Inheritance and Complementation: A Case Study of Easy Adjectives and Related Nouns

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Inheritance and Complementation: A Case Study of Easy Adjectives and Related Nouns"

Transcription

1 Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR Inheritance and Complementation: A Case Study of Easy Adjectives and Related Nouns Dan Flickinger and John Nerbonne September 1991 Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Postfach Kaiserslautern, FRG Tel.: + 49 (631) Fax: + 49 (631) Stuhlsatzenhausweg Saarbrücken, FRG Tel.: + 49 (681) Fax: + 49 (681)

2 Deutsches Forschungszentrum für Künstliche Intelligenz The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken is a non-profit organization which was founded in The shareholder companies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM, Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens- Nixdorf. Research projects conducted at the DFKI are funded by the German Ministry for Research and Technology, by the shareholder companies, or by other industrial contracts. The DFKI conducts application-oriented basic research in the field of artificial intelligence and other related subfields of computer science. The overall goal is to construct systems with technical knowledge and common sense which - by using AI methods - implement a problem solution for a selected application area. Currently, there are the following research areas at the DFKI: 2Intelligent Engineering Systems 2Intelligent User Interfaces 2Computer Linguistics 2Programming Systems 2Deduction and Multiagent Systems 2Document Analysis and Office Automation. The DFKI strives at making its research results available to the scientific community. There exist many contacts to domestic and foreign research institutions, both in academy and industry. The DFKI hosts technology transfer workshops for shareholders and other interested groups in order to inform about the current state of research. From its beginning, the DFKI has provided an attractive working environment for AI researchers from Germany and from all over the world. The goal is to have a staff of about 100 researchers at the end of the building-up phase. Dr. Dr. D. Ruland Director

3 Inheritance and Complementation: A Case Study ofeasyadjectives and Related Nouns Dan Flickinger and John Nerbonne DFKI-RR-91-30

4 This work has been supported by a grant from The Federal Ministry for Research and Technology (FKZ ITWM-ITW ). cdeutsches Forschungszentrum für Künstliche Intelligenz 1991 This work may not be copied or reproduced in whole of part for any commercial purpose. Permission to copy in whole or part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz. ISSN X

5 InheritanceandComplementation:ACaseStudyofEasy AdjectivesandRelatedNouns DeutschesForschungszentrumfurKunstlicheIntelligenz PaloAlto,California Hewlett-PackardLaboratories 1501PageMillRoad JohnNerbonne DanFlickinger D-6600Saarbrucken11,Germany Stuhlsatzenhausweg3 volume.ourstudyservestohighlightsomeofthemostusefultoolsavailableforstructuredlexical guagehavebeenunderactivedevelopment,asisevidentintherecentstudiescontainedinthis Abstract Mechanismsforrepresentinglexicallythebulkofsyntacticandsemanticinformationforalan- November4,1994 illustratesthevalueofthesemechanismsinilluminatingonecornerofthelexiconinvolvingan unusualkindofcomplementationamongagroupofadjectivesexempliedbyeasy.thevirtues extendtheanalysisofadjectivalcomplementationinseveraldirections.thesefurtherillustrate howtheuseofinheritanceinlexicalrepresentationpermitsexactandexplicitcharacterizations ofthestructuredlexiconareitssuccinctnessanditstendencytohighlightsignicantclustersof ofphenomenainthelanguageunderstudy.wedemonstratehowtheuseofthemechanismsemployedintheanalysisofeasyenableustogiveauniedaccountofrelatedphenomenafeaturing nounslikepleasure,andeventheadverbs(adjectivalspeciers)tooandenough.alongthewaywe motivatesomeelaborationsofthehpsg(head-drivenphrasestructuregrammar)frameworkin whichwecouchouranalysis,andoerseveralavenuesforfurtherstudyofthispartoftheenglish lexicon. representation,inparticular,(multiple)inheritance,defaultspecication,andlexicalrules.itthen linguisticproperties.fromitssuccinctnessfollowtwopracticaladvantages,namelyitseaseof maintenanceandmodication.inordertosuggesthowimportantthesemaybepractically,we undtechnologietothedfkidiscoproject. workwaspartiallysupportedbyaresearchgrant,itw90020,fromthegermanbundesministeriumfurforschung forfrequentconversationsaboutthisanalysis.wearealsogratefultoanthonykroch,theparticipantsatthe TilburgWorkshoponInheritanceinNaturalLanguageProcessing,andthreerefereesforfurthercomments.This 1Introduction Thelexiconisalargeandcomplexsetofinformationaboutthewordsusedinagrammaror naturallanguageprocessingsystem.itsimportancehasbecomemorecentralintheresearchof WeareindebtedtoMarkGawron,MasayoIida,BillLadusaw,JoachimLaubsch,CarlPollardandTomWasow 1

6 thepastdecade,whichhasseentheriseofradicallylexicalizedtheoriessuchashead-driven phrasestructuregrammar(hpsg),inwhichphrasestructurerulesplayavestigialrole. Newertheoriesplaceincreasinglyhighdemandsonlexicalrepresentation.Asimplecalculation mayillustratethequandaryoflexicalrepresentation:featuresystemsforcontemporarysystems normallydistinguishatleast30features(while40or50isnotrare).thenumberofvaluesa featuretakesrangesfrom2tothenumberofcategories(moreexactly,tothenumberofsequences orsetsofasmallsize,whereallthemembersofthesequence,etc.arecategories).underthe undoubtedlyoptimisticassumptionthatfeaturevaluerangescouldbereducedtobooleans,westill arefacedwith230=109featurecombinations whoseindividualrepresentationisclearlytobe avoided,not\solved".1thenaturaltackiscertainlytorepresentjustthecategoriesactuallyused inthevocabulary,butthiscouldincuragooddealofredundancyifitmeantthateachfeature combinationwererepresentedseparatelyoneachword. Thestructuredorhierarchicallexiconsolvesthisdiculty(cf.Flickinger,Pollardand Wasow,1985andFlickinger,1987).Instructuredlexicons,wordclassesmaystandinarelationship ofinheritancetooneanother,inwhichcasethepropertiesofthebequeathingclassaccrueautomaticallytotheinheritingclass.onceweallowthatasingleclassmaybeheirtomorethanone bequeathingclass,weallow,inprinciple,thatnowordclasspropertyeverneedbeexaminedmore thanonce.thusweeliminateonecentralsourceofredundancyinlexicalspecication.oneofthe goalsofthispaperistomotivatetheuseofinheritanceinlexicalspecication.todothis,wetake anarrowlycircumscribedphenomenoninenglishgrammar thatofvp-complement-takingadjectives,asinhard+todeliver andspelloutthelexicalspecicationswhichathoroughtreatment demands.thesheercomplexityofthesespecicationscriesoutforaredundancy-eliminatingapproach,andweproposeastructuredlexicontreatment.thegrammaticalanalysisnotonlyserves tomotivatethegeneralapproach,italsoillustratesseveralkeyissuesinthedesignofstructured lexicons,suchastheuseofdefaultinheritance,theneedforlexicalrules,andtherangeof phenomenaamenabletothissortoftreatment. Thegoalsofthispaperaretointroducethestructuredlexiconinafairlysimpleform,to motivateitsbasictheoreticaldevice,thatofinheritance,witharealexampletakenfromanexisting system,andnallytoshowhowtheeliminationofredundancyachievedwiththestructuredlexicon aidsinmaintainingthelexicon.weargueforimprovedmaintainabilitybyexaminingconcrete extensionsandpotentialmodicationsofthegrammaticaldescriptionprovided.weturnnowto abriefcharacterizationofthisphenomenon. Therichcollectionofsyntacticandsemanticphenomenaexhibitedbyafamiliargroupof adjectivesliketoughandeasypresentachallengetothosewhoseektoprovideexplicitformal characterizationsoflinguisticproperties.weoerhereadetaileddescriptionoftheproperties oftheseadjectives,involvingoptionalandobligatorycomplementation,control,long-distance dependence,optionalmodication,andspecication.thepurposeofthisdescriptionhereis notthelinguisticanalysisitself(whichwendinteresting,nonetheless),butratheritsusein demonstratingthepracticalutilityofinheritanceasatoolforlinguisticdescription,andalsothe predictiveanalyticalpowerthatinheritanceaordsinthestudyofthelexicon.inillustrationofthe latter,weextendouranalysisofeasyadjectivestoasimilargroupofnounssuchaspleasure,and thentotheunusualadverbstooandenough,whichfunctionasspeciersinadjectivalgradation. Thefundamentaldataareillustratedin(1);examplessuchasthesehavenotattractedattention incomputationallinguistics,eveniftheyhaveoftenappearedinstudieswithinthegenerative framework.anearlydiscussionofthemisfoundinmillerandchomsky(1963),withascoreand moreofadditionalstudiespublishedintheyearssince.mostofthesalientpropertiesofthese adjectiveshavealreadybeenbroughttolight,butinpiecemealfashionandmostoftenaspartofa largerdebateaboutthenatureofunboundeddependencies,wheredetailedsyntacticandsemantic characterizationsofthesemissingobjectconstructionsprovedlessimportant.2wereturntothe 1Cf.Gazdaretal.,1985,Appendixforasmallgrammarwhichnonethelessexceedsthesizespeculatedonhere. 2RelatedworkintheoreticalanddescriptivelinguisticsincludesChomsky(1965),Rosenbaum(1967),Ross (1967),Postal(1971),Bresnan(1971),Chomsky(1973),LasnikandFiengo(1974),Jackendo(1975),Chomsky (1977),Fodor(1978),Brame(1979),Nanni(1980),Schachter(1981),Jacobson(1982,pp ),Sag(1982),Maling andzaenen(1982,pp ),kaplanandbresnan(1982,pp ),culicoverandwilkins(1984),jacobson 2

7 characteristicpropertiesoftheseadjectivesinsection3,wheretheyarecataloguedandgiven formalrepresentation. (1)a.Billiseasytotalkto. b.itiseasytotalktobill. c.billiseasyformarytotalkto. d.itiseasyformarytotalktobill. Wechosethisphenomenonasavehicletorecommendlexicalinheritancebecauseitillustrates awiderangeofgrammaticalphenomena,allofwhichmakedemandsonlexicalresources(at leastinthelexicalizedgrammarinwhichtheanalysisisframed).inadditiontothegrammatical demands,thedatajustifytheuseofalexicalrule(derivationalrule)torelatepairssuchas(a)and (b)in(1) soweshallargueatanyrate thusillustratingafurtherinheritance-likerelationship inthelexicon. Theremainderofthepaperisstructuredasfollows:Section2summarizestheaspectsof HPSGwhichareimportanttoourproposal,andSection3developsthefundamentalanalysis, whichsection4illustratesinaseriesofanalytical\snapshots"ofasingleexample.section5 suggestsextensionsofthefundamentalanalysis,especiallytofurtherlexicalclasses(developing theargumentthatstructuredlexiconsareeasilymaintainedandextended),andanalsection summarizesandsuggestsdirectionsforfuturework.appendixapresentstheframeworkfor lexicaldescriptiondevelopedinflickingeretal.(1985)andflickinger(1987).theframeworkis convenientforfeature-basedgrammars,butitallowsthespecicationofotherlexicalproperties aswell.thisappendixpresentsanotationwhichisprecisewhileavoidingredundancy,e.g., incharacterizingthekindsofcomplementsthattheseadjectivespermit,andinexpressingthe relationshipsthatholdbetweenpairsliketheeasyof(1a)andthatof(1b).sinceafundamental claimofhierarchicallexiconsisthattheyeliminateredundancyandthusimprovemodiability, thereisasecondappendix,appendixb,whichdemonstratesthemodiabilityofthestructured lexicon. 2GrammaticalTheory Thephenomenainvolvedintheanalysisoftheeasyadjectiveclassillustrate(obligatoryandoptional)subcategorization,control,long-distancedependence,optionalmodication,andspecication (thelastinitsinteractionwithadjectivalgradationwithtooandenough).assuch,itrepresents anexcellentdemonstrationvehicleforthelexicaldemandsofgrammaticalanalysis.ouranalysisisformulatedwithinhead-drivenphrasestructuregrammar(hpsg),thegrammatical theorydevelopedbycarlpollardandivansagduringthemidandlate1980's.seepollard(1984), Pollard(1985),PollardandSag(1987),Pollard(1988),PollardandSag(1988),Pollard(1989), andpollardandsag(1991).asthelengthylistofpublicationsmightsuggest,thisgrammatical theoryiswellenoughdocumentedsothatwemayrestrictourremarksheretothedistinctive characteristicsoftheassumptionsusedhere.weassumefamiliaritywithfeature-basedgrammars andbasicfamiliaritywithhpsgaswell. Inalllinguistictheoriesthereisadivisionoflaborbetweengrammaticalrulesandthelexicon, andthisconcernstheamountofinformationcontainedineach.attherule-basedextremelie non-feature-basedcontext-freegrammars,wherethelexiconmerelylinkslexicalitemstononterminals;inthesegrammarsitisindeedcustomarytoviewthelexiconasasetofunaryrules.the grammaticalrulesthusencodeeectivelyalllinguisticinformation.atthelexicalextremewe (1984),Gazdar,Klein,Pullum,andSag(1985,pp )(hence:GKPS),Jacobson(1990),Jones(1990),Bayer (1990),andHukariandLevine(1991).Noneoftheseworkshaveattemptedathoroughdescriptiveanalysisofthe rangeofdataweaddresshere,thoughweareofcourseindebtedtothesestudiesformuchofthedataandmanyof thegeneralizationsweseektoexpress.inparticular,ouraccountisconsistentwiththebriefgeneralizedphrase structuregrammar(gpsg)analysisoftheseadjectivesgiveningkps(1985,pp.150-2)thoughweembracea largerrangeofdataandextendtheanalysistorelatednouns,atopicrarelydiscussedsinceitsintroductionby LasnikandFiengo(1974). 3

8 ndfeature-basedcategorialgrammars,whichallowfunction-argumentapplicationastheonly grammaticalrule.herethelexiconbearstheburdenofencodinglinguisticinformation,andthe contributionofrulesismarginal.weemphasizethathpsgisfoundveryclosetothelexicalextreme,becausethishighlightsthesignicanceofthepresentwork HPSGisaframeworkwhose lexicaldemandsareverynearlymaximal. SubcategorizationinformationislexicallybasedinHPSG,muchasitisinCategorialGrammar(Bach,1988).Grammaticalheadsspecifythesyntacticandsemanticrestrictionstheyimpose ontheircomplementsandadjuncts.forexample,verbsandverbphrasesbearafeaturesubcat whosecontentisa(perhapsordered)setoffeaturestructuresrepresentingtheirunsatisedsubcategorizationrequirements.thusthefeaturestructuresassociatedwithtransitiveverbsinclude theinformation: subcat:hnp case:acc;np case:nomi (wherenpabbreviatesasubstantialfeaturestructure.)appliedtoadjectivalvpcomplementation,thistreatmentofsubcategorizationleadsnaturallytothepostulationofadjectiveswhich subcategorizeforvp's,etc.(detailsbelow). Thesignicanceofsubcategorizationinformationisthatitrepresentsa(perhapsordered)set ofgrammaticalcategorieswithwhichasubcategorizercombinesinforminglargerphrases.when asubcategorizercombineswithasubcategorizedelement,theresultantphrasenolongerbearsthe subcategorizationspecication ithasbeendischarged.cf.pollardandsag(1987,p.71)fora formulationofthehpsgsubcategorizationprinciple. Weshallingeneralpresentsubcategorizationspecicationsinaslightlydierentwayfromthat above,i.e.,notasasinglefeaturewhosevalueisalist,butratherasacollectionofcomplement featureswithcategoryvalues.cf.borsley(1989)foradevelopmentofthisapproach,which weshallnotattempttojustifyhere.wewillthereforereorganizetheinformationaboveinthe followingway: 264subject:NP case:nom object:np case:acc375 Wechoosethisrepresentationhereonlybecausewendthekeywordingofgrammaticalfunctions, subject,etc.,moreperspicuousthananencodingintermsoflistpositions,butnothinginthe analysishingesontheoneortheotherrepresentation. Weshallfurthermoreallowthatsubcategorizedelementsbeeitherobligatorilysubcategorized oroptionallysubcategorized.optionallysubcategorizedelementsneednotbedischargedfrom subcategorizationspecications.(thisnecessitatesanobviouschangetotheprinciplethatsubcategorizationmustbesatisedinindependentutterances.)incaseanelementisnotdischarged, somethingmustbesaidaboutitssemantics.hereweborrowanideafromsituationtheory,and specifythatunsaturatedpredicate-argumentstructures(orinfons,seedevlin,1991)mayhold whenthereissomewayofllingouttheunlledargumentpositionssothattheresultholds.this hastheeectofexistentiallyquantifyingoverunlledargumentpositions.linguistically,there aremanyotherwaysinwhichargumentsmaybeomitted(cf.fillmore1985),butthisseemsto sucefortheadjectivesunderexaminationhere. Controlandmodification,thelatterbeingtherelationbetweenanadjunctandahead,are bothlexicallyrealizedinthecaseoftheeasyadjectives.weregardthereasbeingacontrolrelation betweenforsmithandtogetincomplexadjectivalssuchaseasyforsmithtoget(cf.gkps1985: 83).Modicationplaysarolewhencomplexadjectivalsappearinconstructionwithnominal heads,asineasyjobforsmithtoget.thesearecommonassumptionsintheanalysesofcontrol andmodication. Long-distancedependenceistreatedinHPSGinmuchthesamewayitwastreatedin GPSG(cf.GKPS,1985),andweassumebasicfamiliaritywiththistypeofanalysis.Werecall 4

9 isaspecicationoftheexpectedmaterial.theslashspecicationispropagatedbygeneral thatthesiteofamissingelementina\gappy"constituentbearsafeatureslash,whosevalue astallerthanitiswide.weshallrequirelexicalspecicationsthatleadtofeaturestructures principles(whichweshallnotelucidate)tothehigherlevelconstituents,untilitismatchedby ofthefollowingform: withannpinslash.itisunusualtondasubcategorizationspecicationforslash,butnot unique:comparativeslikewisesubcategorizeforgappycomplements,asinseeninexamplessuch exploitthisintheanalysisofseveralwordclassesbelow,viz.,theoneswhichsubcategorizeforavp a\ller"orasubcategorizingelement.whenthegappyconstituentisadjoinedtoalleror subcategorizingelement,theresultnolongerbearstheslashvalue. containagap.(cf.gkps,1985,pp fortherstmentionofthissuggestion.)weshall Importantforourpurposesisthepossibilityofalexicalentryspecifyingthatadependentmay 264 sem:easy(1;^2) stem:easy syn.loc.subcat:2 6 4 subj: pp-for:hsem:1i xcomp:264syn:vp-inf syn:np-nom sem:3 slash:hsem:3i375 sem:2 subjectsemanticshavebeenidentied.thus,onceavp/nphascombinedwiththisadjective, thesemanticcontributionoftheslashelementisassumedbythesubject.figure1showsan Thetag3inthediagramaboveshowsthatthesemanticsoftheSLASHvalueandtheadjectival analysistreeforanexamplecontainingalong-distancedependency. Thevarietyoflinguisticphenomenaexempliedintheeasy-classofadjectivesguaranteesthat 75 Thefundamentaldataweshallbeconcernedwitharerepeatedin(2): follow,butweprovideanoverviewofthesemechanismsforlexicalrepresentationinappendixa. Weassumefamiliaritywiththemechanismsoflexicalinheritanceandlexicalrulesintheanalysisto 3AdjectivalVPComplementation itisademandingtestinggroundfortheoriesoflexicalrepresentation.3 (2)a.Billiseasytotalkto. b.itiseasytotalktobill. c.billiseasyformarytotalkto. thetheoreticalliterature:proudianandpollard(1985),nerbonneandproudian(1987),franz(1990),emeleand Zajac(1990),andCarpenter,PollardandFranz(1991). safelyreferthereadertodocumentationsofthoseimplementations,evenifthesearelessgenerallyavailablethan StanfordUniversity,CarnegieMellonUniversity,TheOhioStateUniversity,SimonFraserUniversity,University pastseveralyears;weknowofimplementationsathewlett-packardlaboratories,thegermanaicenter(dfki), ofedinburgh,icot,universityofstuttgart,theibmlilogprojectinstuttgart,andatr.wemaytherefore 3ItisalsoworthmentioningthatHPSGhasalsobeenthesubjectofintensiveimplementationactivityduringthe Otheradjectivesthatshowthissamedistributionincludethefollowing: d.itiseasyformarytotalktobill. 5

10 NP S These Det books Vare JJJJAdjP easy TTTT Vto TTTT VP/NP VVP/NP have TTTTS/NP Bob AAAA VVP/NP read LLLL NP/NP \slashed"np,i.e.,avpmissingannp(whoseexpectedpositionmaybearbitrarilydeep). Figure1:ComplexadjectivalssuchaseasysubcategorizeforacomplementVPcontaininga t 6

11 amusingdepressinggreat nice annoyingdiculthard painful boring exhaustingimportanttiresome comfortablefun impossibleterrible confusinggood impressivetough (3)Givenpairslike(2a,b)and(2c,d),twoclustersofpropertiesbegintosuggestthemselvesaspart ofthedenitionsoftherelevantlexicalentries.therstoftheseclusterswewillassociatewith theclassofwordscontaininglexicalentriesfortheeasyof(2a,c)anditscounterpartsin(3),aclass wetermslash-easy.theotherclusterofpropertiesweassociatewithasecondclasstermed IT-EASY,containingthelexicalentriesforthevariantofeasyin(2b,d)anditscounterpartsin (3).Webeginbysimplyidentifyingtherelevantpropertiesineachofthesetwoclasses,supported byexamplesasnecessary;thenweprovidemotivationforfactoringthesepropertiesintoseveral wordclasseslinkedbyinheritance. AdjectivesintheIT-EASYclasshavetwoobligatorycomplements,anNPsubjectandaverbal complement;inadditiontheyhaveoneoptionalcomplement,appheadedbytheprepositionfor. Asseenin(4),theverbalcomplementcanbeeitherinnitivalorgerundive,and(5)showsthat thiscomplementcanbeavpevenwithapp-forpresent,oraninnitvals,againwithorwithout theoptionalpp-forcomplement.thesubjectnpmustbetheexpletiveit. (4)a.ItwasgreatworkingforBill. b.itwasgreattoworkforbill. (5)a.It'seasiestforthedogstofeedthematnoon. b.forthedogs,it'seasiesttofeedthematnoon. c.it'seasiestforthedogstobechainedupallday. d.*forthedogs,it'seasiesttobechainedupallday. e.it'seasiestformeforthedogstobechainedupallday. f.forme,it'seasiestforthedogstobechainedupallday. (5e,f)demonstratethatnotonlyVPcomplementation,butalsoScomplementationisinvolved ineasysubcategorization.notethatscomplementationneverrequiresacontroller,andthat theppphraseinsuchstructuresismobile(5f).inadditiontotheconclusionthatavarietyof complementationschemesareusedwitheasy,thedataabovealsodemonstratethattheexact specicationofthecontroller(theunderstoodsubjectoftheinnitivalvp)isnontrivial.(5a) demonstratesthatthepp-forcomplementneednotcontrolthevp,and(5b)suggeststhat noncontrollingpp'saremoremobilethancontrollers(5d). Weaccommodatethesefactssemanticallybyallowingthateasyandsimilaradjectivesdenote two-placerelationsbetweenindividualsandstatesofaairs.therelationholdsbetweenthepair, roughly,whenitiseasy(orconvenient)fortheindividualwhenthestateofaairsobtains.(5e,f) showthattheindividualinvolvedintheeasyrelationneednotbeinvolvedinthestateofaairs, i.e.thatthereisnonecessarysemanticcontrolinvolvedinthisrelation.4thecontrolfactsare clearenough:whenthiseasyiscombinedwithans,thereisnosemanticcontrol;andwhenit iscombinedwithavp,thereisnogrammaticallyspeciedcontrollerofthevp althoughthere maybepragmaticinferenceabouttheunderstoodsubject. AdjectivesintheSLASH-EASYclassalsohavetwoobligatorycomplements,anNPsubject andaverbalcomplement,aswellasanoptionalpp-forcomplement.incontrasttotherstclass, thisclassspeciesthatthesubjectisanormal(non-expletive)np,andthattheverbalcomplement 4Thereisaninterestingpragmaticproblemlurkinginthecontrolspecicationsinvolvedhere.Ifonespecies thecontrolrelationshipsexactly,thenoneneedstopostulatesystematicstructuralambiguityinexamplessuchas (5c),wherethesequenceofPPandVPmayormaynotbeanalyzedasanSconstituent.Thisseemsplausible, butthenwewouldliketohaveapragmaticaccountofwhythereisnormallynodistinction,i.e.,whythecontrol relationshipisinferred,or,equivalentlyforallintentsandpurposes,whythesreadingissostronglypreferred. 7

12 mustcontainannpgap.moreover,thisverbalcomplementmustbeinnitival,notgerundive,as seenin(6),andmustbeavp,notans,asshownin(7).5 (6)a.Billwasgreattoworkfor. (7)a.Forme,Billwaseasytotalkto. b.*billwasgreatworkingfor. thetwovariantsofeasyintroducedabove,butwhichmustbekeptdistinct.lasnikandfiengo twointermediatewordclassesthatwillstandbetweencontrolandthesetwointhehierarchy. immediatesubclassofcontrol;wedrawonthedataprovidedin(8)and(9)belowtomotivate TROLwhichintroducesaverbalcomplement,andwhichservesasthesuperclassfromwhich bothoftheclassesit-easyandslash-easyinherit.however,neitheroftheseclassesisan TheEnglishlexiconcontainstwomoregroupsofadjectiveswhichhavemuchincommonwith Inthewordclasshierarchyweassume,sketchedinAppendixA,thereisawordclassCON- b.*billwaseasyformeformarytotalkto. (1974:535)identiedasetofadjectivesincludingprettyandmelodious,illustratedin(8). (8)a.Disneylandisprettytolookat. b.sonatasaremelodioustolistento. entrywithanexpletiveitsubject,andsecond,theyassignarealthematicroletotheirsubjects. buthavetwosignicantdierences:rst,asshownby(8c,d),theydonothaveacorresponding MembersofthisclassofadjectivessharemuchincommonwiththeSLASH-EASYadjectives, f.?sonatasaremelodiousforseriousmusicianstolistento. c.*itisprettytolookatdisneyland. d.*itismelodioustolistentosonatas. thevalidityofthisinference,sincethesubjectoftheadjectiveplaysnodirectroleintherelation placerelationsuggestedaboveforit-easyandslash-easyadjectivescouldnotaccountfor Thatis,(8a)entailsthatDisneylandispretty,while(1a)doesnotentailthatBilliseasy.Thetwo- e.?disneylandisprettyforchildrentolookat. whatsoever.adistinctsemanticrelationiscalledforhere,oneinwhichthesubjectdoesplaya role(whicheectivelymakesthisclassakindofequiadjectiveincontrasttotheraisingeasy). easyin(1c),thoughjudgmentsarelessclear.inordertoexpressthesedierences,weintroducea ItalsoappearsthattheseadjectivesdonotpermittheoptionalPP-forcomplementlicensedby adjectivesof(1b,d),butwithnocounterpartsoftheslash-easytype. classslash-compwhichwillincludetheentriesforprettyadjectives,andwhichwillalsoserve astheclassfromwhichslash-easyinherits.6 Similarly,EnglishhasasetofadjectiveswhichhavemuchincommonwiththeIT-EASY (9)a.ItispossibletotalktoBillonlyatbreakfast. b.itisunnecessarytorebill. takeagerundivecomplementinsteadoftheusualinnitivalcomplement,asinthatarticleisnotworthlooking at.theextensionofouranalysistoworthisstraightforward,butnotgivenhere. isthattheformerdonotpermitanoptionalpp-forphrasecomplement;theydoallowtheverbal complementtobeeitheravporans(containingapp-forsubject),but(10)showsthatifa 5HukariandLevine(1991)noteinpassingthatthereisagroupofcloselyrelatedadjectiveslikeworthwhichdo ThesecondprincipaldierencebetweenadjectiveslikepossibleandthoseoftheIT-EASYclass c.*billispossibletotalktoonlyatbreakfast. 6OtheradjectivesofthisSLASH-COMPclassincludedelicious,handsome,attractive,andlovely. d.*billisunnecessarytore. 8

13 PP-forispresent,itmustbecontainedwithintheScomplement. (10)a.ItisunnecessaryforMarytoreBill.(MringB) b.*formary,itisunnecessarytorebill.(mringb) c.*itisunnecessaryformaryforyoutorebill. Again,weexpressthedistinctionbetweenthesetofadjectiveslikepossibleandtheIT-EASY adjectivesbyintroducingafourthclassit-subjparalleltoslash-comp.7 Thesefourclassdenitions,togetherwithonesupportingclass,aregivenin(11-16),withthe Superclassesattributeshowingtherelevantinheritancerelations. (11)IT-SUBJ Superclasses Control Complements Subject-Features(NFormit) Subject-Rolenone XComp-features(VFormInnitival)(Complete+{) Thedisjunctivespecication(Complete+{)overridesthedefault(Complete{)speciedin thecontrolclass,andmeansthattheverbalcomplementmaybeeitheravp(complete{) orans(complete+). (12)SLASH-COMP Superclasses Control Complements XComp-Subj-Semanticsx XComp-features (SLASH(CategoryNoun) (NFormNormal) (Complete+) (Predicative{) (CaseAccusative)) (Semantics Subject-Semantics)) TheSLASHfeatureontheXCompspeciesthattheVPmustcontainagapwhichisfora normal(non-expletive)nounphrasewhichisaccusativecase,andwhichisnotpredicative.this nonpredicativespecicationservestoexcludeexampleslike*billisdiculttobecome.assuming thecomplementofbecomeispredicative,sincethegapforthatcomplementwouldfailtosatisfy therestrictiononslashgivenin(12).theslashspecicationfurthermorenotesthatthe SLASHsemanticvalueisidenticaltothatofSubject-Semantics.AswasexplainedinSection3 above,thisistheformalexicalspecicationofsemanticcoindexingtakes. ThecontrollerofthecontrolledcomplementisspeciedthroughtheattributeXComp-Subj- Semantics;forexample,inCONTROL,thisattributehasthevalueSubject-Semantics,since subjectsaredefaultcontrollers.butthecomplementsofslash-comparenotgrammatically controlled(cf.(8e,f)),afactwhichrequiresanoverwritingspecication.thesemanticvariablex isusedherebecauseitwillnotrepresentthesemanticsofanygrammaticalcomplement,which ensuresthatnogrammaticalcontroliseected(seeexamples(9a,b)).thisisanexampleofa subregularityappearingwithinanexceptionalspecication. Theclassesforthetwovariantsofeasyadjectiveswehavediscussedhavethemselvesonecluster ofpropertiesincommon:theybothlicensetheoptionalpp-forphraseseeninprecedingexamples. Tofurtherreduceredundancy,wedenein(13)theclassFOR-EXPERIENCER,fromwhichthe 7AdditionalmembersofthisIT-SUBJclassincludeessential,necessary,sad,silly,andillegal. 9

14 twoclassesin(14-15)alsoinherit. (13)FOR-EXPERIENCER (14)IT-EASY Superclasses Complements PP-for-Features PP-for-Oblig PP-for-Role PP-for (CategoryPreposition)(Lexical{) No(PFormFor) (15)SLASH-EASY XComp-Features(VFormInnitivalGerund) It-Subj,For-Experiencer classblocksinheritanceofthesubject'sthematicroleassignment(thedefaultvaluehavingbeen nocontrollerisspecied,inkeepingwithremarkson(5).ontheotherhand,theslash-easy Asexpected,theIT-EASYclasseasesonerestrictionontheverbalcomplement;notetoothat Superclasses Complements Subject-Role XComp-Subj-SemanticsPP-For-Semantics Slash-Comp,For-Experiencer relationship(inheritedfromslash-compandultimatelyfromcontrol)sothatthepp-for speciedintheincompleteclassfromwhichcontrolinherits),andaltersthecontrol none representsasubregularitywithinasubregularity(cf.slash-comp). aretwofurtherexamplesofthewayinwhichdefaultoverwritingisemployed;notethatthelatter phraseratherthanthesubjectofeasyisinterpretedasthesubjectofthevpcomplement.these alongwithanexplicitdenitionoftheclassadjective,providedhereforclarityin(16-17),we canintroducethe(sparse)lexicalentriesforthetwovariantsofeasyemployedin(1a,b),asgiven in(17,18) Withreasonableassumptionsaboutthedenitionsofotherrelevantclassesinthehierarchy, (16)ADJECTIVE (17)easy-1a SuperclassesMajor Features SuperclassesAdjective,Slash-Easy Semanticseasy Spelling Phonology/izi/ \easy" (CategoryAdjective)(Predicative+{) Pairsofsparselexicalentrieslikethosein(17,18)arerelatedbyalexicalrulewhichwelabel (18)easy-1b SuperclassesAdjective,It-Easy Semanticseasy Spelling Phonology/izi/ \easy" 10

15 FOR-EXPERIENCER IT-SUBJCONTROL QQQQQQQQQs XXXXXXXXXXXXXXXXXXXXXXXXXz +QQQQQQQQs? SLASH-COMP IT-EASY 9? easy-1b SLASH-EASY Figure2:Thestructureofwordclassesdirectlyinvolvedinthedenitionofcomplexadjectival easy-1a?????? ADJECTIVE lexicalentries. LR-EASY,andwhichsimplystatesthatforeachmemberoftheclassIT-EASYthereexistsa willofcoursebequitedistinct,asneededtoensurethedierencesindistributionthatwehave correspondinglexicalentrybelongingtotheclassslash-easy,witheverythingbutthesuperclassespropertyidenticalinthetwo(sparse)entries. Onceeachof(17)and(18)areeshedouttoincludealloftheirinheritedproperties,they LE2-Classes{IT-EASY=LE1-Classes{SLASH-EASY LR-EASYlexicalrule described.figure2summarizestheinheritancerelationshipsthusfar. lexicalspecicationssuggestedonmorefamiliarelementsofgrammaticalanalysis,viz.phrases, Thepurposeofthissectionisprimarilyillustrative wewouldliketodemonstratetheeectofthe 4AnExampleAnalysis parsetrees,andpredicatelogicrepresentations. complements,inthiscasethepp-forphraseandthexcomp.thisclassofadjectivesalsohas thesemanticsofeasy-slashadjectivesforthesubject'sdenotation.toconservespaceinthe individualandastateofaairsistreatedasanormalcaseoflexicallyinheritedsemantics,i.e.one inwhichtherelationdenotedhasanargumentplaceforthedenotationsofeachoftherole-playing asubjectamongitscomplements,butitbearsnorole(aswordclassslash-easyspecies), becausethisisaraisingconstruction.forthisreason,thereisnoargumentplacereservedin diagramsbelow,relationswillbespeciednotusingthekeyword-codingshowninwordclassand lexicalentryspecications(above),butratherinthemorefamiliarorder-coding. Thesemanticsoftheeasy-SLASHconstruction,whichtreatseasyasarelationbetweenan 11

16 eect,weincludeheresomewhatelaborateanalyticalsketchesofthecomplexadjectivalphrase easytogetmarytohirein(19): Tobegin,wenotethatthesparselexicalentryfortheSLASH-EASYversionofeasymaybelled outtoamuchricherstructureifinheritedpropertiesarenotedexplicitly: Inordertomakenotonlythesemanticsbutalsothesyntaxsomewhatclearerinitsintended (19)TomiseasytogetMarytohire. easy-1a Complements PP-for-Features PP-for-Oblig PP-for-Role PP-for-Semantics XComp-Features No(PFormFor) PP-for,Subject,XComp (CategoryPreposition)(Lexical{) (CategoryVerb)(Complete{)(Lexical{) (CategoryAdjective)(Predicative+{) (SLASH(CategoryNoun)(Complete+) (NFormNormal)(Predicative{) Spelling XComp-Subj-SemanticsPP-For-Semantics XComp-Oblig XComp-Semantics XComp-Role Subject-Role Yes State-of-Aairs none XComp-Semantics (CaseAccusative)) Phonology \easy" /izi/(semanticssubject-semantics)) ThefeaturesnotedabovewerespeciedbythelexicalentrytogetherwiththeclassesADJEC- propertieswouldbeinheritedfromincomplete,butforbrevitythesearenotlisted.(of TIVE,SLASH-EASY,SLASH-COMP,FOR-EXPERIENCERandCONTROL.Furthersubject coursemanyotherproperties,includinge.g.,gradationpropertiesandtheapplicabilityoflexical ruleshavelikewisebeensuppressedintheinterestofclarityinpresentation.)thislexicaldescriptiontranslatesfairlydirectly(withsomefurthersimplicationsandabbreviations)intoafeature structureofthesortusedbyhpsggrammars: 12

17 264 syn.loc.head:adj sem:easy(1;^2) syn.loc.subcat: stem:easy2 64 subj: pp-for:syn:pp-for xcomp:2 syn:np-nom sem:3 sem:1 6 4 syn:vp-inf sem:2 subject.sem:1 slash:syn:np-acc sem: lexicallyspeciedandwhichsimplifysubsequent(grammatical)processing.thecoindexingofthe valuewiththesubject'ssemantics,ontheotherhand,derivesultimatelyfromslash-comp. xcomp'ssubjectwiththepp-foriseectedintheslash-easywordclass,andthesemanticcoindexingseenaboveisjustaconsequenceofthat.thecoindexingofthexcomp'sslash'ssemantics Wewouldliketodrawattentiontotwosemanticcoindexingsinthestructure,whichareboth nodeisalwaystobeidentiedwiththesemanticsofaheadinaheadcomplementcombination. ThefactthattheslashvalueofthemotherstructureisemptyfollowsfromtheBindingInheritancePrinciple,whichstatesthatslashvaluesarecollectedgoingupatree unlessahead HPSGprinciples,sothatnothingisspecied,e.g.,ontherulewhichlicenseshead-complement VP/NP.Theverysparsespecicationofthemotherphrase'sfeaturesis,infact,solelyforpurposesoflegibility alloftheinformationspeciedonthemothernodemaybederivedfromgeneraticsfollowsfromthehpsgsemanticsprinciple,whichstatesthatthesemanticsofaphrasal combinations.thefactthatthesemanticsattributeisidentiedwiththesubcategorizer'sseman- InFigure3weexaminethecombinationofatokenfromthisclassofeasyadjectivesanda categorizationrequirement.theidenticationofthefeaturestructurelabeled7,whichisjust subcategorizesforanelementcontainingaslashvalue,inwhichcasetheslashsatisesthesub- therepresentationofthephrasalnodedominatingtogetmarytohire,withoneoftheadjective's subcategorizationspecications,thatlabeled6,isjustaconditionfortheapplicabilityofthe head-complementrule,notanadditionalspecication.ofcourse,thephrasalnodeismassively underspeciedhere,butthesuppressedinformationispredictable,notmerelyhidden. furthercomment,thatislargelybecausethelexiconhasprovidedawealthofrichlystructured thepropertiesofthephrasalcombinationofthisfairlyintricatesyntacticstructurerequireno representation.thiswouldhardlybefeasibleintheabsenceofecientandsophisticatedlexical representationmechanisms. ThisisanintriguingaspectofHPSG,butwedwellonithereforself-servingpurposes.If easyrelationitself.thisisexactlywhatiswantedsemanticallyofaraisingconstruction. argumentpositionoftheverbhire.thistakesplaceeventhoughthesubjectplaysnoroleinthe Figure4.NoteinparticularthatbecausetheslashsemanticsontheVPphraseisidentiedwith theslashsemanticsonthesubcategorized-forvp,whichinturnisidentifedwiththesemantics ofthesubjectforeasy,theresultantphrasewillbinditssubjecttothedeeplyembeddedobject Tocompletethisillustration,wespellouttheeectsofunicationonthestructureabovein 13

18 24sem:5 Adj AdjP slash:;35;where6=7 easy QQQQQQQQ 264 togetmarytohiret SVP/NP SSSSS sem:5easy(1;^2) stem:easy S comps: 2 64xcomp:6264subj:hsem:1i pp-for:hsem:1i subj: hsem:3i sem:2 slash.sem: sem:get(x;m; slash.sem:4 ^hire(m;4)) 375 Figure3:ThecombinationofcomplexadjectiveandslashedVPcomplement. 14

19 264stem:easy comps:hsubj:hsem:3t4ii sem.logic:5easy(x;^get(x;m; Adj^hire(m;T;3t4)) 375 Adj easy SSSSS SVP/NP SSSSS subjectofeasyisstillsemanticallycoindexedwiththemissingvpobject. 5ExtensionsandLexicalMaintenance Figure4:TheresultofcombiningcomplexadjectiveandslashedVPcomplement.Notethatthe togetmarytohirets Thestructuredlexiconaimsideallyataredundancy-freespecicationofalllexicalproperties,and indeed,itachievesthislargelythroughtheuseofinheritance.whilewedoseescienticparsimony asanendinitself,weseetwofurtheradvantagesintheemploymentofthestructuredlexicon,one value,andthatisbecauseastructuredlexiconismoreeasilymaintainedandextendedthan scienticandonepractical.thescienticadvantageofthestructuredlexiconisthatitidenties anonstructuredone.thisadvantagederivesimmediatelyfromthecharacteristicthatlexical andproudian,1987). signicantclassesinthelanguage.inafeaturesystemwithapproximately30atomicfeatures thatweneverseeneedtodistinguish1030classesofitems.infactwedistinguishapproximately 300lexicalclassesinHP-NL,alargesystemwithverybroadgrammaticalcoverage(seeNerbonne (includingsemantics),eachofwhichrangesoverapproximately10values,itiscertainlystriking easierinsystemswithstructuredlexiconstoexperimentwithgrammaticaldescription. propertiesarenormallyspeciedonlyonce.modicationstendthentobeminimal,andextensions lessfrightening.theultimatescienticbenetthismaybringderivesfromthefactthatitisthen VPcomplements tonounswithsimilarsubcategorizations,totheadjectivalspecierstooand extended.weexaminethereforeextensionstotheanalysisaboveofadjectiveswhichgovern Butthepracticaladvantageofthestructuredlexiconmayultimatelyalsobeofscientic enough,andtoadjectiveswhichgovernscomplementsratherthanvpcomplements. 5.1Pleasurenouns Adjectiveslikeeasyhavebeenthemostwidelystudiedgroupoflexicaltypesthatpopulatethe classesintroducedintheanalysisabove,buttheydonothaveexclusiveclaimtothoseclasses. Thefollowingsectionisanattempttobuttresstheclaimthatstructuredlexiconsareeasily LasnikandFiengo(1974:568)observedthattheEnglishlexiconalsocontainsagroupofnouns 15

20 withsimilarproperties,asillustratedin(20-21), (20)a.Nureyevisapleasuretowatch. b.thiscourseisabreezetopass. c.veniceisadelighttovisit. (21)a.ItisapleasuretowatchNureyev. b.itisabreezetopassthiscourse. c.itisadelighttovisitvenice. Liketheadjectivesdiscussedabove,nounssuchaspleasurehavetwovariants,onewhich appearswithanordinarynpsubjectandaninnitivalcomplementcontainingannpgap;and onewhichselectsanexpletiveitsubjectandaninnitivalcomplementwithnogap.giventhe wordclassdenitionsdevelopedonthestrengthoftheadjectivalexamples,anobviousanalysis ofthenominalexamplessuggestsitself:pleasure,likepleasant,hasonelexicalentrybelongingto theslash-easyclass,andasecondentrythatinheritsfromtheit-easyclass.the(sparse) descriptionsofbothentriesaregivenin(22-23),paralleltothoseforeasygivenin(17-18)above, thesalientdierencebeingthatthenounentriesinheritfromtheclasscommon-nounwherethe adjectiveentriesinheritedfromtheadjectiveclass.8 (22)pleasure-1a SuperclassesCommon-Noun,Slash-Easy Spelling \pleasure" Semantics.Predpleasure Phonology /plezhr/ (23)pleasure-1b SuperclassesCommon-Noun,It-Easy Spelling \pleasure" Semantics.Predpleasure Phonology /plezhr/ HavingdeclarednounslikepleasuretohaveentriesthataremembersofSLASH-EASYand IT-EASY,nothingmoreneedstobesaidinordertocapturethesyntacticrelationshipbetween thesetwoformsofpleasure.thelexicalruleweproposedearliertolinkpairsofadjectiveslikethe twovariantsofeasyisdenedasaregularityholdingbetweenthetwoclassesslash-easyand IT-EASY,makingnomentionoftheclassADJECTIVEinitsformulation.Henceitalsoserves tolinkthepairofnounentriesin(22-23). Somefurtherexplanationneedstobeprovidedaboutthesemanticsofthisclassofnouns, sincethenounsdoseemsemanticallyanomalousevenifweshallmaintainthatalloftheapparent anomalyultimatelystemsfromtheirhavingasubject andthusbeingavailableforcontrol(by beandotherraisingverbs).ingeneralacommonnounisinterpretedasarelationbetweena themeargumentandthedenotationofitscomplements,ifthereareany.forexample,friendis interpretedasarelationbetweenathemeargumentandthedenotationofthecomplementpp- OFphrase.Werefertothethemeargumentoftherelationdenotedbythecommonnounasits denotation.anapparentpeculiarityofnounssuchaspleasureisthatthereappearstobeno denotationofthenounintheusualsense,e.g.,in(20a).atissueiswhetherthereisanytheme argumentpositionforthe\pleasure"intherelationdenotedbypleasure.i.e.,doespleasuredenote thesametwo-placerelationbetweenindividualsandstatesofaairsthatpleasantdoes,oristhere athirdargumentpositioninpleasurewhichisoccupiedbyan(abstract)\pleasure"individual? Thesuspicionthatnodenotationisinvolvedlikelystemsfromourintuitionthatwedonot 8Othernounsinthisclassincludedisappointment,ordeal,challenge,joy,inspirationandprivilege. 16

21 noun(phrase)isusedpredicatively,muchasmanynounphrasesareaftertheverbbe.compare Tomisalinguist. oldtopicsemantically(cf.thedenitionofbeinmontague,1973,p.261),therehasbeenessentially morethanwewouldifwehadusedpleasantintheplaceofapleasure.nowthissuggeststhatthe seemtorefertoanobjectwhichisapleasureinutteringeither(20a)or(21a),atleastnotany nosuccessfulattempttotreatpredicativenounsasiftheyhadnodenotation.anyattemptto dososeemstorunafoulofthestandard(iflimited)determinationandadjectivalmodication duplicationasemanticanalysiswouldincurifpredicativenominalshadnodenotation. foundinphrasessuchasnogreatpleasuretowatch;atleastsuchexamplespointouttheinevitable Thisdoesnothelpagreatdeal,however.EventhoughtheanalysisofpredicativeNP'sisan whichobtainsjustincaseeisthepleasurexhasincases.itshouldofcoursealsoturnout thatthisrelationforsomeeholdsipleasant(for:x;soa:y),butwewillnotbeconcerned withshowingthathere.eprovidesadenotationwhichissubjecttodetermination(no)and (intersective)adjectivalmodication(great).underthisanalysis,apleasuretowatchandno pleasuretowatchdenotequantifers,i.e.,ineachcaseasetofpropertiesofpleasures(e'sfrom Wethereforeinterpretpleasureasathree-placerelation betrueorfalse forthatitmustbepairedwithaproperty.inthesecases,therelevantproperty above).ofcourse,aquantierdoesnotbyitselfrepresentaproposition,somethingwhichcould pleasure(theme:e;for:x;soa:s) Wethereforepostulatethatthepredicatebeinthesesentencesdenotestheuniversalproperty.9 semanticswhichthegeneralschemepredicts arelationbetweenathemeandthedenotations incasethereisapleasureoftherelevantkind(andmutatismutandisforthenegativeexistentials). isalwaystheuniversal(existence)property;i.e.utterancesofsentencessuchas(20a)aretruejust ofothercomplements.forthisreason,thewordclassesforpleasurenounsmakenospecial stipulationsaboutsemantics. structurestohighlightthesemanticallyrelevantparts.) andsemanticsprocessingofthewordpleasure.therststructurerepresentsthememberofthe SLASH-EASYclass,andthesecondthememberoftheIT-EASYclass.(Wehavesimpliedthe Whatisstrikingaboutthisproposalisthatitassignsthecommonnounpleasureexactlythe Wethereforederivefeaturestructuressuchasthefollowing,whichareusedinthesyntax 264subcat:264subj:hsem:3i stem:\pleasure" sem.logic:pleasure(e;1;^2) pp-for:hsem:1i xcomp:264subj:hsem:1i i.e.,thatthesubjectoftheverbbeisnotlinkedtoanyargumentpositionintherelationdenotedbythecontrolled relationsinsituationtheory(cf.section2undersubcategorization).note,however,theoneexceptionalaspect, Instead,weallowbetodenotetheidentityrelation,whichholdsofasingleargumentjustincasethereissomewayof llinginthemissingargument i.e.incasetherstexists.thisfollowsfromthegeneraltreatmentofunsaturated complement(inthiscase,pleasure). 9Infact,wedonotstipulateapeculiarsemanticsfortheraisingverbs(suchasbe)whichareinvolvedhere. sem:"logic:2 slash:3#

22 264 stem:\pleasure" sem.logic:pleasure(e;1;^2) comps:264subj:np-it pp-for:hsem:1i xcomp:"subject:hsem:1i e.g.,bytheverbbe onlyunsaturatedphrasesaresubjecttocontrol;(ii)theirinabilitytofunction apropertytheyinherentnallyfromincomplete,intheonecasethroughcontrol,it- SUBJandIT-EASY;andintheotherfromCONTROL,SLASH-COMPandSLASH-EASY.Itis thisproperty,sharedbythenp'stheygiveriseto,whichexplains(i)theirabilitytobecontrolled Ontheotherhand,thenounclassesareexceptionalinthatthenounsinvolvedhavesubjects sem:2 # innormalnp's,e.g.,inthesubjectpositionofanyintransitiveverb;andnally(iii)thefactthat theycanstandinconstructionwiththemainverbbewithoutbeingassertedtobeidenticaltoits subject. entriesfor\pleasure"alsopredictthegrammaticalityjudgmentsseenin(24),analogoustothe examplesgivenaboveforadjectives,andbasedonthedenitionsgivenfortheit-easyand SLASH-EASYwordclasses.10 Weturnnowtofurtherpointsonthesyntaxofthepleasurenouns.Thetwodenitionsof (24)a.Nureyevisapleasureforustowatch. f.itisarealpleasureforusforourparentstowatchnureyev. e.forus,itisarealpleasureforourparentstowatchnureyev. g.*nureyevisapleasurewatching. d.*forus,nureyevisarealpleasureforourparentstowatch. c.forus,nureyevisarealpleasuretowatch. h.itisapleasurewatchingnureyev. b.itisapleasureforustowatchnureyev. and\pleasure",aremorphologicallyrelated.wedonotoerhereaproposalforcapturingnonproductiveregularitiesofthiskind,thoughsomeextensionofthelexicalrulemechanismmightserve,anextensionthatwould dependheavilyontheabilitytospecifynegativeexceptionstolexicalrules,givenexampleslikethefollowing. classes,wemightexpecttondnounsaswellthatbelongtotheothertwoclasses,it-subj andslash-comp.suchinstancesarefoundinenglish,asillustratedforit-subjnounsbythe 10Nothingwehavesaidsofarcapturesthefactthatsomepairsofmembersofthesetwoclasses,like\pleasant" (ii)*itisadicultytohirebill. (i)itisdiculttohirebill. Recallingfurtherthattheadjectiveswelookedatabovefellintonottwobutfourdistinct (iii)*billisadicultytohire. (iv)itisimpossibletoworkwithbill. (vi)*billisanimpossibilitytoworkwith. (v)*itisanimpossibilitytoworkwithbill. 18

23 examplesin(25),andforslash-compnounsbythosein(26),drawnfromlasnikandfiengo.11 (26)a.Thisroomisapigstytobehold. (25)a.ItwouldbeamistaketoreBill. d.*billwasashocktondhere. b.itwasashocktondbillhere. c.*itisapigstytobeholdthisroom. d.*itisamarveltowatchnureyev. b.nureyevisamarveltowatch. c.*billwouldbeamistaketore. theit-subjclass(togetherwithitssuperclasses);andlikethedierencesbetweenpleasureand easy,theirdierencesresultfrommistakebeingamemberofthecommon-nounclasswhile andit-easy,therulecorrectlydoesnotpredicttheexistenceofsimilaralternateentriesfor pleasure(andthetwovariantsofeasy)isdenedtolinkmembersofthetwoclassesslash-easy possibleinheritsfromtheadjectiveclass.sincethelexicalrulerelatingthetwovariantsof nounslikemistakeandpigsty. Thenounmistakeandtheadjectivepossiblehaveincommonjustthosepropertiesspeciedby inheritanceandlexicalruleproducethedesiredresultsfornounswithoutrequiringthatanything beaddedtotheanalysismotivatedfromdataonadjectivesandverbs. InteractionwithLexicalRules Giventhatthedomainoflexicalrulesisalwaysoneormorewordclasses,andthattheLR- IntrapositionruleisdenedontheIT-SUBJclass,wepredictthegrammaticalityofthefollowing exampleswithpleasurenouns,sincetheyalsohaveentriesbelongingtotheit-subjclass,and shouldbeexpectedtoconformtothelr-intrapositionrule.hereagain,thecombineddevicesof (27)a.(Forme)tostayanotherdaywouldbearealpleasure. Todrivehomeourcentralpointabouttheexpressiveandpredictivepowerofinheritancein 5.2Tooandenough d.itmightbeadisappointmentforyoutovisitvenicenow. c.tovisitvenicenowmightbeadisappointmentforyou. b.itwouldbearealpleasure(forme)tostayanotherday. COMPnounsincludebeautyandterror. propertieslikethosewehavealreadyseen.jackendo(1972,p.227)noticedthatthetwowords tooandenoughalsoappearinconstructionswithaninnitivalcomplementthatcontainsannp lexicalrepresentation,weturntoathird,smallclassoflexicalentriesthatshowcomplementation 11AdditionalIT-SUBJnounsincludebattle,disgrace,error,honor,relief,shockandsurprise.OtherSLASH- 19

24 gap,asillustratedin(28)withexamplesdrawnfromlasnikandfiengo(1974:536).12 (28)a.Themattressisthin. thesameasadjectiveslikepretty,entrieswhicharenotrelatedvialexicalruletovariantsthat b.*themattressisthintosleepon. licenseanexpletiveitsubject. Inparticular,theexamplesin(29)suggestthattheseadverbsselectforcomplementsthatare c.themattressistoothintosleepon. (29)a.*Itistoothintosleeponthismattress. d.thefootballissoft. f.*thefootballissofttokick. g.thefootballissoftenoughtokick. orenoughcombineswithanordinaryadjective,theresultingphrase(toothinandsoftenough) exhibitcomplementationpropertiesverymuchlikethoseofprettyadjectives.bydeningthe (30),inheritingbothfromtheADVERBclassandfromtheSLASH-COMPclass;theentryfor lexicalentriesforthesetwoadverbialspeciersasmembersoftheslash-compclass,webegin toprovideanaccountforexamples(28c,g)aswellasthosein(29).theentryfortooisgivenin enoughissimilar,leavingoutofthepresentdiscussionanaccountofthelinearorderdierence b.*itissoftenoughtokickthisfootball.informally,itseemsthatwhentoo betweenthetwoadverbswithrespecttotheadjectivetheymodify. (30)\too" verydierentgrammaticalareasareundertaken.inseveralyearsofdevelopmentathewlett- SuperclassesAdverb,Slash-Comp PackardLaboratories,involvingdetailedanalysesofdozensofconstructions,thenumberofword lexiconapproach.figure5illustratesthemorecompletestructure.itisacuriousfactthatthe numberoflexicalclassesdoesnotgrowenormouslyevenwhilefairlydetailedanalysesinvolving ofslashedvpshasgrowntoapointwhereitsurelydemonstratesthevirtuesofthestructured Withtheinclusionofthisclassofadverbs,ourlexicalsubhierarchyinvolvingcomplementation Spelling Phonology/tu/ \too" thin,nottoo,istheheadofthephrasetoothintosleepon.tomotivatethenecessaryelaboration classesneverexceeded400.thismustbeduenally,nottothelexicalanalysistool,butrather ofouranalysisforthesetwoadverbs,weturntoonemoresetofdatainvolvinggappyinnitival thesyntacticheadofaphrasethatimposesconstraintsonitscomplements;andweassumethat Yetitisclearthatsomethingmoremustbesaidaboutthisconstruction,giventhatinHPSGitis parsing,referringthereadertofullaccountsgiveninpollardandsag(1987)andrelatedreferences. tothetendencyoflanguagetoreusesignicantclasses. complements,onethathasreceivedlittlestudytodate. thecomplementationspecicationsprovidedbytooarepropagateduptothephrasetoothin.13 Wehavesaidlittlehereabouthowlexicallysuppliedsubcategorizationinformationisemployedin Thisanalysisofthesetwounusualadverbshasleftbegginganimportantissueabouthow selectsforavpcomplement.butslightlymorecomplicatedexamplesquicklyrenderthisapproachuntenable. resultweregardasunacceptable. Cf.Thiscountryistoothinlypopulatedtoworryabout(wherewetakethescopeofthespeciertootobethinly populated).here,thelexicalizedformthatselectsforavpcomplementwouldhavetobetoothinlypopulated,a 13Onemightbetemptedtotryalexicalruleapproachwhichwouldtreattoothinasaderivedlexicalitemwhich 12Baltin(1987)presentsamorerecentanalysisofthese\degreecomplements." 20

Secure Mobile Multiagent Systems In Virtual Marketplaces

Secure Mobile Multiagent Systems In Virtual Marketplaces Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-02-02 Secure Mobile Multiagent Systems In Virtual Marketplaces A Case Study on Comparison Shopping Ina Schaefer March 2002

More information

Intelligent documentation as a catalyst for developing cooperative knowledge-based systems

Intelligent documentation as a catalyst for developing cooperative knowledge-based systems Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-92-26 Intelligent documentation as a catalyst for developing cooperative knowledge-based systems Franz Schmalhofer, Thomas

More information

IST World. European RTD Information and Service Portal FP6-2004-IST-3 015823. Brigitte Jörg, Language Technology Lab, DFKI GmbH

IST World. European RTD Information and Service Portal FP6-2004-IST-3 015823. Brigitte Jörg, Language Technology Lab, DFKI GmbH IST World European RTD Information and Service Portal FP6-2004-IST-3 015823 About the Project [European RTD Information and Service Portal] Duration: 30 Months (April 2005 September 2007) Project Type:

More information

Sustainable Technology Transfer: The German Way

Sustainable Technology Transfer: The German Way Transfer of Technology Stream Dublin, Wednesday 8th May Sustainable Technology Transfer: The German Way Prof. Dr. Wolfgang Wahlster CEO and Scientific Director of the German Research Center for AI, DFKI

More information

Integrated Knowledge Acquisition. from Text, Previously Solved Cases. and Expert Memories

Integrated Knowledge Acquisition. from Text, Previously Solved Cases. and Expert Memories Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-90-14 Integrated Knowledge Acquisition from Text, Previously Solved Cases and Expert Memories Franz Schmalhofer, Otto Kühn,

More information

Smart Data Innovation Lab (SDIL)

Smart Data Innovation Lab (SDIL) Smart Data Innovation Lab (SDIL) Accelerating Data driven Innovation NESSI Summit May 27, 2014 Prof. Dr.-Ing. Michael Beigl Department of Informatics KIT University of the State of Baden-Wuerttemberg and

More information

CTL A description logic with expressive concrete domains

CTL A description logic with expressive concrete domains Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-96-04 CTL A description logic with expressive concrete domains Gerd Kamp and Holger Wache May 1996 Deutsches Forschungszentrum

More information

How the Computer Translates. Svetlana Sokolova President and CEO of PROMT, PhD.

How the Computer Translates. Svetlana Sokolova President and CEO of PROMT, PhD. Svetlana Sokolova President and CEO of PROMT, PhD. How the Computer Translates Machine translation is a special field of computer application where almost everyone believes that he/she is a specialist.

More information

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere

More information

Deutsches Forschungszentrum. Intelligenz GmbH. The EMS Model. Jürgen Lind. January 1999. Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

Deutsches Forschungszentrum. Intelligenz GmbH. The EMS Model. Jürgen Lind. January 1999. Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report TM-98-09 The EMS Model Jürgen Lind January 1999 Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Postfach 20 80 67608

More information

ELRC Workshop Report for Germany

ELRC Workshop Report for Germany (ELRC) is a service contract operating under the EU s Connecting Europe Facility SMART 2014/1074 programme. Deliverable Task 6 ELRC Workshop Report for Germany Author(s): Christian Dugast (DFKI) Dissemination

More information

The MultiHttpServer A Parallel Pull Engine

The MultiHttpServer A Parallel Pull Engine Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Technical Memo TM-99-04 The MultiHttpServer A Parallel Pull Engine Christoph Endres email: Christoph.Endres@dfki.de April 1999 Deutsches Forschungszentrum

More information

Domain-Independent Persistence

Domain-Independent Persistence Deutsches Forschungszentrum for KOnstliche Intelilgenz GmbH Technical Memo TM-90-02 The Myth of Domain-Independent Persistence Jay C. Weber June 1990 Deutsches Forschungszentrum fur Kunstliche Intelligenz

More information

Co- creative Companions for Cyber- Social Teaming

Co- creative Companions for Cyber- Social Teaming Co- creative Companions for Cyber- Social Teaming Andreas Dengel @ andreas.dengel@d-i.de 2016 - Seite 1 Agenda Some Words about Digitalization and the Age of Smart X What does it mean to make people and

More information

Ling 130 Notes: English syntax

Ling 130 Notes: English syntax Ling 130 Notes: English syntax Sophia A. Malamud March 13, 2014 1 Introduction: syntactic composition A formal language is a set of strings - finite sequences of minimal units (words/morphemes, for natural

More information

Predicate Complements

Predicate Complements Predicate Complements Frank Van Eynde University of Leuven - Belgium This paper presents the subject raising treatment of predication (section 1), shows its deficiencies (section 2), presents an alternative

More information

On Abduction and Answer Generation through Constrained Resolution

On Abduction and Answer Generation through Constrained Resolution Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-92-51 On Abduction and Answer Generation through Constrained Resolution Hans-Jürgen Bürckert, Werner Nutt October 1992 Deutsches

More information

The MultiHttpServer A Parallel Pull Engine

The MultiHttpServer A Parallel Pull Engine Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Technical Memo TM-99-04 The MultiHttpServer A Parallel Pull Engine Christoph Endres email: Christoph.Endres@dfki.de April 1999 Deutsches Forschungszentrum

More information

Curriculum Vitae. Personal Data. Professional Experience

Curriculum Vitae. Personal Data. Professional Experience Curriculum Vitae Personal Data Name: Dr. Klaus Fischer Address: Lüderitzstraße 1, D-66123 Saarbrücken Phone: +49-681-85775-3917 (office) +49-160-97225454 (mobile) Fax: +49-681-85775-2235 e-mail: Klaus.Fischer@dfki.de

More information

Appendices master s degree programme Artificial Intelligence 2014-2015

Appendices master s degree programme Artificial Intelligence 2014-2015 Appendices master s degree programme Artificial Intelligence 2014-2015 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Program «Support to Regional Economic Cooperation in Central Asia»

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Program «Support to Regional Economic Cooperation in Central Asia» Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Program «Support to Regional Economic Cooperation in Central Asia» Seite # Information about GIZ Deutsche Gesellschaft für Internationale

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION 1 CHAPTER I INTRODUCTION A. Background of the Study Language is used to communicate with other people. People need to study how to use language especially foreign language. Language can be study in linguistic

More information

Bottleneck Analysis as a Heuristic for Self-Adaption in Multi-Agent Societies

Bottleneck Analysis as a Heuristic for Self-Adaption in Multi-Agent Societies Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Technical Memo TM-98-01 Bottleneck Analysis as a Heuristic for Self-Adaption in Multi-Agent Societies Christian Gerber January 1998 Deutsches

More information

Ling 201 Syntax 1. Jirka Hana April 10, 2006

Ling 201 Syntax 1. Jirka Hana April 10, 2006 Overview of topics What is Syntax? Word Classes What to remember and understand: Ling 201 Syntax 1 Jirka Hana April 10, 2006 Syntax, difference between syntax and semantics, open/closed class words, all

More information

Combining Sequential and Concurrent Verification - The SMTP Case Study -

Combining Sequential and Concurrent Verification - The SMTP Case Study - Deutsches Forschungszentrum für f r Künstliche K Intelligenz Combining Sequential and Concurrent Verification - The SMTP Case Study - Bruno Langenstein, Werner Stephan (DFKI GmbH) Saarbrücken, Germany

More information

How innovation can drive the economy: the German example. Mario Soos Counselor German Embassy Ljubljana 6. Slovenian Innovation Forum

How innovation can drive the economy: the German example. Mario Soos Counselor German Embassy Ljubljana 6. Slovenian Innovation Forum How innovation can drive the economy: the German example Mario Soos Counselor German Embassy Ljubljana 6. Slovenian Innovation Forum Innovation is the ability to see change as an opportunity not a threat

More information

Phrase Structure. A formal hypothesis for representing constituency

Phrase Structure. A formal hypothesis for representing constituency Phrase Structure A formal hypothesis for representing constituency Constituents are hierarchically organized TP NP VP The man eats at fancy restaurants. D N V PP the man eats P at AdjP Adj fancy NP N restaurants

More information

New Production Technologies in Aerospace Industry

New Production Technologies in Aerospace Industry New Production Technologies in Aerospace Industry Machining Innovations Conference September 18 th and 19 th 2013 in Hannover at the EMO Advanced Technology Carrier: Aerospace Industry Dipl.-Ing. Cord

More information

Appendices master s degree programme Human Machine Communication 2014-2015

Appendices master s degree programme Human Machine Communication 2014-2015 Appendices master s degree programme Human Machine Communication 2014-2015 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

REFERENCE. Project P&O Ports Antwerpen. ms Neumann Elektronik GmbH. Systemhersteller und Systemintegrator für Informations- und Sicherheitstechnik

REFERENCE. Project P&O Ports Antwerpen. ms Neumann Elektronik GmbH. Systemhersteller und Systemintegrator für Informations- und Sicherheitstechnik ms Neumann Elektronik GmbH Systemhersteller und Systemintegrator für Informations- und Sicherheitstechnik System manufacturer and system integrator for information and safety technology Innovative command-

More information

The Definition of Kernel Oz

The Definition of Kernel Oz Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-94-23 The Definition of Kernel Oz Gert Smolka November 1994 Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Postfach

More information

Evaluation. Research Consulting Education. www.ceval.org

Evaluation. Research Consulting Education. www.ceval.org Evaluation Research Consulting Education www.ceval.org CEval The Center for Evaluation (CEval) is a research, service and educational institute that is unique in Germany. Since 2002, it has conducted evaluations

More information

MSc in Production & Operations Management (POM) at the HECTOR School Karlsruhe Institute of Technology Karlsruhe

MSc in Production & Operations Management (POM) at the HECTOR School Karlsruhe Institute of Technology Karlsruhe DAAD Deutscher Akademischer Austauschdienst German Academic Exchange Service Home [//www.daad.de/en/index.html] / Information on Study and Research in Germany [//www.daad.de/deutschland/en/] / International

More information

TechWatch. Technology and Market Observation powered by SMILA

TechWatch. Technology and Market Observation powered by SMILA TechWatch Technology and Market Observation powered by SMILA PD Dr. Günter Neumann DFKI, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Juni 2011 Goal - Observation of Innovations and Trends»

More information

Business Brief Consolidation Index: Critical Success Factors for Industry Consolidation 1

Business Brief Consolidation Index: Critical Success Factors for Industry Consolidation 1 Business Brief Consolidation Index: Critical Success Factors for Industry Consolidation 1 ESMT No. BB-108-006 ESMT BUSINESS BRIEF Europe and China: Different Stages of Industry Consolidation Marten Büttner,

More information

Resolution of the 18th General Meeting of the German Rectors' Conference (HRK) on 12 May 2015 in Kaiserslautern

Resolution of the 18th General Meeting of the German Rectors' Conference (HRK) on 12 May 2015 in Kaiserslautern Resolution of the 18th General Meeting of the German Rectors' Conference (HRK) on 12 May 2015 in Kaiserslautern Franchising Models in Medicine and Medical Schools HRK German Rectors' Conference The Voice

More information

First International Workshop on Pulmonary Image Processing -25-

First International Workshop on Pulmonary Image Processing -25- First International Workshop on -25- -26- First International Workshop on First International Workshop on -27- -28- First International Workshop on First International Workshop on -29- -30- First International

More information

JOB BANK TRANSLATION AUTOMATED TRANSLATION SYSTEM. Table of Contents

JOB BANK TRANSLATION AUTOMATED TRANSLATION SYSTEM. Table of Contents JOB BANK TRANSLATION AUTOMATED TRANSLATION SYSTEM Job Bank for Employers Creating a Job Offer Table of Contents Building the Automated Translation System Integration Steps Automated Translation System

More information

Efficient Techniques for Improved Data Classification and POS Tagging by Monitoring Extraction, Pruning and Updating of Unknown Foreign Words

Efficient Techniques for Improved Data Classification and POS Tagging by Monitoring Extraction, Pruning and Updating of Unknown Foreign Words , pp.290-295 http://dx.doi.org/10.14257/astl.2015.111.55 Efficient Techniques for Improved Data Classification and POS Tagging by Monitoring Extraction, Pruning and Updating of Unknown Foreign Words Irfan

More information

Copyright 2013 wolfssl Inc. All rights reserved. 2

Copyright 2013 wolfssl Inc. All rights reserved. 2 - - Copyright 2013 wolfssl Inc. All rights reserved. 2 Copyright 2013 wolfssl Inc. All rights reserved. 2 Copyright 2013 wolfssl Inc. All rights reserved. 3 Copyright 2013 wolfssl Inc. All rights reserved.

More information

DATA MANAGEMENT PLAN DELIVERABLE NUMBER RESPONSIBLE AUTHOR. Co- funded by the Horizon 2020 Framework Programme of the European Union

DATA MANAGEMENT PLAN DELIVERABLE NUMBER RESPONSIBLE AUTHOR. Co- funded by the Horizon 2020 Framework Programme of the European Union DATA MANAGEMENT PLAN Co- funded by the Horizon 2020 Framework Programme of the European Union DELIVERABLE NUMBER DELIVERABLE TITLE D7.4 Data Management Plan RESPONSIBLE AUTHOR DFKI GRANT AGREEMENT N. PROJECT

More information

A Complete Axiomatization of a Theory with Feature and Arity Constraints

A Complete Axiomatization of a Theory with Feature and Arity Constraints Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-94-35 A Complete Axiomatization of a Theory with Feature and Arity Constraints Rolf Backofen December 1994 Deutsches Forschungszentrum

More information

Erasmus Exchanges for Informatics Students

Erasmus Exchanges for Informatics Students Erasmus Exchanges for Informatics Students Aris Efthymiou School of Informatics University of Edinburgh aefthymi@inf.ed.ac.uk September 23, 2010 Aris Efthymiou Erasmus Exchanges for Informatics Students

More information

L130: Chapter 5d. Dr. Shannon Bischoff. Dr. Shannon Bischoff () L130: Chapter 5d 1 / 25

L130: Chapter 5d. Dr. Shannon Bischoff. Dr. Shannon Bischoff () L130: Chapter 5d 1 / 25 L130: Chapter 5d Dr. Shannon Bischoff Dr. Shannon Bischoff () L130: Chapter 5d 1 / 25 Outline 1 Syntax 2 Clauses 3 Constituents Dr. Shannon Bischoff () L130: Chapter 5d 2 / 25 Outline Last time... Verbs...

More information

Company Presentation

Company Presentation Company Presentation Content Company Areas of Competence Clients / References Projects Contact 2001-2008 Page 2 Acrys Consult Spin-off from a Leading German Bank Acrys Consult GmbH & Co. KG Market Entry

More information

Programming languages, their environments and system software interfaces

Programming languages, their environments and system software interfaces ISO/IEC JTC1/SC22/WG4 N 0161 (J4/02-0101) Date: 2002-05-02 Reference number of document: WDTR 19755 Committee identification: ISO/IEC JTC 1/SC 22 /WG 4 Secretariat: ANSI Information Technology Programming

More information

Natural Language Understanding

Natural Language Understanding Natural Language Understanding We want to communicate with computers using natural language (spoken and written). unstructured natural language allow any statements, but make mistakes or failure. controlled

More information

Blue Sky. Green City....fresh ideas for our climate

Blue Sky. Green City....fresh ideas for our climate Blue Sky...fresh ideas for our climate InnovationCity Ruhr Model Town Bottrop innovative ideas and solutions for climate protection will be tested in the real world here until 2020 in order to serve as

More information

Industry 4.0 Challenges and Opportunities

Industry 4.0 Challenges and Opportunities Industry 4.0 Challenges and Opportunities Institute of Industrial Management and Innovation Research Graz University of Technology 14 th International Conference on Knowledge Technologies and Data-driven

More information

Text Analytics for Brand Research. Non-reactive Concept Mapping to Elicit Consumer Perception

Text Analytics for Brand Research. Non-reactive Concept Mapping to Elicit Consumer Perception Text Analytics for Brand Research Non-reactive Concept Mapping to Elicit Consumer Perception 1 Who We Are Background! University of Cologne spin-off" Founded 2011 " at the Department of Information Systems"

More information

AC Program/Major or Minor/Concentration Revision Form

AC Program/Major or Minor/Concentration Revision Form 1.0 Degree Title Specify the two degrees for concurrent degree programs 1.1 Major (Legacy= Subject) (30-char. max.) Cognitive Science B.A. and Sc. AC-04-48 Program/Major or Minor/Concentration Revision

More information

Guidelines to the application form Admission of companies to Exchange trading

Guidelines to the application form Admission of companies to Exchange trading Guidelines to the application form Admission of companies to Exchange trading Preliminary remarks According to section 19 (1) of the German Exchange Act (Börsengesetz, BörsG), section 12 of the Exchange

More information

Satzbestandteile erkennen Theorie

Satzbestandteile erkennen Theorie I prepared this extra topic because I noticed that my gwapa has difficulties in the identification of the single parts of a sentence. However, this important so that you are able to handle the cases and

More information

Challenges of Automation in Translation Quality Management

Challenges of Automation in Translation Quality Management Challenges of Automation in Translation Quality Management Berlin, 12.09.2009 Dr. François Massion D.O.G. Dokumentation ohne Grenzen GmbH francois.massion@dog-gmbh.de Overview Quality definition and quality

More information

Competing Models of Grammatical Description

Competing Models of Grammatical Description Competing Models of Grammatical Description Computerlinguistik (Seminar SS 2008) PD Dr. Tania Avgustinova Grammar: Overview Kinds of grammars, views on grammar Basic grammatical notions grammatical units:

More information

Integration of Time Management in the Digital Factory

Integration of Time Management in the Digital Factory Integration of Time Management in the Digital Factory Ulf Eberhardt a,, Stefan Rulhoff b,1 and Dr. Josip Stjepandic c a Project Engineer, Daimler Trucks, Mannheim, Germany b Consultant, PROSTEP AG, Darmstadt

More information

Domain Knowledge Extracting in a Chinese Natural Language Interface to Databases: NChiql

Domain Knowledge Extracting in a Chinese Natural Language Interface to Databases: NChiql Domain Knowledge Extracting in a Chinese Natural Language Interface to Databases: NChiql Xiaofeng Meng 1,2, Yong Zhou 1, and Shan Wang 1 1 College of Information, Renmin University of China, Beijing 100872

More information

WHY DO WE NEED GRAMMAR?

WHY DO WE NEED GRAMMAR? Trinity Certificate in TESOL Trinity TESOL Study Resource no 7: Teaching Grammar in Context When we teach grammar, we not only help our learners to express themselves, but we also fulfil their expectations

More information

Visualization of Large and Unstructured Data Sets

Visualization of Large and Unstructured Data Sets Hans Hagen, Andreas Kerren, Peter Dannenmann (Eds.) Visualization of Large and Unstructured Data Sets First workshop of the DFG s International Research Training Group Visualization of Large and Unstructured

More information

Where to search for Language Technology (LT) documents? How to retrieve LT documents?

Where to search for Language Technology (LT) documents? How to retrieve LT documents? Where to search for Language Technology (LT) documents? How to retrieve LT documents? Is the extensive experience in LT important for retrieving information? GL14 Fourteenth International Conference on

More information

OCRopus Addons. Internship Report. Submitted to:

OCRopus Addons. Internship Report. Submitted to: OCRopus Addons Internship Report Submitted to: Image Understanding and Pattern Recognition Lab German Research Center for Artificial Intelligence Kaiserslautern, Germany Submitted by: Ambrish Dantrey,

More information

Business Continuity Policy

Business Continuity Policy Business Continuity Policy Software, consultancy and services for global trade and supply chain management Business Continuity Policy Companies using AEB solutions for managing and monitoring their logistics

More information

LIABILITY NOTICE COPYRIGHT

LIABILITY NOTICE COPYRIGHT SYSTEM REQUIREMENTS 2 LIABILITY NOTICE Information provided in this manual may change at any given time and without prior notice. Its provision does not entail any kind of legal obligation at protected-networks.com

More information

Syntax: Phrases. 1. The phrase

Syntax: Phrases. 1. The phrase Syntax: Phrases Sentences can be divided into phrases. A phrase is a group of words forming a unit and united around a head, the most important part of the phrase. The head can be a noun NP, a verb VP,

More information

Invitation to pioneers: Energy Efficiency Award 2012.

Invitation to pioneers: Energy Efficiency Award 2012. Invitation to pioneers: Energy Efficiency Award 2012. You and your business can become a benchmark for energy efficiency in industry and production. Rewarding energy efficiency. Have you introduced innovative,

More information

IFRS APPLICATION AROUND THE WORLD JURISDICTIONAL PROFILE: People s Republic of China

IFRS APPLICATION AROUND THE WORLD JURISDICTIONAL PROFILE: People s Republic of China IFRS APPLICATION AROUND THE WORLD JURISDICTIONAL PROFILE: People s Republic of China Disclaimer: The information in this Profile is for general guidance only and may change from time to time. You should

More information

Towards National Action Plans GIZ s Technical Cooperation on Green Freight and Logistics in Asia

Towards National Action Plans GIZ s Technical Cooperation on Green Freight and Logistics in Asia INTERGOVERNMENTAL EIGHTH REGIONAL ENVIRONMENTALLY SUSTAINABLE TRANSPORT (EST) FORUM IN ASIA 19 21 November 2014 EST PLENARY SESSION 8: Intelligent Freight System (IFS) for Improved Productivity and Energy

More information

Maintenance of EMU - a new approach for management and technology

Maintenance of EMU - a new approach for management and technology RöschConsult Group Maintenance of EMU - a new approach for management and technology Beijing Jiaotong University May, 8th 2013 Prof. Dr.-Ing. Wolfgang Roesch 2 RoeschConsult Group GmbH RöschConsult Group

More information

The model-based construction of a case-oriented expert system

The model-based construction of a case-oriented expert system Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Research Report RR-92-27 The model-based construction of a case-oriented expert system Franz Schmalhofer, Jörg Thoben June 1992 Deutsches Forschungszentrum

More information

Industry 4.0 the German vision for advanced manufacturing

Industry 4.0 the German vision for advanced manufacturing www.smartfactory-kl.de Industry 4.0 the German vision for advanced manufacturing Prof. Dr. Dr. h.c. Detlef Zühlke Director Innovative Factory Systems IFS German Research Center for Artificial Intelligence,

More information

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Titelmasterformat durch Klicken www.wattline.de Titelmasterformat durch Klicken WATTLINE November 2012 1 Titelmasterformat Strong Basis durch Klicken Titelmasterformat WATTLINE GmbH durch a subsidiary

More information

Renewable Energy Research Association (FVS)

Renewable Energy Research Association (FVS) FVS Renewable Energy Research Association (FVS) In the past few years, the general conditions for research into solar and renewables have consistently improved: they have been intensively developed, have

More information

International Experience and Conclusions

International Experience and Conclusions What to Expect from Postal Liberalisation in Italy? International Experience and Conclusions Alex Kalevi Dieke Presentation at Business International s Postal Services Summit Rome, 31 March 2011 0 Who

More information

Jülich Biotech Day 2015

Jülich Biotech Day 2015 Jülich Biotech Day 2015 Friday, 30 October 2015, Lecture Theatre of the Central Library, Forschungszentrum Jülich EXHIBITION INFORMATION /BiotechDay Exhibition Information Page 1 Venue The Jülich Biotech

More information

Technical concepts of kopal. Tobias Steinke, Deutsche Nationalbibliothek June 11, 2007, Berlin

Technical concepts of kopal. Tobias Steinke, Deutsche Nationalbibliothek June 11, 2007, Berlin Technical concepts of kopal Tobias Steinke, Deutsche Nationalbibliothek June 11, 2007, Berlin 1 Overview Project kopal Ideas Organisation Results Technical concepts DIAS kolibri Models of reusability 2

More information

System Configuration

System Configuration XMP-ACL32 Software Documentation System Configuration Version: 1.2 Date: 07/26/2013 File: EXMP-ACL32_System_configuration Issued by Autec Gesellschaft für Automationstechnik mbh Bahnhofstrasse 57-61b 55234

More information

Learning Mathematics with

Learning Mathematics with Deutsches Forschungszentrum für f r Künstliche K Intelligenz Learning Mathematics with Jörg Siekmann German Research Centre for Artificial Intelligence DFKI Universität des Saarlandes e-learning: Systems

More information

Cyber-Physical Systems, Internet of Things & Industry 4.0 First Technical Prototypes

Cyber-Physical Systems, Internet of Things & Industry 4.0 First Technical Prototypes Cyber-Physical Systems, Internet of Things & Industry 4.0 First Technical Prototypes Johannes Schöning Munich, Germany 10/2013 London Münster Berlin Köln Hasselt Saarbrücken Innovative Retail Lab (IRL)

More information

What s in a Lexicon. The Lexicon. Lexicon vs. Dictionary. What kind of Information should a Lexicon contain?

What s in a Lexicon. The Lexicon. Lexicon vs. Dictionary. What kind of Information should a Lexicon contain? What s in a Lexicon What kind of Information should a Lexicon contain? The Lexicon Miriam Butt November 2002 Semantic: information about lexical meaning and relations (thematic roles, selectional restrictions,

More information

Current Changes in German Corporate Tax Law Tax Germany

Current Changes in German Corporate Tax Law Tax Germany Current Changes in German Corporate Tax Law Tax Germany Newsletter December 23, 2010 For further information please contact: Duesseldorf: Dr. Stephan Schnorberger stephan.schnorberger@ bakermckenzie.com

More information

Presentation of Arab International University History Present Future

Presentation of Arab International University History Present Future Presentation of Arab International University History Present Future Dipl. Hdl. Thomas Rieke Director International Relations Office Content: 1. History 2. Mission and vision 3. Geographical Location 4.

More information

Experiences from Verbmobil. Norbert Reithinger DFKI GmbH Stuhlsatzenhausweg 3 D-66123 Saarbrücken bert@dfki.de

Experiences from Verbmobil. Norbert Reithinger DFKI GmbH Stuhlsatzenhausweg 3 D-66123 Saarbrücken bert@dfki.de Experiences from Verbmobil Norbert Reithinger DFKI GmbH Stuhlsatzenhausweg 3 D-66123 Saarbrücken bert@dfki.de Content Overview of Verbmobil project Scientific challenges and experiences Software technology

More information

SNP Academy. Traineeprogram. For further information contact:

SNP Academy. Traineeprogram. For further information contact: SNP Academy Traineeprogram For further information contact: Stefanie Hempel Training Assistant Mail Stefanie.Hempel@snp-ag.com Phone +49 6221 6425 360 Catalogue valid from 01.06.2014 All previous catalogues

More information

Review: Innovating E-mobility Ecosystem Forum & April Automotive Reception, April 16, 2014

Review: Innovating E-mobility Ecosystem Forum & April Automotive Reception, April 16, 2014 Review: Innovating E-mobility Ecosystem Forum & April Automotive Reception, April 16, 2014 Participants: 253 Origin of Companies: Origin of Companies 15% Domestic 42% Foreign Joint Venture 43% Participants

More information

ERP Goes China Management Summary. Dr. Eric Scherer, Frank Naujoks, Philipp Drack i2s research, Zürich

ERP Goes China Management Summary. Dr. Eric Scherer, Frank Naujoks, Philipp Drack i2s research, Zürich ERP Goes China Management Summary Dr. Eric Scherer, Frank Naujoks, Philipp Drack i2s research, Zürich Content 1. License agreement and copyright 2. Overview 3. Reasons to move to China 4. Consequences

More information

Constraints in Phrase Structure Grammar

Constraints in Phrase Structure Grammar Constraints in Phrase Structure Grammar Phrase Structure Grammar no movement, no transformations, context-free rules X/Y = X is a category which dominates a missing category Y Let G be the set of basic

More information

Dated: March 2006. Concept & design: Sven Donat, Wirtschaftsakademie Schlewig-Holstein Svenja Schlüter, s2 designstudio, Neumünster

Dated: March 2006. Concept & design: Sven Donat, Wirtschaftsakademie Schlewig-Holstein Svenja Schlüter, s2 designstudio, Neumünster Berufsakademie Dated: March 2006 Concept & design: Sven Donat, Wirtschaftsakademie Schlewig-Holstein Svenja Schlüter, s2 designstudio, Neumünster Pictures: S. Donat, T. Fandrich, B. Grimmenstein, T. Hammer

More information

Aerospace series Cables, electrical, aircraft use Test methods. Part 417: Fire resistance of cables confined inside a harness

Aerospace series Cables, electrical, aircraft use Test methods. Part 417: Fire resistance of cables confined inside a harness ÖNORM EN 3475-417 Edition: 2009-09-01 Aerospace series Cables, electrical, aircraft use Test methods Part 417: Fire resistance of cables confined inside a harness Luft- und Raumfahrt Elektrische Leitungen

More information

Curriculum Vitae. Prof. Dr.-Ing. Jürgen Wiese

Curriculum Vitae. Prof. Dr.-Ing. Jürgen Wiese 1 Curriculum Vitae Prof. Dr.-Ing. Jürgen Wiese University of Applied Sciences Magdeburg-Stendal Department of Water, Environment, Construction and Safety Professor for Urban Water Management Wastewater

More information

Contrasting English and German Grammar: An Introduction to Syntax and Semantics

Contrasting English and German Grammar: An Introduction to Syntax and Semantics Brochure More information from http://www.researchandmarkets.com/reports/2853521/ Contrasting English and German Grammar: An Introduction to Syntax and Semantics Description: This book offers an introduction

More information

SEVENTH WEEK COMPLEX SENTENCES: THE NOUN CLAUSE

SEVENTH WEEK COMPLEX SENTENCES: THE NOUN CLAUSE SEVENTH WEEK COMPLEX SENTENCES: THE NOUN CLAUSE COMPLEX SENTENCE: a kid of sentence which has one independent clause and one or more dependent clauses. KINDS OF DEPENDENT CLAUSES: (a) Adverb Clause (b)

More information

The 10 th Asia-Pacific Weeks Berlin 2015

The 10 th Asia-Pacific Weeks Berlin 2015 The 10 th Asia-Pacific Weeks Berlin 2015 I. Key Issue: Smart Cities The 10 th Asia-Pacific Weeks (APW) will be taking place in Berlin from the 18 th to the 29 th of May, 2015. The topical framework Smart

More information

reviewed paper RADAR Potentials for Supporting Urban Development with a Social Geocontent Hub Martin Memmel, Florian Groß

reviewed paper RADAR Potentials for Supporting Urban Development with a Social Geocontent Hub Martin Memmel, Florian Groß reviewed paper RADAR Potentials for Supporting Urban Development with a Social Geocontent Hub Martin Memmel, Florian Groß (Dipl.-Math. Martin Memmel, memmel@dfki.de, Deutsches Forschungszentrum für Künstliche

More information

Calling Berlin Bootcamp

Calling Berlin Bootcamp Calling Entrepreneurs @ Berlin Bootcamp th th July 18 July 27 Exchange between Indian and German Start-Ups in the Energy Sector 10 Start-ups from Germany & India week Bootcamp 1.5 in Berlin As a federal

More information

FACULTY OF ECONOMIC INFORMATICS OF THE UNIVERSITY OF ECONOMICS IN BRATISLAVA

FACULTY OF ECONOMIC INFORMATICS OF THE UNIVERSITY OF ECONOMICS IN BRATISLAVA FACULTY OF ECONOMIC INFORMATICS OF THE UNIVERSITY OF ECONOMICS IN BRATISLAVA FACULTY HISTORY 1959 with effect from 1 September 1959, Government Decree 59/1959 established the Institute of National Economic

More information

SYNTAX. Syntax the study of the system of rules and categories that underlies sentence formation.

SYNTAX. Syntax the study of the system of rules and categories that underlies sentence formation. SYNTAX Syntax the study of the system of rules and categories that underlies sentence formation. 1) Syntactic categories lexical: - words that have meaning (semantic content) - words that can be inflected

More information

Why major in linguistics (and what does a linguist do)?

Why major in linguistics (and what does a linguist do)? Why major in linguistics (and what does a linguist do)? Written by Monica Macaulay and Kristen Syrett What is linguistics? If you are considering a linguistics major, you probably already know at least

More information