF) have been shown to influence radiosensitivity for other tumor types. Page 1 of 18

2 On the other hand, the failure of radiation to control RCC in the curative or adjuvant setting may have more to do with the tolerance of neighboring structures to the kidney than intrinsic tumor resistance. The organs of the abdomen including the liver and small bowel have a relatively low tolerance for radiation, and thus the curative and adjuvant trials have generally been restricted to moderate radiation doses of 30 to 55 Gy. In contrast to the curative or adjuvant setting, radiation has been effective in palliating RCC, especially in the metastatic setting.[11-13] Differences in results may be attributable to differences in radiation technique. Metastatic RCC has been treated with higher doses and more hypofractioned radiation including stereotactic radiosurgery, whereas curative cases have used lower total doses and conventional fractionations. RCC may be more responsive to radiation at higher doses or in a hypofractionated form (including stereotactic radiosurgery). Systemic treatments may also have synergistic effects with radiation. Whole-Brain Radiotherapy Survival Whole-brain radiation therapy (WBRT) has been the community standard for treating brain metastases from many types of cancers. In general, the median survival time for patients with brain metastases treated with steroids alone is about 2 months. WBRT can increase median survival by 1 to 4 months for most tumor types.[14] The percentage of patients responding to WBRT varies greatly from study to study, with response rates of 50% to 70% generally reported.[15] WBRT alone results in median survivals of 7.1, 4.2, and 2.3 months for Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA) class I, II, and III, respectively, in patients with brain metastases from nonradioresistant tumors.[16] Page 2 of 18

3 Despite the reports of radioresistance, retrospective studies suggest that WBRT is an effective treatment modality for patients with brain metastases from RCC. Patients with untreated brain metastases from RCC have a median survival of 3 to 4 months.[6] In three retrospective series, patients with brain metastases from RCC treated with WBRT had slightly improved overall survivals of 3.0 to 7.0 months (Table 2).[17-19] Moreover, WBRT provided up to 60% local control (control at the sites of radiographically apparent disease), with only 8% of distant brain failure (incidence of new brain lesions away from initial sites of disease).[18] Reports of median survivals according to RTOG RPA classes further support the effectiveness of WBRT for metastatic RCC (Table 3). The median survival in patients with brain metastases from RCC treated with WBRT is 8.5, 3, and 0.6 months for classes I, II, and III, respectively. Page 3 of 18

4 Dose-Response Effect The role of dose escalation and/or hyperfractionation in WBRT for non-rcc brain metastases is controversial. The RTOG has conducted two randomized studies that demonstrated comparable results for different fractionation schedules 40 Gy in 15 or 20 fractions, 30 Gy in 10 or 15 fractions, and 20 Gy in 5 fractions.[20,21] In these randomized trials, there was no difference in neurologic function, duration of improvement, time to progression, or survival. These results were recently challenged by Epstein and colleagues, who reported superior survival times and improved neurologic function in patients with solitary brain metastases using whole-brain doses of 32 Gy administered in 1.6 Gy fractions twice daily, followed by boost doses to 48, 54, 64, and 70 Gy.[22] Survivals increased with increasing doses, from 4.9 months with 48 Gy to 8.2 months with 70 Gy. Nieder et al found that patients who received WBRT with 30 Gy in 10 fractions had half the response rate of the group receiving 40 to 60 Gy in 20 to 30 fractions but no survival benefits.[23] These retrospective studies suggest that there may be a dose-response effect at higher doses, which is not evident at lower doses such as the ones used in the randomized RTOG trials. Although there is some evidence that dose-escalation or hyperfractionation may improve response rates and survival in patients with non-rcc metastases, such data are scant in RCC. A retrospective study of RCC patients by Cannady and colleagues found that patients who receive more than 30 Gy had significantly longer survival than patients who received 30 Gy or less. This result, however, was confounded by the fact that patients who received higher doses also had better prognostic factors such as Karnofsky performance status and RPA class. Thus, it remains unclear whether a change in dose or fractionation has an impact on the treatment of RCC brain metastases. WBRT continues to be the treatment of choice for patients with a single brain metastasis not amenable to surgery or radiosurgery, for patients with poorly controlled systemic disease and thus a relatively short life expectancy, and for patients with multiple brain metastases whose metastases are too numerous for stereotactic radiosurgery or surgery. The most commonly reported dose for WBRT in RCC is 30 Gy in 10 fractions. In practice, the dose and fraction size of WBRT should be individualized to take into consideration the status of systemic or extracranial disease as well as performance status. While higher fractional dose as well as total dose may increase the chance of complications, non-rcc research suggests that increased doses may improve quality of life and survival. Dose escalation in RCC should be explored especially in combination with other therapeutic modalities such as surgery, radiosurgery, and systemic therapy (eg, molecular targeted therapy). Page 4 of 18

5 Surgery Surgical resection of a metastatic brain tumor has several advantages, including: confirmation of pathology, rapid reversal of neurologic symptoms, no risk of radionecrosis, and durable local control. In non-rcc patients, randomized trials have evaluated the benefits of surgery in patients with good performance status or limited or controlled systemic disease.[24-26] Three randomized trials by American, Dutch, and Canadian investigators have tested surgery plus WBRT vs WBRT alone. The American and Dutch studies have primarily included patients with controlled or limited systemic disease, and both have reported 9- to 10-month survivals with surgery plus WBRT vs 3 to 6 months with WBRT alone.[24,25] In contrast, the Canadian study, which included a higher proportion of patients with active systemic disease and lower performance scores, failed to show any advantage of surgery plus radiotherapy over radiotherapy alone.[26] In addition, in the setting of brain metastases from non-rcc disease, complete surgical resections of up to three lesions yielded similar results to those for a single lesion among patients with accessible lesions and good performance status.[27,28] However, these lesions may require multiple resections and prolonged surgical interventions, and involve the risk of complications from anesthesia and surgery. The results of surgical resection of brain metastasis from RCC have been investigated in three retrospective studies.[29-31] Wronski, O Dea, and Salvati have reported median overall survivals of 14.5 to 27.5 months (Table 4). When comparing the results of surgical series to other treatment modalities for RCC, such as WBRT or stereotactic radiosurgery, one must keep in mind that patients in the surgical series had a much lower burden of disease (80% had only a solitary brain metastasis) and higher performance status than those in the other series. A randomized trial of WBRT vs surgical resection has not been reported, and in the absence of such a report, it is difficult to assess the true impact of surgery vs WBRT. However, given the weight of data from non-rcc randomized trials as well as retrospective RCC studies, current data support the proposition that surgery increases the median survival for patients with good performance status, limited systemic disease, and a single brain metastasis. Furthermore, based on non-rcc data, the benefits of surgery may extend to patients with up to three brain metastases from RCC.[27,28] Adjuvant WBRT The benefits of postoperative WBRT, including a 52% reduction in recurrences in the brain, have been validated in phase III randomized trials.[32] Patchell showed that postoperative WBRT administered to a dose of 50.4 Gy in 28 fractions reduced brain recurrence at the local or distant brain sites to 18%, compared to 70% in the observation arm. In addition, most retrospective studies support the viewpoint that combined surgery plus WBRT improves survival in patients without evidence of extracranial disease but not in patients with uncontrolled systemic disease. In RCC, however, the effectiveness and role of adjuvant WBRT continue to be controversial. The two RCC surgical series by Wronski et al and Salvati et al have failed to show a benefit with postoperative WBRT (Table 4), both in terms of brain recurrences and overall survival.[29,31] Notably, the radiation doses used by Wronski and Salvati were lower than those in the randomized trial by Patchell. The average dose in Wronski's series was 30 Gy in 10 to 15 fractions, whereas Salvati used various doses and fractions 30 Gy in 10 fractions, 40 Gy in 20 fractions, 45 Gy in 25 fractions, or stereotactic radiosurgery. No significant differences in survival time were noted in the various radiotherapy groups. Whether patients with RCC would benefit from higher-dose WBRT as used by Patchell remains untested and would be of significant interest. Stereotactic Radiosurgery Local and Distant Control In a single session, stereotactic radiosurgery provides, a high dose of radiation to a localized brain Page 5 of 18

6 tumor volume while minimizing the dose to the surrounding normal tissues. The accuracy of the commonly available stereotactic radiosurgery devices range from 1.1 to 1.3 mm.[33-35] For patients with brain metastases from non-rcc disease, stereotactic radiosurgery can produce results equivalent to surgery. Bindal and colleagues reported improved survival and local control for patients undergoing surgical resection compared to stereotactic radiosurgery.[27] However, most studies support the notion that stereotactic radiosurgery, alone or in conjunction with WBRT, yields results that are comparable to those reported with surgery followed by WBRT for brain lesions less than 3 cm and for up to two metastases.[28,36,37] In addition, randomized trials in non-rcc patients have reported the benefits of stereotactic radiosurgery for those with favorable characteristics. A randomized trial by RTOG with 333 patients reported a 6.5- vs 4.9-month overall-survival advantage in favor of stereotactic radiosurgery plus WBRT vs WBRT alone for patients with a solitary brain metastasis, RPA class I, age less than 50 years, non-small-cell lung cancer, or any squamous cell carcinoma. In general, stereotactic radiosurgery provides a local tumor response rate of 80% to 90% with a median survival of 7 to 12 months.[38] Many retrospective studies have investigated the role of stereotactic radiosurgery in brain metastases from RCC. Table 5 summarizes 11 retrospective RCC series that included stereotactic Page 6 of 18

7 radiosurgery as one of the main treatment modalities.[5,39-48] When stereotactic radiosurgery is one of the major components of the treatment of brain metastases from RCC, the results are encouraging. The local tumor control rate is 94% (range: 85%-100%), with a distant brain failure rate of 37% (range: 17.2%-50%). The median survival is 11 months (range: months). Dose-Response Effect The effective dose for stereotactic radiosurgery in RCC-associated brain metastasis is unclear. Hemibrain irradiation of healthy beagles in a single fraction suggests that there may be a sigmoid-shaped dose-effect curve with a sharp increase in radiation-induced brain changes occurring around 14 to 15 Gy.[49] In human studies, some have argued that radiotherapy effects are dose-dependent, whereas others have not found any evidence for this. Breneman and colleagues reported a significant improvement in local control with radiation doses greater than 18 Gy (median time to failure: 52 weeks with high-dose therapy vs 25 weeks with low-dose therapy; P =.008).[50] In an analysis of data from the University of California, San Francisco, Shiau and colleagues found that a minimum prescribed dose of greater than or equal to 18 Gy yields a greater failure-free survival rate at 1 year (90%), compared with those receiving less than 18 Gy (77%).[51] On the other hand, Alexander and colleagues have reviewed the impact of dose and found that it did not influence local control.[52] Reports by Shirato and Flickinger and colleagues also failed to show a correlation between dose and survival.[53,54] In general, larger tumors are treated with lower doses, confounding the presently available retrospective data. Future studies are needed to determine the effect of dose on tumor control for RCC as well as other tumor types. Currently, the radiation regimen is generally guided by toxicity and not the minimum effective dose. Maximum tolerable doses of 24, 18, and 15 Gy for lesions < 2 cm, 2-3 cm, and 3-4 cm, respectively, have been recommended by the investigators who conducted RTOG 90-05, a prospective dose-escalation trial of stereotactic radiosurgery in patients with recurrent or previously irradiated primary brain tumors and brain metastases.[55] Tumors less than 3 cm may be treated with 18 Gy, either with or without WBRT. This dose is considered to be effective with an acceptably low risk of toxicity. As for tumors 3 to 4 cm in size, the highest dose that should be given in one fraction is 15 Gy, again with or without WBRT. This dose may still be effective, but little evidence exists to suggest that doses < 15 Gy are effective in tumor control. Number of Lesions Although radiosurgery is a local procedure, it can be used multiple times to treat different lesions. Approximately half of the patients treated with stereotactic radiosurgery in RCC series have had multiple brain metastases. However, the maximum number of lesions that can be safely and efficaciously treated with stereotactic radiosurgery has not been identified for either RCC or other types of metastases. Some have suggested that patients with 10 or more metastases can be safely treated with a good quality-of-life outcome.[56,57] That said, repeated use of stereotactic radiosurgery for multiple lesions may not be more effective than simple WBRT. Studies suggest that the WBRT is equivalent to stereotactic radiosurgery alone for patients with three or more brain metastases.[52,58] Stereotactic Radiosurgery and WBRT A retrospective study by Sanghavi and colleagues demonstrated an improved median survival (P <.05) for non-rcc patients treated with stereotactic radiosurgery boost in addition to WBRT, compared to RPA-stratified patients from earlier RTOG studies of WBRT alone.[59] Three randomized trials have shown a local control benefit with the addition of stereotactic radiosurgery to WBRT.[60-62] The largest of the three studies by RTOG showed a median survival benefit of 1.5 months when stereotactic radiosurgery was added to WBRT. A randomized study by Brown University investigators compared stereotactic radiosurgery vs stereotactic radiosurgery plus WBRT, reporting local control rates of 87% vs 91% and distant brain failure rates of 43% vs 19%.[61] A fundamental problem with the Brown trial was that 53% of the patients had undergone surgery prior to randomization. Furthermore, these patients were not evenly distributed among the three treatment arms. To investigate the role of stereotactic radiosurgery and WBRT together in patients with brain metastases from RCC, we performed a subgroup analysis of published local and distant failure rates in patients who were treated initially with stereotactic radiosurgery plus WBRT or stereotactic radiosurgery alone. The analysis included 11 retrospective RCC series that used stereotactic radiosurgery as one of the main treatment modalities. A total of 39 patients were eligible for analysis in the stereotactic radiosurgery-plus-wbrt arm, and 50 patients were eligible in the radiosurgery-alone arm. The combination resulted in a local failure rate of 0% and a distant brain failure rate of 21% in this selected group.[45-48] In comparison, stereotactic radiosurgery alone Page 7 of 18

8 resulted in a mean local failure rate of 8% and a distant brain failure rate of 36% (Figure 1). Compared to stereotactic radiosurgery plus WBRT, radiosurgery alone may result in higher rates of distant brain failure as well as a high risk of local failures. Some authors suggest that salvage therapy is effective for both recurrences and new metastasis after stereotactic radiosurgery, and this approach would spare the majority of patients the toxicities of WBRT.[53,54,63] To date, retrospective series of RCC patients and prospective studies from non-rcc patients suggest that the addition of stereotactic radiosurgery to WBRT improves control of brain metastases without undue toxicities. The benefits of reserving WBRT for salvage therapy over upfront stereotactic radiosurgery and WBRT remain to be proven. Hypofractionated Stereotactic Radiotherapy Ikushima and colleagues reported on a series of patients with brain metastases from RCC who were treated with hypofractionated stereotactic radiotherapy vs surgery/conventional radiation vs conventional radiation only.[64] Median survival rates were 25.6 months for the hypofractionated radiotherapy group, 18.7 months for the surgery-plus-conventional radiation group and 4.3 months for the conventional radiation group. Hypo-fractionated stereotactic radiotherapy produced local control rates of 88% and 55.2% at 1 and 2 years, respectively. None of the 10 patients who were treated with hypofractionated radiotherapy suffered from acute or late complications during or following treatment, with a median follow up of 17.5 months from the beginning of treatment. The hypofractionated treatment group was treated to 42 Gy in 7 fractions over 2.3 weeks, dosed to the tumor isocenter using a 6-MV linac. Local control rates for the hypofractionated stereotactic radiotherapy group were not significantly better than historically reported values for stereotactic radiosurgery in RCC patients. Although the idea that such treatment could lessen toxicity is interesting and has been reported in several retrospective studies, it remains to be established in future investigations. WBRT Toxicity Acute side effects occurring during or soon after radiotherapy include hair loss, otitis media, skin irritations, and brain edema. With the possible exception of hair loss, these symptoms are generally transient and can be managed conservatively. The long-term side effects of radiotherapy are usually not a significant issue in the treatment of brain metastases from RCC because of the relatively short survival of these patients. Long-term survivors (> 12 months) frequently develop radiographic changes on computed tomography (CT) or magnetic resonance imaging (MRI), including hypodense areas in the white matter, cerebral atrophy, an increase in the sulcal width, and/or enlargement of the ventricles. However, only some long-term survivors (up to 11%) develop clinical symptoms such as dementia, ataxia, and urinary Page 8 of 18

9 incontinence.[65,66] Although the pathogenesis of these alterations is unknown, leukoencephalopathy is implicated. Leukoencephalopathy or white matter necrosis is generally associated with the combination of brain radiotherapy and intravenous or intrathecal methotrexate; the greatest injury occurs when all three modalities are used.[67] High-fractional dose (> 2 Gy per fraction) and high-dose schedules may also be a factor.[65] Consequently, patients with favorable prognostic factors are optimally treated with conventional fractions of 1.8 to 2 Gy to a total dose of 40 to 50 Gy, instead of 3-Gy fractions to a total dose of 30 Gy, as commonly employed. Radiation Necrosis Radiation necrosis is a loosely defined term referring to any changes noted on MRI (or other imaging) that are felt to represent a radiation treatment effect rather than recurrent tumor.[68] This potential complication is associated with stereotactic radiosurgery as well as whole-brain radiotherapy. Radiation necrosis can produce symptoms that are as disabling as tumor recurrence; the condition can be progressive and fatal. Surgical debulking should be performed if corticosteroids do not provide relief. Biopsy is the ultimate diagnostic test for radiation necrosis. Although biopsy-proven rates as high as 24% have been reported,[69] the true incidence of radiation necrosis is difficult to assess, as chemotherapy, fraction size, total dose, and diagnostic modalities all complicate findings. According to Sheline and colleagues, the brain can tolerate a total dose of 50 to 54 Gy if given in 2-Gy administrations once a day, with the estimated cerebral necrosis rate at 0.04% to 0.4%.[70] Cognitive Function Decline in intellectual function (IQ) is best studied in children. Radcliffe et al published a prospective study of 19 children treated for brain tumors with whole-brain radiotherapy; 14 of 19 also received adjuvant chemotherapy.[71] Children younger than 7 years at diagnosis had a mean IQ loss of 27 points, whereas children over 7 years at diagnosis showed no significant decrease in IQ. Decline in IQ occurred between baseline and year 2 of follow-up; no such decline was documented between years 2 and 4. In adults, many studies have shown decreases in mental function after brain irradiation but most of these fail to include pretreatment assessment of mental function. Some decline in mental function has been associated with radiologic changes, cerebral atrophy, and white matter hypodensities.[72,73] In a prospective study of patients with small-cell lung cancer, prophylactic cranial irradiation was not associated with a decline in mental function for the duration of the follow-up (6 to 20 months).[74] North Central Cancer Treatment Group (NCCTG) protocol was a two-arm prospective trial, in which 203 eligible/analyzable adult patients with supratentorial low-grade gliomas were randomized to localized radiation therapy using 50.4 Gy (arm A) vs 64.8 Gy (arm B).[75] Patients were evaluated with an extensive battery of psychometric tests at baseline (before radiation therapy) and at approximately 18-month intervals up to 5 years after completing radiation therapy. Formal cognitive testing completed before and after focal radiation therapy for low-grade glioma did not document significant detrimental effects in this group of patients evaluated prospectively over 3 years of follow-up. With a median follow-up of 7.4 years, these patients showed minimal deterioration from baseline on mini-mental examination. Deterioration from baseline occurred at years 1, 2, and 5 in 8.2%, 4.6%, and 5.3% of patients, respectively.[76] Thus, in contrast to data in children, prospective studies of adults have shown little or no decline in mental function due to WBRT with more than 5 years of follow-up. Stereotactic Radiosurgery Toxicity Specific data reporting acute toxicity for stereotactic radiosurgery is scarce and limited to small numbers of retrospective studies.[77,78] Acute toxicities are similar to that of WBRT and for the most part can be medically managed. They include edema, headaches, nausea and vomiting, worsening of preexisting neurologic deficits, and seizures. Chronic complications consist mainly of radionecrosis, cranial nerve palsies, and chronic steroid dependence. Treatment volume is the most consistent risk factor for long-term toxicity from stereotactic radiosurgery.[55,79] RTOG prospectively determined that the risk of complications from stereotactic radiosurgery increases with tumor size.[55] Varlotto and colleagues published long-term toxicity data for 137 patients treated with Gamma Knife radiosurgery at the University of Pittsburgh Medical Center.[79] The mean peripheral dose was 16 Gy (range: Gy). They reported the 1- and 5-year incidence of late complication as 2.8% and 11.4%, respectively. Treatment volume was the only significant factor associated with complications. Page 9 of 18

10 For tumors less than or equal to 2 cm3, the 1- and 5-year incidence of complications was 2.3% and 3.7%, respectively. For tumors greater than 2 cm3, complication rates at 1 and 5 years were 3.4% and 16%. Long-term toxicity will be more prominent and important in the future, as the systemic control of RCC improves. Radiation Sensitizers Hypoxic cell sensitizers make hypoxic cells susceptible to radiation effects. Although some of these agents appeared promising, none has shown benefit in the brain. The use of metronidazole was found to be beneficial 20 years ago for supratentorial glioblastomas, but the study has not held up, as the test group had a survival rate equivalent to historical controls.[80] Misonidazole has no documented benefit in gliomas.[81,82] Etanidazole (SR-2508) is being studied for metastatic brain tumors in RTOG 9502, but this agent had previously failed to show an advantage for head and neck cancers in RTOG Nimorazole, an analog of metronidazole has been shown to provide a higher local and regional control rate than placebo (49% vs 33%, P =.002) in a phase III study in head and neck cancer, producing an overall survival rate of 26% vs 16% (P =.32).[83] Tirapazamine, a hypoxic-cytotoxic agent, is also under study.[84,85] No hypoxic cell sensitizers have been found to be effective in RCC. The pyrimidines sensitize cells by being incorporated into a dividing cell. In RTOG 86-12, iododeoxyuridine showed a modest survival advantage over historical controls in anaplastic gliomas, but bromodeoxyuridine was considered to be a more promising agent.[86] Nevertheless, bromodeoxyurindine did not prove effective in a phase III setting for anaplastic glioma (RTOG 9404).[87] To date, these compounds have shown associated toxicity and do not adequately sensitize the entire tumor cell population.[88,89] Motexafin Motexafin gadolinium (Xcytrin) is a paramagnetic compound that has been shown to be taken up by tumor in MRI studies.[90,91] One proposed mechanism of action suggests that motexafin sensitizes cells to ionizing radiation by increasing oxidative stress as a consequence of futile redox cycling. Optimization of the concentration of ascorbate (or other reducing species) may be required when evaluating motexafin activity in vitro.[92] A phase III study of brain metastases comparing WBRT alone (30 Gy in 10 fractions) to WBRT with motexafin given before each fraction has demonstrated improved time to neurologic progression in all patients, with greatest benefit in lung cancer (the disease in ~60% of the study patients).[93] No overall survival benefit was seen in this group of patients, who mostly had uncontrolled primaries. Currently, we are investigating this agent in patients with metastatic RCC in a phase I trial. Motexafin may have a role in combination with WBRT for brain metastases from RCC, which remains to be defined. While compounds such as gadolinium offer hope, no radiation sensitizer has yet been found to be effective in renal cell carcinoma. Chemotherapy Traditionally, chemotherapy has played a limited role in the management of brain metastases. It is our current understanding that the blood-brain barrier is disrupted near tumor vasculature.[94] In support of this mechanism, a prospective study that assessed that activity of a cisplatin/etoposide without radiation in patients with brain metastases reported overall response rates of 38%, 30%, and 0% for breast cancer, non-small-cell lung cancer, and melanoma patients, respectively. These results were similar to those in patients with systemic disease who did not have brain metastases.[95] Although both the development of brain metastases and the use of whole-brain irradiation can lead to some impairment of the blood-brain barrier, it remains unclear as to what degree the disruption would allow chemotherapeutic agents to penetrate the central nervous system. The use of chemotherapy for brain metastasis should be explored further, especially in combination with whole-brain irradiation. Temozolomide Temozolomide (Temodar), the 3-methyl derivative of mitozolomide, has shown promise in gliomas because of its comparable antitumor activity in preclinical studies, favorable toxicologic profile, and excellent oral bioavailability and tissue distribution, including central nervous system penetration.[96-99] Temozolomide alone has been studied for brain metastases in recurrent/progressive disease as well as for newly diagnosed brain metastases. Used alone, the agent produces 4% to 6% complete or partial response rates for recurrent/progressive tumors[ ] and 24% to 38% complete or partial response rates for primary tumors. The best response was seen in primary melanoma, with a 40% response rate.[103,104] In combination with whole-brain irradiation, temozolomide has been studied in both Page 10 of 18

11 phase II and phase III trials, with tumor response rates favoring the combination arm by 20% to 22%.[ ] The response rate in the combined-therapy arm ranged from 35 to 96%. Unfortunately, temozolomide as a single agent or in combination with interferon-alfa has not been effective in renal cell carcinoma.[109,110] Although promising, especially in combination with radiation therapy, temozolomide currently has no defined role in RCC. Conclusions Radiotherapy has played an important role in the management of brain metastases from renal cell carcinoma despite the radioresistance of the disease. Whole-brain radiotherapy appears to be as beneficial for patients with brain metastasis from RCC as it is for other tumor types. Retrospective studies suggest that a boost of radiation to tumor sites in addition to WBRT may improve local control rates. More recently, stereotactic radiosurgery has resulted in encouraging short-term local control rates (> 90%). Surgical series of patients with good performance status and limited systemic and brain disease have reported higher median survival rates compared to stereotactic radiosurgery series in retrospective studies. Whether this is simply a function of selection bias or a true improvement in survival is unknown and should be studied prospectively. Distant brain failure continues to be a challenge for both stereotactic radiosurgery and surgery. Advances in neuroimaging (eg, MRI), radiation physics (eg, stereotactic radiosurgery technology), and radiation biology (eg, radiosensitization) have led to improvements in the targeting and effectiveness of radiotherapy, especially stereotactic radiosurgery. This progress has led some to advocate the use of stereotactic radiosurgery alone for appropriate candidates. Evidence suggests that WBRT improves distant brain failure and local control rates. However, how to most effectively address distant brain failure ie, with WBRT, or with stereotactic radiosurgery, close follow-up, and salvage therapy (stereotactic radiosurgery or surgery) remains unanswered and should be investigated in a prospective fashion. Opportunities in the management of brain metastases from renal cell carcinoma are expanding rapidly. While no systemic therapies have been shown to be effective either alone or with radiation in the treatment of metastatic brain cancer from RCC, this is an exciting area of investigation. The biotechnology of gene-expression profiling may help us identify the "radioresistance gene" in renal cell carcinoma and make this cancer more radiosensitive via the RNA interference (RNAi) approach.[ ] Learning from other disease sites, the combination of systemic agents with radiotherapy is another area requiring further investigation. The integration of higher-dose whole-brain radiotherapy, with or without systemic agents, also warrants future testing to improve distant brain control and, hopefully, survival, and not at the expense of toxicity. The emergence of novel molecularly targeted therapy such as bevacizumab (Avastin), sorafenib (Nexavar), and sunitinib (Sutent) is likely to prolong survival in patients with metastatic renal cell carcinoma. A higher incidence of brain metastases may result from improved systemic control, as the central nervous system is believed to be a sanctuary site for disease during treatment with the majority of systemic agents. It is important to integrate radiotherapy (stereotactic radiosurgery, WBRT) properly with surgery and systemic treatment, to maximize control and prolong the survival of patients with RCC. Disclosures: The authors have no significant financial interest or other relationship with the manufacturers of any products or providers of any service mentioned in this article. Dr. Teh's work was supported by The Methodist Hospital Research Institute research grant. References: 1. Marshall FF, Stewart AK, Menck HR: The National Cancer Data Base: Report on kidney cancers. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer 80: , Jemal A, Murray T, Ward E, et al: Cancer statistics, CA Cancer J Clin 55:10-30, Devesa SS, Silverman DT, McLaughlin JK, et al: Comparison of the descriptive epidemiology of urinary tract cancers. Cancer Causes Control 1: , Flanigan RC, Campbell SC, Clark JI, et al: Metastatic renal cell carcinoma. Curr Treat Options Oncol 4: , Page 11 of 18

12 5. Sheehan JP, Sun MH, Kondziolka D, et al: Radiosurgery in patients with renal cell carcinoma metastasis to the brain: Long-term outcomes and prognostic factors influencing survival and local tumor control. J Neurosurg 98: , Decker DA, Decker VL, Herskovic A, et al: Brain metastases in patients with renal cell carcinoma: prognosis and treatment. J Clin Oncol 2: , Delattre JY, Krol G, Thaler HT, et al: Distribution of brain metastases. Arch Neurol 45: , Wei K, Wandl E, Karcher KH: X-ray induced DNA double-strand breakage and rejoining in a radiosensitive human renal carcinoma cell line estimated by CHEF electrophoresis. Strahlenther Onkol 169: , Ning S, Trisler K, Wessels BW, et al: Radiobiologic studies of radioimmunotherapy and external beam radiotherapy in vitro and in vivo in human renal cell carcinoma xenografts. Cancer 80(12 suppl): , Syljuasen RG, Belldegrun A, Tso CL, et al: Sensitization of renal carcinoma to radiation using alpha interferon (IFNA) gene transfection. Radiat Res 148: , Halperin EC, Harisiadis L: The role of radiation therapy in the management of metastatic renal cell carcinoma. Cancer 51: , Wilson D, Hiller L, Gray L, et al: The effect of biological effective dose on time to symptom progression in metastatic renal cell carcinoma. Clin Oncol (R Coll Radiol) 15: , DiBiase SJ, Valicenti RK, Schultz D, et al: Palliative irradiation for focally symptomatic metastatic renal cell carcinoma: Support for dose escalation based on a biological model. J Urol 158(3 pt 1): , Swift PS, Phillips T, Martz K, et al: CT characteristics of patients with brain metastases treated in RTOG study Int J Radiat Oncol Biol Phys 25: , Kaye A, Laws E Jr (eds): Brain Tumors: An Encyclopedic Approach, 2nd ed.. New York, Churchill Livingstone, Gaspar L, Scott C, Rotman M, et al: Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37: , Wronski M, Maor MH, Davis BJ, et al: External radiation of brain metastases from renal carcinoma: A retrospective study of 119 patients from the M. D. Anderson Cancer Center. Int J Radiat Oncol Biol Phys 37: , Cannady SB, Cavanaugh KA, Lee SY, et al: Results of whole brain radiotherapy and recursive partitioning analysis in patients with brain metastases from renal cell carcinoma: A retrospective study. Int J Radiat Oncol Biol Phys 58: , Culine S, Bekradda M, Kramar A, et al: Prognostic factors for survival in patients with brain metastases from renal cell carcinoma. Cancer 83: , Gelber RD, Larson M, Borgelt BB, et al: Equivalence of radiation schedules for the palliative treatment of brain metastases in patients with favorable prognosis. Cancer 48: , Borgelt B, Gelber R, Kramer S, et al: The palliation of brain metastases: Final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 6:1-9, Page 12 of 18

13 22. Epstein BE, Scott CB, Sause WT, et al: Improved survival duration in patients with unresected solitary brain metastasis using accelerated hyperfractionated radiation therapy at total doses of 54.4 gray and greater. Results of Radiation Therapy Oncology Group Cancer 71: , Nieder C, Berberich W, Nestle U, et al: Relation between local result and total dose of radiotherapy for brain metastases. Int J Radiat Oncol Biol Phys 33: , Patchell RA, Tibbs PA, Walsh JW, et al: A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 322: , Vecht CJ, Haaxma-Reiche H, Noordijk EM, et al: Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann Neurol 33: , Mintz AH, Kestle J, Rathbone MP, et al: A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer 78: , Bindal RK, Sawaya R, Leavens ME, et al: Surgical treatment of multiple brain metastases. J Neurosurg 79: , Nussbaum ES, Djalilian HR, Cho KH, et al: Brain metastases. Histology, multiplicity, surgery, and survival. Cancer 78: , Wronski M, Arbit E, Russo P, et al: Surgical resection of brain metastases from renal cell carcinoma in 50 patients. Urology 47: , O Dea M J, Zincke H, Utz DC, et al: The treatment of renal cell carcinoma with solitary metastasis. J Urol 120: , Salvati M, Scarpinati M, Orlando ER, et al: Single brain metastases from kidney tumors. Clinico-pathologic considerations on a series of 29 cases. Tumori 78: , Patchell RA, Tibbs PA, Regine WF, et al: Postoperative radiotherapy in the treatment of single metastases to the brain: A randomized trial. JAMA 280: , Lutz W, Winston KR, Maleki N: A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14: , Yeung D, Palta J, Fontanesi J, et al: Systematic analysis of errors in target localization and treatment delivery in stereotactic radiosurgery (stereotactic radiosurgery). Int J Radiat Oncol Biol Phys 28: , Chang SD, Main W, Martin DP, et al: An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 52: (incl discussion), Auchter RM, Lamond JP, Alexander E, et al: A multiinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis. Int J Radiat Oncol Biol Phys 35:27-35, Muacevic A, Kreth FW, Horstmann GA, et al: Surgery and radiotherapy compared with gamma knife radiosurgery in the treatment of solitary cerebral metastases of small diameter. J Neurosurg 91:35-43, Soffietti R, Ruda R, Mutani R: Management of brain metastases. J Neurol 249: , Brown PD, Brown CA, Pollock BE, et al: Stereotactic radiosurgery for patients with "radioresistant" brain metastases. Neurosurgery 51: (incl discussion), Hoshi S, Jokura H, Nakamura H, et al: Gamma-knife radiosurgery for brain metastasis of renal cell carcinoma: Results in 42 patients. Int J Urol 9(11): (incl discussion), Page 13 of 18

14 41. Amendola BE, Wolf AL, Coy SR, et al: Brain metastases in renal cell carcinoma: management with gamma knife radiosurgery. Cancer J 6: , Wowra B, Siebels M, Muacevic A, et al: Repeated gamma knife surgery for multiple brain metastases from renal cell carcinoma. J Neurosurg 97: , Noel G, Valery CA, Boisserie G, et al: LINAC radiosurgery for brain metastasis of renal cell carcinoma. Urol Oncol 22:25-31, Mori Y, Kondziolka D, Flickinger JC, et al: Stereotactic radiosurgery for brain metastasis from renal cell carcinoma. Cancer 83: , Schoggl A, Kitz K, Ertl A, et al: Gamma-knife radiosurgery for brain metastases of renal cell carcinoma: Results in 23 patients. Acta Neurochir (Wien) 140: , Goyal LK, Suh JH, Reddy CA, et al: The role of whole brain radiotherapy and stereotactic radiosurgery on brain metastases from renal cell carcinoma. Int J Radiat Oncol Biol Phys 47: , Payne BR, Prasad D, Szeifert G, et al: Gamma surgery for intracranial metastases from renal cell carcinoma. J Neurosurg 92: , Hernandez L, Zamorano L, Sloan A, et al: Gamma knife radiosurgery for renal cell carcinoma brain metastases. J Neurosurg 97(5 suppl): , Fike JR, Cann CE, Turowski K, et al: Radiation dose response of normal brain. Int J Radiat Oncol Biol Phys 14:63-70, Breneman JC, Warnick RE, Albright RE Jr, et al: Stereotactic radiosurgery for the treatment of brain metastases. Results of a single institution series. Cancer 79: , Shiau CY, Sneed PK, Shu HK, et al: Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control. Int J Radiat Oncol Biol Phys 37: , Alexander E 3rd, Moriarty TM, Davis RB, et al: Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Natl Cancer Inst 87:34-40, Flickinger JC, Kondziolka D, Lunsford LD, et al: A multi-institutional experience with stereotactic radiosurgery for solitary brain metastasis. Int J Radiat Oncol Biol Phys 28: , Shirato H, Takamura A, Tomita M, et al: Stereotactic irradiation without whole-brain irradiation for single brain metastasis. Int J Radiat Oncol Biol Phys 37: , Shaw E, Scott C, Souhami L, et al: Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of RTOG protocol Int J Radiat Oncol Biol Phys 47: , Suzuki S, Omagari J, Nishio S, et al: Gamma knife radiosurgery for simultaneous multiple metastatic brain tumors. J Neurosurg 93(suppl 3):30-31, Serizawa T, Iuchi T, Ono J, et al: Gamma knife treatment for multiple metastatic brain tumors compared with whole-brain radiation therapy. J Neurosurg 93(suppl 3):32-36, Joseph J, Adler JR, Cox RS, et al: Linear accelerator-based stereotaxic radiosurgery for brain metastases: The influence of number of lesions on survival. J Clin Oncol 14: , Sanghavi SN, Miranpuri SS, Chappell R, et al: Radiosurgery for patients with brain metastases: A multi-institutional analysis, stratified by the RTOG recursive partitioning analysis method. Int J Radiat Page 14 of 18

15 Oncol Biol Phys 51: , Kondziolka D, Patel A, Lunsford LD, et al: Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 45: , Chougule P, Burton-Williams M, Saris S: Randomized treatment of brain metastasis with gamma knife radiosurgery, whole brain radiotherapy or both. Int J Radiat Oncol Biol Phys 48(suppl):114, Speruto P, Scott C, Andrews D: Stereotactic radiosurgery with whole brain radiation therapy improves survival in patients with brain metastases: Report of radiation therapy oncology group phase III study Int J Radiat Oncol Biol Phys 54(suppl):3, Sneed PK, Lamborn KR, Forstner JM, et al: Radiosurgery for brain metastases: Is whole brain radiotherapy necessary? Int J Radiat Oncol Biol Phys 43: , Ikushima H, Tokuuye K, Sumi M, et al: Fractionated stereotactic radiotherapy of brain metastases from renal cell carcinoma. Int J Radiat Oncol Biol Phys 48: , DeAngelis LM, Delattre JY, Posner JB: Radiation-induced dementia in patients cured of brain metastases. Neurology 39: , Nieder C, Schwerdtfeger K, Steudel WI, et al: Patterns of relapse and late toxicity after resection and whole-brain radiotherapy for solitary brain metastases. Strahlenther Onkol 174: , Griffin T: White matter necrosis, microangiopathy and intellectual abilities in survivors of childhood leukemia. Association with central nervous system irradiation and methotrexate therapy., in Gilbert H, Kagan A (eds): Radiation Damage to the Nervous System. New York, Raven Press, Giglio P, Gilbert MR: Cerebral radiation necrosis. Neurologist 9: , Kumar AJ, Leeds NE, Fuller GN, et al: Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217: , Sheline GE, Wara WM, Smith V: Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6: , Radcliffe J, Packer RJ, Atkins TE, et al: Three- and four-year cognitive outcome in children with noncortical brain tumors treated with whole-brain radiotherapy. Ann Neurol 32: , Cheung MC, Chan AS, Law SC, et al: Impact of radionecrosis on cognitive dysfunction in patients after radiotherapy for nasopharyngeal carcinoma. Cancer 97: , Cheung M, Chan AS, Law SC, et al: Cognitive function of patients with nasopharyngeal carcinoma with and without temporal lobe radionecrosis. Arch Neurol 57: , Komaki R, Meyers CA, Shin DM, et al: Evaluation of cognitive function in patients with limited small cell lung cancer prior to and shortly following prophylactic cranial irradiation. Int J Radiat Oncol Biol Phys 33: , Laack N, Brown P, Furth A: Neurocognitive function after radiotherapy (RT) for supratentorial low-grade gliomas (LGG): results of a North Central Cancer Treatment Group (NCCTG) prospective study. Int J Radiat Oncol Biol Phys 57(2 suppl):s134, Brown PD, Buckner JC, O Fallon JR, et al: Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination. J Clin Oncol 21: , Page 15 of 18

16 77. Loeffler JS, Siddon RL, Wen PY, et al: Stereotactic radiosurgery of the brain using a standard linear accelerator: A study of early and late effects. Radiother Oncol 17: , Werner-Wasik M, Rudoler S, Preston PE, et al: Immediate side effects of stereotactic radiotherapy and radiosurgery. Int J Radiat Oncol Biol Phys 43: , Varlotto JM, Flickinger JC, Niranjan A, et al: Analysis of tumor control and toxicity in patients who have survived at least one year after radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 57: , Urtasun RC, Band PR, Chapman JD, et al: Radiation plus metronidazole for glioblastoma. N Engl J Med 296:757, Nelson DF, Schoenfeld D, Weinstein AS, et al: A randomized comparison of misonidazole sensitized radiotherapy plus BCNU and radiotherapy plus BCNU for treatment of malignant glioma after surgery; preliminary results of an RTOG study. Int J Radiat Oncol Biol Phys 9: , Nelson DF, Diener-West M, Weinstein AS, et al: A randomized comparison of misonidazole sensitized radiotherapy plus BCNU and radiotherapy plus BCNU for treatment of malignant glioma after surgery: final report of an RTOG study. Int J Radiat Oncol Biol Phys 12: , Overgaard J, Hansen HS, Overgaard M, et al: A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) protocol Radiother Oncol 46: , Rischin D, Peters L, Hicks R, et al: Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol 19: , Rischin D, Peters L, Fisher R, et al: Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: A randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J Clin Oncol 23:79-87, Urtasun RC, Kinsella TJ, Farnan N, et al: Survival improvement in anaplastic astrocytoma, combining external radiation with halogenated pyrimidines: Final report of RTOG 86-12, Phase I-II study. Int J Radiat Oncol Biol Phys 36: , Prados MD, Seiferheld W, Sandler HM, et al: Phase III randomized study of radiotherapy plus procarbazine, lomustine, and vincristine with or without BUdR for treatment of anaplastic astrocytoma: Final report of RTOG Int J Radiat Oncol Biol Phys 58: , Phillips TL, Scott CB, Leibel SA, et al: Results of a randomized comparison of radiotherapy and bromodeoxyuridine with radiotherapy alone for brain metastases: Report of RTOG trial Int J Radiat Oncol Biol Phys 33: , Brada M, Ross G: Radiotherapy for primary and secondary brain tumors. Curr Opin Oncol 7: , Viala J, Vanel D, Meingan P, et al: Phases IB and II multidose trial of gadolinium texaphyrin, a radiation sensitizer detectable at MR imaging: Preliminary results in brain metastases. Radiology 212: , Rosenthal DI, Nurenberg P, Becerra CR, et al: A phase I single-dose trial of gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer detectable by magnetic resonance imaging. Clin Cancer Res 5: , Magda D, Lepp C, Gerasimchuk N, et al: Redox cycling by motexafin gadolinium enhances cellular response to ionizing radiation by forming reactive oxygen species. Int J Radiat Oncol Biol Page 16 of 18

17 Phys 51: , Meyers CA, Smith JA, Bezjak A, et al: Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: Results of a randomized phase III trial. J Clin Oncol 22: , Greig N: Implications of the blood brain barrier and its manipulation, in Neuwelt E (ed): Brain Tumor and the Blood Tumor Barrier, vol 2. New York, Plenum, Franciosi V, Cocconi G, Michiara M, et al: Front-line chemotherapy with cisplatin and etoposide for patients with brain metastases from breast carcinoma, nonsmall cell lung carcinoma, or malignant melanoma: A prospective study. Cancer 85: , Newlands ES, Blackledge GR, Slack JA, et al: Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC ). Br J Cancer 65: , Stevens MF, Hickman JA, Langdon SP, et al: Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res 47: , Stupp R, Dietrich PY, Ostermann Kraljevic S, et al: Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20: , Gilbert MR, Friedman HS, Kuttesch JF, et al: A phase II study of temozolomide in patients with newly diagnosed supratentorial malignant glioma before radiation therapy. Neuro-oncol 4: , Christodoulou C, Bafaloukos D, Kosmidis P, et al: Phase II study of temozolomide in heavily pretreated cancer patients with brain metastases. Ann Oncol 12: , Abrey LE, Olson JD, Raizer JJ, et al: A phase II trial of temozolomide for patients with recurrent or progressive brain metastases. J Neurooncol 53: , Friedman H, Evans B, Reardon D: Phase II trial of temozolomide for patients with progressive brain metastases (abstract 408). Proc Am Soc Clin Oncol 22:102, Siena S, Landonio G, Baietta E: Multicenter phase II study of temozolomide therapy for brain metastasis in patients with malignant melanoma, breast cancer, and non-small cell lung cancer (abstract 407). Proc Am Soc Clin Oncol 22:102, Bafaloukos D, Gogas H, Georgoulias V, et al: Temozolomide in combination with docetaxel in patients with advanced melanoma: A phase II study of the Hellenic Cooperative Oncology Group. J Clin Oncol 20: , Antonadou D, Paraskevaidis M, Sarris G, et al: Phase II randomized trial of temozolomide and concurrent radiotherapy in patients with brain metastases. J Clin Oncol 20: , Antonadou D, Coliarakis N, Paraskevaidis M: Whole brain radiotherapy alone or in combination with temozolomide for brain metastasis. A phase III study. Int J Radiat Oncol Biol Phys 54:93-94, Verger E, Gil M, Yay R: Concomitant temozolomide (TMZ) and radiotherapy (RT) in patients with brain metastasis: Randomized multicentric phase II study, a preliminary report (abstract 309). Proc Am Soc Clin Oncol 21:78a, Verger E, Gil M, Yaya R: Concomitant temozolomide (TMZ) and whole brain radiotherapy (WBRT) in patients with brain metastasis (BM): Randomized multicentric phase II study (abstract 404). Proc Am Soc Clin Oncol 22:101, Page 17 of 18

18 109. Sunkara U, Walczak JR, Summerson L, et al: A phase II trial of temozolomide and IFN-alpha in patients with advanced renal cell carcinoma. J Interferon Cytokine Res 24:37-41, Park DK, Ryan CW, Dolan ME, et al: A phase II trial of oral temozolomide in patients with metastatic renal cell cancer. Cancer Chemother Pharmacol 50: , Takahashi M, Rhodes DR, Furge KA, et al: Gene expression profiling of clear cell renal cell carcinoma: Gene identification and prognostic classification. Proc Natl Acad Sci U S A 98: , Takahashi M, Sugimura J, Yang X, et al: Gene expression profiling of renal cell carcinoma and its implications in diagnosis, prognosis, and therapeutics. Adv Cancer Res 89: , Tan MH, Rogers CG, Cooper JT, et al: Gene expression profiling of renal cell carcinoma. Clin Cancer Res 10:6315S-6321S, Rogers CG, Tan MH, Teh BT: Gene expression profiling of renal cell carcinoma and clinical implications. Urology 65: , Source URL: nal-cell-carcinoma Links: [1] [2] [3] [4] [5] [6] [7] [8] Page 18 of 18

Radioterapia panencefalica. Umberto Ricardi

Radioterapia panencefalica. Umberto Ricardi Radioterapia panencefalica Umberto Ricardi Background Systemic disease to the brain is unfortunately a quite common event Radiotherapy, especially with the great technical development during the past decades,

More information

Gamma Knife and Axesse Radiosurgery

Gamma Knife and Axesse Radiosurgery Gamma Knife and Axesse Radiosurgery John C Flickinger MD Departments of Radiation Oncology & Neurological Surgery University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania Origin of Radiosurgery

More information

Brain Tumor Treatment

Brain Tumor Treatment Scan for mobile link. Brain Tumor Treatment Brain Tumors Overview A brain tumor is a group of abnormal cells that grows in or around the brain. Tumors can directly destroy healthy brain cells. They can

More information

Management of low grade glioma s: update on recent trials

Management of low grade glioma s: update on recent trials Management of low grade glioma s: update on recent trials M.J. van den Bent The Brain Tumor Center at Erasmus MC Cancer Center Rotterdam, the Netherlands Low grades Female, born 1976 1 st seizure 2005,

More information

A new score predicting the survival of patients with spinal cord compression from myeloma

A new score predicting the survival of patients with spinal cord compression from myeloma A new score predicting the survival of patients with spinal cord compression from myeloma (1) Sarah Douglas, Department of Radiation Oncology, University of Lubeck, Germany; sarah_douglas@gmx.de (2) Steven

More information

A new score predicting the survival of patients with spinal cord compression from myeloma

A new score predicting the survival of patients with spinal cord compression from myeloma A new score predicting the survival of patients with spinal cord compression from myeloma (1) Sarah Douglas, Department of Radiation Oncology, University of Lubeck, Germany; sarah_douglas@gmx.de (2) Steven

More information

Corso Integrato di Clinica Medica ONCOLOGIA MEDICA AA 2010-2011 LUNG CANCER. VIII. THERAPY. V. SMALL CELL LUNG CANCER Prof.

Corso Integrato di Clinica Medica ONCOLOGIA MEDICA AA 2010-2011 LUNG CANCER. VIII. THERAPY. V. SMALL CELL LUNG CANCER Prof. Corso Integrato di Clinica Medica ONCOLOGIA MEDICA AA 2010-2011 LUNG CANCER. VIII. THERAPY. V. SMALL CELL LUNG CANCER Prof. Alberto Riccardi SMALL CELL LUNG CARCINOMA Summary of treatment approach * limited

More information

CME. Clinical Investigation

CME. Clinical Investigation CME International Journal of Radiation Oncology biology physics www.redjournal.org Clinical Investigation Phase 3 Trials of Stereotactic Radiosurgery With or Without Whole-Brain Radiation Therapy for 1

More information

7. Prostate cancer in PSA relapse

7. Prostate cancer in PSA relapse 7. Prostate cancer in PSA relapse A patient with prostate cancer in PSA relapse is one who, having received a primary treatment with intent to cure, has a raised PSA (prostate-specific antigen) level defined

More information

ORIGINAL PAPER RADIATION THERAPY FOR METASTATIC BRAIN TUMORS FROM LUNG CANCER

ORIGINAL PAPER RADIATION THERAPY FOR METASTATIC BRAIN TUMORS FROM LUNG CANCER Nagoya J. Med. Sci. 66. 119 ~ 128, 2003 ORIGINAL PAPER RADIATION THERAPY FOR METASTATIC BRAIN TUMORS FROM LUNG CANCER A REVIEW TO DEVISE INDIVIDUALIZED TREATMENT PLANS YOSHIYUKI ITOH, NOBUKAZU FUWA and

More information

GUIDELINES FOR THE MANAGEMENT OF LUNG CANCER

GUIDELINES FOR THE MANAGEMENT OF LUNG CANCER GUIDELINES FOR THE MANAGEMENT OF LUNG CANCER BY Ali Shamseddine, MD (Coordinator); as04@aub.edu.lb Fady Geara, MD Bassem Shabb, MD Ghassan Jamaleddine, MD CLINICAL PRACTICE GUIDELINES FOR THE TREATMENT

More information

Implementation Date: April 2015 Clinical Operations

Implementation Date: April 2015 Clinical Operations National Imaging Associates, Inc. Clinical guideline PROSTATE CANCER Original Date: March 2011 Page 1 of 5 Radiation Oncology Last Review Date: March 2015 Guideline Number: NIA_CG_124 Last Revised Date:

More information

Stage IV Renal Cell Carcinoma. Changing Management in A Comprehensive Community Cancer Center. Susquehanna Health Cancer Center

Stage IV Renal Cell Carcinoma. Changing Management in A Comprehensive Community Cancer Center. Susquehanna Health Cancer Center Stage IV Renal Cell Carcinoma Changing Management in A Comprehensive Community Cancer Center Susquehanna Health Cancer Center 2000 2009 Warren L. Robinson, MD, FACP January 27, 2014 Introduction 65,150

More information

Management of spinal cord compression

Management of spinal cord compression Management of spinal cord compression (SUMMARY) Main points a) On diagnosis, all patients should receive dexamethasone 10mg IV one dose, then 4mg every 6h. then switched to oral dose and tapered as tolerated

More information

TITLE: Comparison of the dosimetric planning of partial breast irradiation with and without the aid of 3D virtual reality simulation (VRS) software.

TITLE: Comparison of the dosimetric planning of partial breast irradiation with and without the aid of 3D virtual reality simulation (VRS) software. SAMPLE CLINICAL RESEARCH APPLICATION ABSTRACT: TITLE: Comparison of the dosimetric planning of partial breast irradiation with and without the aid of 3D virtual reality simulation (VRS) software. Hypothesis:

More information

Brain metastases Andrew D. Norden a,b,c, Patrick Y. Wen d,e and Santosh Kesari d,e

Brain metastases Andrew D. Norden a,b,c, Patrick Y. Wen d,e and Santosh Kesari d,e Brain metastases Andrew D. Norden a,b,c, Patrick Y. Wen d,e and Santosh Kesari d,e Purpose of review Brain metastases occur in 10 30% of cancer patients, and they are associated with a dismal prognosis.

More information

Radiation Therapy in the Treatment of

Radiation Therapy in the Treatment of Lung Cancer Radiation Therapy in the Treatment of Lung Cancer JMAJ 46(12): 537 541, 2003 Kazushige HAYAKAWA Professor and Chairman, Department of Radiology, Kitasato University School of Medicine Abstract:

More information

SMALL CELL LUNG CANCER

SMALL CELL LUNG CANCER Protocol for Planning and Treatment The process to be followed in the management of: SMALL CELL LUNG CANCER Patient information given at each stage following agreed information pathway 1. DIAGNOSIS New

More information

Radiotherapy in locally advanced & metastatic NSC lung cancer

Radiotherapy in locally advanced & metastatic NSC lung cancer Radiotherapy in locally advanced & metastatic NSC lung cancer Dr Raj Hegde. MD. FRANZCR Consultant Radiation Oncologist. William Buckland Radiotherapy Centre. Latrobe Regional Hospital. Locally advanced

More information

The Brain and Spine CenTer

The Brain and Spine CenTer The Br ain and Spine Center Choosing the right treatment partner is important for patients facing tumors involving the brain, spine or skull base. The Brain and Spine Center at The University of Texas

More information

Clinical Management Guideline Management of locally advanced or recurrent Renal cell carcinoma. Protocol for Planning and Treatment

Clinical Management Guideline Management of locally advanced or recurrent Renal cell carcinoma. Protocol for Planning and Treatment Protocol for Planning and Treatment The process to be followed in the management of: LOCALLY ADVANCED OR METASTATIC RENAL CELL CARCINOMA Patient information given at each stage following agreed information

More information

Cancer - Therapeutic Process of Rapid proliferating Tumors

Cancer - Therapeutic Process of Rapid proliferating Tumors Workshop Interdisciplinare radiazioni: biologia, clinica, ambiente e protezione Centro Ricerche Casaccia ENEA Roma, 14 maggio 2009 basse dosi in radioterapia Alessio G. Morganti 1,2,3, Mariangela Massaccesi

More information

Management of Postmenopausal Women with T1 ER+ Tumors: Options and Tradeoffs. Case Study. Surgery. Lumpectomy and Radiation

Management of Postmenopausal Women with T1 ER+ Tumors: Options and Tradeoffs. Case Study. Surgery. Lumpectomy and Radiation Management of Postmenopausal Women with T1 ER+ Tumors: Options and Tradeoffs Michael Alvarado, MD Associate Professor of Surgery University of California San Francisco Case Study 59 yo woman with new palpable

More information

Glioblastoma (cancer affecting the brain) A guide for journalists on glioblastoma and its treatment

Glioblastoma (cancer affecting the brain) A guide for journalists on glioblastoma and its treatment Glioblastoma (cancer affecting the brain) A guide for journalists on glioblastoma and its treatment Section 1 Glioblastoma Section 2 Epidemiology and prognosis Section 3 Treatment Contents Contents 2 3

More information

PRIMARY GLIOMA (oligodendroglioma, astrocytoma, oligodendroglioma, oligoastrocytoma, including anaplastic, gliosarcoma and glioblastoma multiforme)

PRIMARY GLIOMA (oligodendroglioma, astrocytoma, oligodendroglioma, oligoastrocytoma, including anaplastic, gliosarcoma and glioblastoma multiforme) Protocol for Planning and Treatment The process to be followed when a course of chemotherapy is required to treat: PRIMARY GLIOMA (oligodendroglioma, astrocytoma, oligodendroglioma, oligoastrocytoma, including

More information

What is Glioblastoma? How is GBM classified according to the WHO Grading System? What risk factors pertain to GBM?

What is Glioblastoma? How is GBM classified according to the WHO Grading System? What risk factors pertain to GBM? GBM (English) What is Glioblastoma? Glioblastoma or glioblastoma multiforme is one of the most common brain tumors accounting for approximately 12 to 15 percent of all brain tumors. The name of the tumor

More information

AMERICAN BRAIN TUMOR ASSOCIATION. Proton Therapy

AMERICAN BRAIN TUMOR ASSOCIATION. Proton Therapy AMERICAN BRAIN TUMOR ASSOCIATION Proton Therapy Acknowledgements About the American Brain Tumor Association Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit

More information

Case report : pineal metastasis from lung cancer

Case report : pineal metastasis from lung cancer Copyright Priory Lodge Education Ltd. 2005 First Published 17 th June 2005 Case report : pineal metastasis from lung cancer Dr. K.W. Lam 1 MRCS, Dr F C Cheung 2 FRCS, FHKAM, Dr K M Ko 1 FRCS, FHKAM Department

More information

Baylor Radiosurgery Center

Baylor Radiosurgery Center Radiosurgery Center Baylor Radiosurgery Center Sophisticated Radiosurgery for both Brain and Body University Medical Center at Dallas Radiosurgery Center 3500 Gaston Avenue Hoblitzelle Hospital, First

More information

Table of Contents. Data Supplement 1: Summary of ASTRO Guideline Statements. Data Supplement 2: Definition of Terms

Table of Contents. Data Supplement 1: Summary of ASTRO Guideline Statements. Data Supplement 2: Definition of Terms Definitive and Adjuvant Radiotherapy in Locally Advanced Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation

More information

Protein kinase C alpha expression and resistance to neo-adjuvant gemcitabine-containing chemotherapy in non-small cell lung cancer

Protein kinase C alpha expression and resistance to neo-adjuvant gemcitabine-containing chemotherapy in non-small cell lung cancer Protein kinase C alpha expression and resistance to neo-adjuvant gemcitabine-containing chemotherapy in non-small cell lung cancer Dan Vogl Lay Abstract Early stage non-small cell lung cancer can be cured

More information

Protons vs. CyberKnife. Protons vs. CyberKnife. Page 1 UC SF. What are. Alexander R. Gottschalk, M.D., Ph.D.

Protons vs. CyberKnife. Protons vs. CyberKnife. Page 1 UC SF. What are. Alexander R. Gottschalk, M.D., Ph.D. Protons vs. CyberKnife UC SF Protons vs. CyberKnife UC SF Alexander R. Gottschalk, M.D., Ph.D. Associate Professor and Director of the CyberKnife Radiosurgery Program Department of Radiation Oncology University

More information

Lung Cancer Treatment Guidelines

Lung Cancer Treatment Guidelines Updated June 2014 Derived and updated by consensus of members of the Providence Thoracic Oncology Program with the aid of evidence-based National Comprehensive Cancer Network (NCCN) national guidelines,

More information

Sinisa Stanic, MD Resident Physician Department of Radiation Oncology University of California Davis Sacramento, California

Sinisa Stanic, MD Resident Physician Department of Radiation Oncology University of California Davis Sacramento, California Is Renal Cell Carcinoma Really Radioresistant? Experience With Stereotactic Body Radiotherapy in Patients for Primary and Metastatic Renal Cell Carcinoma Sinisa Stanic, MD Resident Physician University

More information

Veterinary Oncology: The Lumps We Hate To Treat

Veterinary Oncology: The Lumps We Hate To Treat Veterinary Oncology: The Lumps We Hate To Treat Michelle Turek, DVM, DACVIM (Oncology), DACVR (Radiation Oncology) College of Veterinary Medicine University of Georgia Athens, GA Veterinary Oncology Veterinary

More information

The Whipple Operation for Pancreatic Cancer: Optimism vs. Reality. Franklin Wright UCHSC Department of Surgery Grand Rounds September 11, 2006

The Whipple Operation for Pancreatic Cancer: Optimism vs. Reality. Franklin Wright UCHSC Department of Surgery Grand Rounds September 11, 2006 The Whipple Operation for Pancreatic Cancer: Optimism vs. Reality Franklin Wright UCHSC Department of Surgery Grand Rounds September 11, 2006 Overview Pancreatic ductal adenocarcinoma Pancreaticoduodenectomy

More information

Radiation Therapy for Prostate Cancer: Treatment options and future directions

Radiation Therapy for Prostate Cancer: Treatment options and future directions Radiation Therapy for Prostate Cancer: Treatment options and future directions David Weksberg, M.D., Ph.D. PinnacleHealth Cancer Institute September 12, 2015 Radiation Therapy for Prostate Cancer: Treatment

More information

Gemcitabine, Paclitaxel, and Trastuzumab in Metastatic Breast Cancer

Gemcitabine, Paclitaxel, and Trastuzumab in Metastatic Breast Cancer Gemcitabine, Paclitaxel, and Trastuzumab in Metastatic Breast Cancer Review Article [1] December 01, 2003 By George W. Sledge, Jr, MD [2] Gemcitabine (Gemzar) and paclitaxel show good activity as single

More information

PRINIPLES OF RADIATION THERAPY Adarsh Kumar. The basis of radiation therapy revolve around the principle that ionizing radiations kill cells

PRINIPLES OF RADIATION THERAPY Adarsh Kumar. The basis of radiation therapy revolve around the principle that ionizing radiations kill cells PRINIPLES OF RADIATION THERAPY Adarsh Kumar The basis of radiation therapy revolve around the principle that ionizing radiations kill cells Radiotherapy terminology: a. Radiosensitivity: refers to susceptibility

More information

RADIATION THERAPY FOR BRAIN METASTASES. Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY

RADIATION THERAPY FOR BRAIN METASTASES. Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY RADIATION THERAPY FOR BRAIN METASTASES Facts to Help Patients Make an Informed Decision TARGETING CANCER CARE AMERICAN SOCIETY FOR RADIATION ONCOLOGY FACTS ABOUT BRAIN METASTASIS Brain metastases are clusters

More information

PET/CT in Lung Cancer

PET/CT in Lung Cancer PET/CT in Lung Cancer Rodolfo Núñez Miller, M.D. Nuclear Medicine and Diagnostic Imaging Section Division of Human Health International Atomic Energy Agency Vienna, Austria GLOBOCAN 2012 #1 #3 FDG-PET/CT

More information

Outline. Predictive Assays in Radiation Therapy Immunotherapy in Cancer Treatment. Introduction. Current clinical practice

Outline. Predictive Assays in Radiation Therapy Immunotherapy in Cancer Treatment. Introduction. Current clinical practice Predictive Assays in Radiation Therapy Immunotherapy in Cancer Treatment Radiation Biology Outline Introduction: Predictive assays in radiation therapy Examples for specific tumors Immunotherapy Summary

More information

Treatment of Small Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American College of Chest Physicians (ACCP) Guideline

Treatment of Small Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American College of Chest Physicians (ACCP) Guideline Treatment of Small Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American College of Chest Physicians (ACCP) Guideline An ASCO Endorsement of Treatment of Small Cell Lung Cancer:

More information

Current Status and Perspectives of Radiation Therapy for Breast Cancer

Current Status and Perspectives of Radiation Therapy for Breast Cancer Breast Cancer Current Status and Perspectives of Radiation Therapy for Breast Cancer JMAJ 45(10): 434 439, 2002 Masahiro HIRAOKA, Masaki KOKUBO, Chikako YAMAMOTO and Michihide MITSUMORI Department of Therapeutic

More information

Low dose capecitabine is effective and relatively nontoxic in breast cancer treatment.

Low dose capecitabine is effective and relatively nontoxic in breast cancer treatment. 1 Low dose capecitabine is effective and relatively nontoxic in breast cancer treatment. John T. Carpenter, M.D. University of Alabama at Birmingham NP 2508 1720 Second Avenue South Birmingham, AL 35294-3300

More information

Concurrent Chemotherapy and Radiotherapy for Head and Neck Cancer

Concurrent Chemotherapy and Radiotherapy for Head and Neck Cancer Concurrent Chemotherapy and Radiotherapy for Head and Neck Cancer Ryan J. Burri; Nancy Y. Lee Published: 03/23/2009 Abstract and Introduction Abstract Head and neck cancer is best managed in a multidisciplinary

More information

Small Cell Lung Cancer

Small Cell Lung Cancer Small Cell Lung Cancer Types of Lung Cancer Non-small cell carcinoma (NSCC) (87%) Adenocarcinoma (38%) Squamous cell (20%) Large cell (5%) Small cell carcinoma (13%) Small cell lung cancer is virtually

More information

Our Facility. Advanced clinical center with the newest and highly exact technology for treatment of patients with cancer pencil beam

Our Facility. Advanced clinical center with the newest and highly exact technology for treatment of patients with cancer pencil beam PTC Czech The main goal of radiotherapy is to irreversibly damage tumor cells, whereas the cells of healthy tissue are damaged only reversibly or not at all. Proton therapy currently comes closest to this

More information

1400 Telegraph Bloomfield Hills, MI 48302 248-334-6877-Phone number/248-334-6877-fax Number CANCER TREATMENT

1400 Telegraph Bloomfield Hills, MI 48302 248-334-6877-Phone number/248-334-6877-fax Number CANCER TREATMENT 1400 Telegraph Bloomfield Hills, MI 48302 248-334-6877-Phone number/248-334-6877-fax Number CANCER TREATMENT Learning that your pet has a diagnosis of cancer can be overwhelming. We realize that your pet

More information

Malignant Spinal Cord Compression: Highlights on Specific Management Aspects

Malignant Spinal Cord Compression: Highlights on Specific Management Aspects Palliative Medicine Doctors Meeting HKSPM Newsletter 2008 Apr Issue 1 p 21 Malignant Spinal Cord Compression: Highlights on Specific Management Aspects Dr. KH Wong Department of Clinical Oncology, Queen

More information

A SAFE, NON-INVASIVE TREATMENT OPTION: GAMMA KNIFE PERFEXION

A SAFE, NON-INVASIVE TREATMENT OPTION: GAMMA KNIFE PERFEXION A SAFE, NON-INVASIVE TREATMENT OPTION: GAMMA KNIFE PERFEXION Not actually a knife, the Gamma Knife Perfexion is an advanced radiosurgery device which uses extremely precise beams of radiation to treat

More information

L Lang-Lazdunski, A Bille, S Marshall, R Lal, D Landau, J Spicer

L Lang-Lazdunski, A Bille, S Marshall, R Lal, D Landau, J Spicer Pleurectomy/decortication, hyperthermic pleural lavage with povidone-iodine and systemic chemotherapy in malignant pleural mesothelioma. A 10-year experience. L Lang-Lazdunski, A Bille, S Marshall, R Lal,

More information

Metastatic Renal Cell Carcinoma: Staging and Prognosis of Three Separate Cases.

Metastatic Renal Cell Carcinoma: Staging and Prognosis of Three Separate Cases. Metastatic Renal Cell Carcinoma: Staging and Prognosis of Three Separate Cases. Abstract This paper describes the staging, imaging, treatment, and prognosis of renal cell carcinoma. Three case studies

More information

Glioblastoma, brain metastases, spine metastases

Glioblastoma, brain metastases, spine metastases VOL. III Issue 1 2012 This issue focuses on: Neurologic-Oncology Welcome to the Spring 2012 edition of Oncology News from Memorial Regional Cancer Center. This issue focuses on Neurologic-Oncology. At

More information

New strategies in anticancer therapy

New strategies in anticancer therapy 癌 症 診 療 指 引 簡 介 及 臨 床 應 用 New strategies in anticancer therapy 中 山 醫 學 大 學 附 設 醫 院 腫 瘤 內 科 蔡 明 宏 醫 師 2014/3/29 Anti-Cancer Therapy Surgical Treatment Radiotherapy Chemotherapy Target Therapy Supportive

More information

KIDNEY FUNCTION RELATION TO SIZE OF THE TUMOR IN RENAL CELL CANCINOMA

KIDNEY FUNCTION RELATION TO SIZE OF THE TUMOR IN RENAL CELL CANCINOMA KIDNEY FUNCTION RELATION TO SIZE OF THE TUMOR IN RENAL CELL CANCINOMA O.E. Stakhvoskyi, E.O. Stakhovsky, Y.V. Vitruk, O.A. Voylenko, P.S. Vukalovich, V.A. Kotov, O.M. Gavriluk National Canсer Institute,

More information

The Science behind Proton Beam Therapy

The Science behind Proton Beam Therapy The Science behind Proton Beam Therapy Anthony Zietman MD Shipley Professor of Radiation Oncology Massachusetts General Hospital Harvard Medical School Principles underlying Radiotherapy Radiation related

More information

Clinical Trial Design. Sponsored by Center for Cancer Research National Cancer Institute

Clinical Trial Design. Sponsored by Center for Cancer Research National Cancer Institute Clinical Trial Design Sponsored by Center for Cancer Research National Cancer Institute Overview Clinical research is research conducted on human beings (or on material of human origin such as tissues,

More information

Radiation Therapy for Cancer Treatment

Radiation Therapy for Cancer Treatment Radiation Therapy for Cancer Treatment Guest Expert: Kenneth, MD Associate Professor of Therapeutic Radiology www.wnpr.org www.yalecancercenter.org Welcome to Yale Cancer Center Answers with Dr. Ed and

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity Modulated Radiation Therapy for Tumors of the Central File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_for_tumors

More information

SBRT (Elekta), 45 Gy in fractions of 3 Gy 3x/week for 5 weeks (N=22) vs.

SBRT (Elekta), 45 Gy in fractions of 3 Gy 3x/week for 5 weeks (N=22) vs. Uitgangsvraag 6: Wat is de plaats van stereotactische radiotherapiebehandeling (SBRT) bij HCC patiënten? Primaire studies I Study ID II Method III Patient characteristics IV Intervention(s) V Results primary

More information

Clinical Trials and Radiation Treatment. Gerard Morton Odette Cancer Centre Sunnybrook Research Institute University of Toronto

Clinical Trials and Radiation Treatment. Gerard Morton Odette Cancer Centre Sunnybrook Research Institute University of Toronto Clinical Trials and Radiation Treatment Gerard Morton Odette Cancer Centre Sunnybrook Research Institute University of Toronto What I will cover.. A little about radiation treatment The clinical trials

More information

Proton Therapy Center Czech

Proton Therapy Center Czech Proton Therapy Center Czech The main goal of radiotherapy is to irreversibly damage tumor cells, whereas the cells of healthy tissue are damaged only reversibly or not at all. Proton therapy currently

More information

Avastin in breast cancer: Summary of clinical data

Avastin in breast cancer: Summary of clinical data Avastin in breast cancer: Summary of clinical data Worldwide, over one million people are diagnosed with breast cancer every year 1. It is the most frequently diagnosed cancer in women 1,2, and the leading

More information

Recommendations on Disease Management for Patients with Advanced HER2-Positive Breast Cancer and Brain Metastases

Recommendations on Disease Management for Patients with Advanced HER2-Positive Breast Cancer and Brain Metastases Recommendations on Disease Management for Patients with Advanced HER2-Positive Breast Cancer and Brain Metastases Clinical Practice Guideline www.asco.org/guidelines/her2brainmets American Society of Clinical

More information

Metastatic renal cell carcinoma to the left maxillary sinus

Metastatic renal cell carcinoma to the left maxillary sinus Case Report Metastatic renal cell carcinoma to the left maxillary sinus Y.-F. He 1, J. Chen 1, W.-Q. Xu 2, C.-S. Ji 1, J.-P. Du 1, H.-Q. Luo 1 and B. Hu 1 1 Department of Medical Oncology, The Provincial

More information

Prognosis of Non-Small Cell Lung Cancer with Synchronous Brain Metastases Treated with Gamma Knife Radiosurgery

Prognosis of Non-Small Cell Lung Cancer with Synchronous Brain Metastases Treated with Gamma Knife Radiosurgery J Korean Med Sci 26; 21: 527-32 ISSN 111-8934 Copyright The Korean Academy of Medical Sciences Prognosis of Non-Small Cell Lung Cancer with Synchronous Brain Metastases Treated with Gamma Knife Radiosurgery

More information

Ching-Yao Yang, Yu-Wen Tien

Ching-Yao Yang, Yu-Wen Tien Ching-Yao Yang, Yu-Wen Tien Division of General Surgery, Department of Surgery, National Taiwan University Hospital Oct-30-2010 Pancreatic NET have poorer prognosis when presence of liver metastases at

More information

Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment.

Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment. Dictionary Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment. Applicator A device used to hold a radioactive source

More information

Guidelines for Management of Renal Cancer

Guidelines for Management of Renal Cancer Guidelines for Management of Renal Cancer Date Approved by Network Governance July 2012 Date for Review July 2015 Changes Between Versions 2 and 3 Section 5 updated bullets 5.3 and 5.4 Section 6 updated

More information

Radiation Oncology Nursing Care. Helen Lusby Radiation Oncology Nurse BAROC 2012

Radiation Oncology Nursing Care. Helen Lusby Radiation Oncology Nurse BAROC 2012 Radiation Oncology Nursing Care Helen Lusby Radiation Oncology Nurse BAROC 2012 Definitions Radiation Therapy: Treatment of cancer using x- ray particles that cause ionisation within the cells. External

More information

Trials in Elderly Melanoma Patients (with a focus on immunotherapy)

Trials in Elderly Melanoma Patients (with a focus on immunotherapy) Trials in Elderly Melanoma Patients (with a focus on immunotherapy) Where we were Immunotherapy Trials: past and present Relevance for real world practice Where we are SIOG October 2012 James Larkin FRCP

More information

Background. t 1/2 of 3.7 4.7 days allows once-daily dosing (1.5 mg) with consistent serum concentration 2,3 No interaction with CYP3A4 inhibitors 4

Background. t 1/2 of 3.7 4.7 days allows once-daily dosing (1.5 mg) with consistent serum concentration 2,3 No interaction with CYP3A4 inhibitors 4 Abstract No. 4501 Tivozanib versus sorafenib as initial targeted therapy for patients with advanced renal cell carcinoma: Results from a Phase III randomized, open-label, multicenter trial R. Motzer, D.

More information

Health care and research: Clinical trials in cancer radiotherapy

Health care and research: Clinical trials in cancer radiotherapy Health care and research: Clinical trials in cancer radiotherapy Through its health programmes,the IAEA has initiated co-operative clinical studies to improve the outcome in cancer treatment by Jordanka

More information

Understanding INTRABEAM Intraoperative Radiation Therapy for Breast Cancer A patient guide

Understanding INTRABEAM Intraoperative Radiation Therapy for Breast Cancer A patient guide Understanding INTRABEAM Intraoperative Radiation Therapy for Breast Cancer A patient guide A diagnosis of breast cancer is never easy, but today there are more treatment options than ever before. A breast

More information

Basic Radiation Therapy Terms

Basic Radiation Therapy Terms Basic Radiation Therapy Terms accelerated radiation: radiation schedule in which the total dose is given over a shorter period of time. (Compare to hyperfractionated radiation.) adjuvant therapy (add-joo-vunt):

More information

Metastatic Breast Cancer 201. Carolyn B. Hendricks, MD October 29, 2011

Metastatic Breast Cancer 201. Carolyn B. Hendricks, MD October 29, 2011 Metastatic Breast Cancer 201 Carolyn B. Hendricks, MD October 29, 2011 Overview Is rebiopsy necessary at the time of recurrence or progression of disease? How dose a very aggressive treatment upfront compare

More information

CHAPTER 2. Neoplasms (C00-D49) March 2014. 2014 MVP Health Care, Inc.

CHAPTER 2. Neoplasms (C00-D49) March 2014. 2014 MVP Health Care, Inc. Neoplasms (C00-D49) March 2014 2014 MVP Health Care, Inc. CHAPTER SPECIFIC CATEGORY CODE BLOCKS C00-C14 Malignant neoplasms of lip, oral cavity and pharynx C15-C26 Malignant neoplasms of digestive organs

More information

4.8 Lung cancer. 4.8.5 In the UK, three fractionation regimens are most commonly used:

4.8 Lung cancer. 4.8.5 In the UK, three fractionation regimens are most commonly used: 4.8 Lung cancer 4.8.1 In 2005, both NICE (National Institute for Health and Clinical Excellence) and SIGN (Scottish Intercollegiate Guidelines Network) published guidelines on the management of lung cancer.

More information

Supportive Care For Patients With High-Grade Glioma (primary brain tumours) Dr Susan Catt & Professor Lesley Fallowfield

Supportive Care For Patients With High-Grade Glioma (primary brain tumours) Dr Susan Catt & Professor Lesley Fallowfield Supportive Care For Patients With High-Grade Glioma (primary brain tumours) Dr Susan Catt & Professor Lesley Fallowfield Partners Mr Giles Critchley Consultant Neurosurgeon Hurstwood Park Neurological

More information

Preliminary Results from a Phase 2 Study of ARQ 197 in Patients with Microphthalmia Transcription Factor Family (MiT) Associated Tumors

Preliminary Results from a Phase 2 Study of ARQ 197 in Patients with Microphthalmia Transcription Factor Family (MiT) Associated Tumors Preliminary Results from a Phase 2 Study of ARQ 197 in Patients with Microphthalmia Transcription Factor Family (MiT) Associated Tumors John Goldberg 1 *, George Demetri 2, Edwin Choy 3, Lee Rosen 4, Alberto

More information

Historical Basis for Concern

Historical Basis for Concern Androgens After : Are We Ready? Mohit Khera, MD, MBA Assistant Professor of Urology Division of Male Reproductive Medicine and Surgery Scott Department of Urology Baylor College of Medicine Historical

More information

Emerging Drug List GEFITINIB

Emerging Drug List GEFITINIB Generic (Trade Name): Manufacturer: Gefitinib (Iressa ) formerly referred to as ZD1839 AstraZeneca NO. 52 JANUARY 2004 Indication: Current Regulatory Status: Description: Current Treatment: Cost: Evidence:

More information

Role of taxanes in the treatment of advanced NHL patients: A randomized study of 87 cases

Role of taxanes in the treatment of advanced NHL patients: A randomized study of 87 cases Role of taxanes in the treatment of advanced NHL patients: A randomized study of 87 cases R. Shraddha, P.N. Pandit Radium Institute, Patna Medical College and Hospital, Patna, India Abstract NHL is a highly

More information

RESEARCH EDUCATE ADVOCATE. Just Diagnosed with Melanoma Now What?

RESEARCH EDUCATE ADVOCATE. Just Diagnosed with Melanoma Now What? RESEARCH EDUCATE ADVOCATE Just Diagnosed with Melanoma Now What? INTRODUCTION If you are reading this, you have undergone a biopsy (either of a skin lesion or a lymph node) or have had other tests in which

More information

Small Cell Lung Cancer

Small Cell Lung Cancer Small Cell Lung Cancer Lung Practice Guideline Dr. Brian Dingle MSc, MD, FRCPC Approval Date: April 2007 Revised: November 2008 This guideline is a statement of consensus of the Thoracic Disease Site Team

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

Introduction to Radiation Oncology

Introduction to Radiation Oncology Editors: Abigail T. Berman, MD, University of Pennsylvania Jordan Kharofa, MD, Medical College of Wisconsin Introduction to Radiation Oncology What Every Medical Student Needs to Know Objectives Introduction

More information

Kidney Cancer OVERVIEW

Kidney Cancer OVERVIEW Kidney Cancer OVERVIEW Kidney cancer is the third most common genitourinary cancer in adults. There are approximately 54,000 new cancer cases each year in the United States, and the incidence of kidney

More information

Guidance for Industry FDA Approval of New Cancer Treatment Uses for Marketed Drug and Biological Products

Guidance for Industry FDA Approval of New Cancer Treatment Uses for Marketed Drug and Biological Products Guidance for Industry FDA Approval of New Cancer Treatment Uses for Marketed Drug and Biological Products U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation

More information

H. Richard Alexander, Jr., M.D. Department of Surgery and The Greenebaum Cancer Center University of Maryland School of Medicine Baltimore, Md

H. Richard Alexander, Jr., M.D. Department of Surgery and The Greenebaum Cancer Center University of Maryland School of Medicine Baltimore, Md Major Advances in Cancer Prevention, Diagnosis and Treatment~ Why Mesothelioma Leads the Way H. Richard Alexander, Jr., M.D. Department of Surgery and The Greenebaum Cancer Center University of Maryland

More information

Integrating Chemotherapy and Liver Surgery for the Management of Colorectal Metastases

Integrating Chemotherapy and Liver Surgery for the Management of Colorectal Metastases I Congresso de Oncologia D Or July 5-6, 2013 Integrating Chemotherapy and Liver Surgery for the Management of Colorectal Metastases Michael A. Choti, MD, MBA, FACS Department of Surgery Johns Hopkins University

More information

PSA Screening for Prostate Cancer Information for Care Providers

PSA Screening for Prostate Cancer Information for Care Providers All men should know they are having a PSA test and be informed of the implications prior to testing. This booklet was created to help primary care providers offer men information about the risks and benefits

More information

Cancer Treatments Subcommittee of PTAC Meeting held 2 March 2012. (minutes for web publishing)

Cancer Treatments Subcommittee of PTAC Meeting held 2 March 2012. (minutes for web publishing) Cancer Treatments Subcommittee of PTAC Meeting held 2 March 2012 (minutes for web publishing) Cancer Treatments Subcommittee minutes are published in accordance with the Terms of Reference for the Pharmacology

More information

Lung cancer forms in tissues of the lung, usually in the cells lining air passages.

Lung cancer forms in tissues of the lung, usually in the cells lining air passages. Scan for mobile link. Lung Cancer Lung cancer usually forms in the tissue cells lining the air passages within the lungs. The two main types are small-cell lung cancer (usually found in cigarette smokers)

More information

Brain Cancer. This reference summary will help you understand how brain tumors are diagnosed and what options are available to treat them.

Brain Cancer. This reference summary will help you understand how brain tumors are diagnosed and what options are available to treat them. Brain Cancer Introduction Brain tumors are not rare. Thousands of people are diagnosed every year with tumors of the brain and the rest of the nervous system. The diagnosis and treatment of brain tumors

More information

RADIATION THERAPY IN THE MANAGEMENT OF CANCER

RADIATION THERAPY IN THE MANAGEMENT OF CANCER RADIATION THERAPY IN THE MANAGEMENT OF CANCER G K Rath Introduction Radiotherapy or radiation treatment is defined as the treatment of diseases (mostly malignant) with ionizing radiation. The various types

More information

ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trials)

ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trials) ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trials) 3 Integrated Trials Testing Targeted Therapy in Early Stage Lung Cancer Part of NCI s Precision Medicine Effort in

More information

Pulmonary function. Is patient potentially operable? Yes. tests 3. Yes. Pulmonary function. tests 3, if clinically indicated. Yes

Pulmonary function. Is patient potentially operable? Yes. tests 3. Yes. Pulmonary function. tests 3, if clinically indicated. Yes INITIAL EVALUATION Pathology consistent with small cell lung cancer History and physical Chest X-ray Laboratory studies to include: hematological and full chemistry panels CT chest and upper abdomen Pet

More information

THE POWER AND PRECISION OF PROTON BEAM THERAPY IS WITHIN REACH

THE POWER AND PRECISION OF PROTON BEAM THERAPY IS WITHIN REACH THE POWER AND PRECISION OF PROTON BEAM THERAPY IS WITHIN REACH PROTON THERAPY OVERVIEW The American Cancer Society estimates 1.6 million new cancer cases in the United States this year. Approximately two

More information