Mobility Management for IP-based Mobile Networks
|
|
|
- Rosalind Shelton
- 10 years ago
- Views:
Transcription
1 Mobility Management for IP-based Mobile Networks H. Becker, N. Gerlich, M. Schopp Siemens Information & Communication Mobile Munich, Germany 1
2 Overview Introduction to IP-based Radio Access Networks Definition of Mobility Management Mobility Management concepts for the IP-based RAN Mobility Management schemes Conclusion 2
3 IP-based 3G RAN? Radio Base Station ATM ATM Radio Access Network Radio Network Controller ATM to Core Network ATM Core Network 3
4 IP-based 3G RAN? Radio Base Station IP Radio Network Controller to Core Network IP IP IP Radio Access Network Core Network 4
5 Was that all? No! 5
6 IP-based RAN = + IP transport Open Architecture based on Internet paradigms 6
7 Architectural principles Radio Network Controller Radio Base Station cell control user terminal control to Core Network separation of transport and RAN functions cell related user plane processing open interfaces IP transport user related user plane processing distribution of RAN functions user / control plane cell related / user related functions open interfaces 7
8 Architecture and functions control plane Radio Control Server Paging/ Broadcast Function Mobile Ctrl Function not all functions shown important distinction: function network element user plane transport plane Radio L1 Cell Control Function Cell Bearer User Radio User Plane Server Radio Access Network Routing Function µ Mobility Anchor Access Wireless Leaf Node CN Core Network e.g. the Radio L1 function is a function of the dynamic functions serving a UE are localized on network elements some of them must be relocated as the UE moves - especially those in the user plane 8
9 Definition The task of the Mobility Management is to maintain location information of the user equipment in order to manage the localization of network resources involved in serving a particular user equipment. 9
10 Grades of attachment and mobility management grades of attachment to the network aim: use network and terminal resources efficiently depending on the communication needs characterized by instantiated functions and mobility management mechanisms attach grade of attachment instantiated functions serving the UE mobility management mechanisms DETACHED RRC establish IDLE Cell connected leave URA mode detach RRC release enter URA mode URA connected detach Cell Bearer User Radio NONE Mobile Ctrl Function Access NONE paging, RA update handover, user plane mobility URA paging, URA update 10
11 Basic idea Exploit different grades of user and control plane mobility relocation relocation RCS relocation complexity frequency 11
12 RAN related mobility management tasks in the user plane Manage the localization of functions such that a transmission path between UE and correspondent is maintained UE Radio L1 Cell Bearer User Radio Access Correspondent transported user data UE mobility management Iub Radio Layer 1 relocation radio layer mobility radio frames Iu User Radio relocation micro mobility user IP packets WLN WLN Correspondent Access relocation macro mobility 12
13 Layered IP mobility concept for IP-based Mobile Networks 13 UE Appl. TCP/IP QoS / Mob. enabled L2 TCP/IPv6 L1/2 Radio L1 relocation L2 mechanism IPbRAN TCP/IPv6 L1/2 URG Relocation MIP from user IP point of view the WLN is the access router IPbRAN as QoS/mobility enabled Layer 2 between and radio frames containing data of multiple UEs are transported IP based per UE mobility ends at the Wireless Leaf Node AAA QoS QoS / mobility enabled L2 TCP/IPv6 L1/2 TCP/IP... L1/2 AAA server IPbCN policy server Access Relocation MIP CN TCP/IP L1/2
14 Radio L1 relocation UE RL1 Iub RL1 NEW Iub URG RCS µma WLN triggered by UE entering the radio coverage of a new uses "legacy" mechanisms controlled by signaling from RCS soft handover instantiate RL1 function on new instantiate new Iub interface if on dedicated channels: configure macro diversity combining (User Radio ) hard handover instantiate RL1 function on new and Iub interface release RL1 function on old and Iub interface 14
15 User Radio relocation Triggered by the RCS (may run in parallel to RL1 reloc) uses Mobile IPv6 UE URG VMH NEW URG NEW VMH RCS HA µma WLN Virtual Mobile Host (VMH) acts as tunnel endpoint and for MIPv6 signalling VMH uses IPbRAN internal address from HA's subnetwork as home address Care-of-address from subnetwork Relocation URG relocation by RCS signaling VMH relocation packet path configuration through MIPv6 signaling by VMH 15
16 User Radio relocation UE URG VMH MAF URG VMH RCS HA µma WLN Reducing packet loss during relocation: Mobile Anchor Function (MAF) redirects in-flight packets to new Hierarchical Mobile IP mechanisms to include MAF in packet path 16
17 Access relocation: RAN UE VMH URG VMH RCS HA µma WLN NEW WLN AGW AGW triggered by the RCS for path optimization new Iu interface set-up by legacy RANAP signalling RCS provides new WLN with IP address of VMH from HA's subnetwork New WLN informs RCS about its IP address RCS provides VMH with IP address of new WLN Relocation packet path configuration through MIPv6 signaling by VMH 17
18 Access relocation: Core Network down link redirection in Core: Mobile IP AGW AGW WLN WLN VMH / FA NEW VMH / FA Core Network HA Correspondent Node if UE cannot support Mobile IP: Virtual Mobile Host (VMH) else: Foreign Agent (FA) function Relocation AGW relocation by RCS signaling VMH relocation or FA advertisements sent to UE packet path configuration through MIP signaling 18
19 Summary Mobility management concept combines existing IP mobility protocols with traditional mobility management concepts IP mobility shifts mobility management into transport layer IP based mobility is attractive for seamless inter technology roaming (eg. WLAN to 3G-RAN) Hierarchical non-monolithic model provides for flexibility macro mobility micro mobility radio layer mobility 19
IP-based Mobility Management for a Distributed Radio Access Network Architecture. [email protected]
IP-based Mobility Management for a Distributed Radio Access Network Architecture [email protected] Outline - Definition IP-based Mobility Management for a Distributed RAN Architecture Page 2 Siemens
Long-Term Evolution. Mobile Telecommunications Networks WMNet Lab
Long-Term Evolution Mobile Telecommunications Networks WMNet Lab Background Long-Term Evolution Define a new packet-only wideband radio with flat architecture as part of 3GPP radio technology family 2004:
Trends in Mobile Network Architectures 3GPP LTE Mobile WiMAX Next Generation Mobile Networks Dr.-Ing. Michael Schopp, Siemens Networks
Trends in Mobile Network Architectures 3GPP LTE Mobile WiMAX Next Generation Mobile Networks Dr.-Ing. Michael Schopp, Siemens Networks Outline 1 Next Generation Mobile Networks 2 New Radio Access Network
Mobile IP Part I: IPv4
Mobile IP Part I: IPv4 Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 12-1 q Mobile
SERVICE DISCOVERY AND MOBILITY MANAGEMENT
Objectives: 1) Understanding some popular service discovery protocols 2) Understanding mobility management in WLAN and cellular networks Readings: 1. Fundamentals of Mobile and Pervasive Computing (chapt7)
Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks
Chapter 3: WLAN-GPRS Integration for Next-Generation Mobile Data Networks IEEE Wireless Communication, Oct. 2002 Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National
Mobility Management in UMTS
Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl für Informatik IV Prof. Dr. rer. nat. Otto Spaniol Mobility Management in UMTS Seminar: Datacommunication & Distributed Systems WS 2003/2004
5.0 Network Architecture. 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network
5.0 Network Architecture 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network 1 5.1The Internet Worldwide connectivity ISPs connect private and business users Private: mostly dial-up connections Business:
Chapter 4: Mobility Management
Chapter 4: Mobility Management Jyh-Cheng Chen and Tao Zhang IP-Based Next-Generation Wireless s Published by John Wiley & Sons, Inc. January 2004 This material is protected under all Copyright Laws as
SURVEY ON MOBILITY MANAGEMENT PROTOCOLS FOR IPv6
SURVEY ON MOBILITY MANAGEMENT PROTOCOLS FOR IPv6 BASED NETWORK 1 Nitul Dutta, 2 Iti Saha Misra, 3 Kushal Pokhrel and 4 Md. Abu Safi 1 Department of Computer Science & Engineering, Sikkim Manipal Institute
ehrpd Mike Keeley Market Segment Director
ehrpd Mike Keeley Market Segment Director Agenda ehrpd What, Why, and When? ehrpd s Impact on the Core Network ehrpd s Impact on the Mobile Device Verifying ehrpd works 2 Acronyms AAA AN BSC EAP- AKA ehrpd
Chapter 2 Mobility Management for GPRS and UMTS
Chapter 2 Mobility Management for GPRS and UMTS Prof. Yuh-Shyan Chen Department of Computer Science and Information Engineering National Taipei University Outline 2.1 Network Architectures 2.2 Concepts
Telecommunication Services Engineering (TSE) Lab. Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC)
Chapter III 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC) http://users.encs.concordia.ca/~glitho/ Outline 1. LTE 2. EPC architectures (Basic and advanced) 3. Mobility management in EPC 4.
Contents. Preface. Acknowledgement. About the Author. Part I UMTS Networks
Contents Preface Acknowledgement About the Author Acronyms xv xxi xxiii xxv Part I UMTS Networks 1 Introduction 3 1.1 Mobile Telecommunication Networks and Computer Networks 4 1.2 Network Design Principles
HRPD Support for Emergency Services
GPP X.S000-0 Version.0 Date: July 00 HRPD Support for Emergency Services COPYRIGHT GPP and its Organizational Partners claim copyright in this document and individual Organizational Partners may copyright
Outline. Wireless System Integration WLAN. WAN Technologies ดร. อน นต ผลเพ ม LAN. WAN Server LAN. Wireless System Architecture Protocols
204526 Wireless LANs 1 st semester 2002 (June September) Wireless System Integration ดร. อน นต ผลเพ ม Anan Phonphoem, Ph.D. [email protected] Intelligent Wireless Network Group (IWING Lab) http://iwing.cpe.ku.ac.th
IPv6 and 4G. Christian Bonnet Michelle Wetterwald Institut Eurécom
IPv6 and 4G Christian Bonnet Michelle Wetterwald Institut Eurécom Agenda Introduction Architecture Mobile Terminal Function Elements Mobility scenarios QoS Multicasting Conclusion Introduction : 4G Attributes
Mobility Management 嚴 力 行 高 雄 大 學 資 工 系
Mobility Management 嚴 力 行 高 雄 大 學 資 工 系 Mobility Management in Cellular Systems Cellular System HLR PSTN MSC MSC VLR BSC BSC BSC cell BTS BTS BTS BTS MT BTS BTS BTS BTS HLR and VLR HLR (Home Location Register)
Mobile SCTP Transport Layer Mobility Management for the Internet
Mobile SCTP Transport Layer Mobility Management for the Maximilian Riegel Siemens AG, Munich, Germany E-mail: [email protected] Dr. Michael Tüxen Siemens AG, Munich, Germany E-mail: [email protected]
Mobile IPv6 deployment opportunities in next generation 3GPP networks. I. Guardini E. Demaria M. La Monaca
Mobile IPv6 deployment opportunities in next generation 3GPP networks I. Guardini E. Demaria M. La Monaca Overview of SAE/LTE Terminology SAE (System Architecture Evolution): core network/system aspects
Architecture Overview NCHU CSE LTE - 1
Architecture Overview NCHU CSE LTE - 1 System Architecture Evolution (SAE) Packet core networks are also evolving to the flat System Architecture Evolution (SAE) architecture. This new architecture optimizes
Mobility Management. Sara Modarres Razavi
Mobility Management Sara Modarres Razavi Background BSc in Electrical Engineering (2000-2004), Ferdowsi University, Iran MSc in Hardware for Wireless Communications (2004-2006), Chalmers, Sweden PhD in
ATCN 2014: SDN - Mobility and SDN: Mobility Management and Mobile Networks
ATCN 2014: SDN - Mobility and SDN: Mobility Management and Mobile Networks Karin Anna Hummel, ETH Zurich (thanks to Vasileios Kotronis for some material) November 10, 2014 1 Locating and Connecting 2 Wireless
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework
An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework Zutao Zhu Zhenjun Li YunYong Duan Department of Business Support Department of Computer Science Department of Business
Contents. Biography. Acknowledgments. List of Abbreviations. List of Symbols
Contents Biography Preface Acknowledgments List of Abbreviations List of Symbols xi xiii xvii xix xxvii 1 Introduction 1 1.1 Cellular Mobile Communication Systems 1 1.1.1 The Cellular Concept 2 1.1.2 Propagation
Communication Networks. MAP-TELE 2011/12 José Ruela
Communication Networks MAP-TELE 2011/12 José Ruela Network basic mechanisms Introduction to Communications Networks Communications networks Communications networks are used to transport information (data)
Evolutionary Trends towards Beyond 3G Mobile Networks
Evolutionary Trends towards Beyond 3G Mobile Networks Cornel Pampu, Cornelia Kappler, Morten Schläger / SN MN PG NT MN 4 November 17th, 2006 The new company Nokia Siemens Networks is expected to start
Mobility Management in DECT/IPv6 Networks
Mobility Management in DECT/IPv6 Networks Sarantis Paskalis 1, Georgios Lampropoulos 1, and Georgios Stefanou 1 Department of Informatics and Telecommunications University of Athens, Greece Abstract. The
Roaming, Handover, and Mobility
Chapter 6 Roaming, Handover, and Mobility This chapter talks about mobility and handover; in essence they mean the same thing with a slight difference: Mobility usually is used for wired systems, in particular
A NEW SIGNALLING PROTOCOL FOR SEAMLESS ROAMING IN HETEROGENEOUS WIRELESS SYSTEMS
A NEW SIGNALLING PROTOCOL FOR SEAMLESS ROAMING IN HETEROGENEOUS WIRELESS SYSTEMS Azita Laily Yusof, Mahamod Ismail, Norbahiah Misran Dept of Electrical, Electronic & System Engineering, Universiti Kebangsaan
LTE Mobility Enhancements
Qualcomm Incorporated February 2010 Table of Contents [1] Introduction... 1 [2] LTE Release 8 Handover Procedures... 2 2.1 Backward Handover... 2 2.2 RLF Handover... 3 2.3 NAS Recovery... 5 [3] LTE Forward
The future of mobile networking. David Kessens <[email protected]>
The future of mobile networking David Kessens Introduction Current technologies Some real world measurements LTE New wireless technologies Conclusion 2 The future of mobile networking
Network Mobility Support Scheme on PMIPv6 Networks
Network Mobility Support Scheme on PMIPv6 Networks Hyo-Beom Lee 1, Youn-Hee Han 2 and Sung-Gi Min 1 1 Dept. of Computer Science and Engineering, Korea University, Seoul, South Korea. [email protected]
MPLS VPN in Cellular Mobile IPv6 Architectures(04##017)
MPLS VPN in Cellular Mobile IPv6 Architectures(04##017) Yao-Chung Chang, Han-Chieh Chao, K.M. Liu and T. G. Tsuei* Department of Electrical Engineering, National Dong Hwa University Hualien, Taiwan, Republic
Diameter in the Evolved Packet Core
Diameter in the Evolved Packet Core A Whitepaper November 2009 Page 2 DIAMETER in the Evolved Packet Core Mobile broadband is becoming a reality, as the Internet generation grows accustomed to having broadband
Proxy Mobile IPv6-Based Handovers for VoIP Services in Wireless Heterogeneous Networks
IACSIT International Journal of Engineering and Technology, Vol. 4, No. 5, October 12 Proxy Mobile IPv6-Based Handovers for VoIP Services in Wireless Heterogeneous Networks N. P. Singh and Brahmjit Singh
Overview of Network Architecture Alternatives for 3GPP2 Femto Cells Jen M. Chen, et al. QUALCOMM Incorporated
3GPP2 Workshop, Boston, MA Title: Source: Contact: Overview of Network Architecture Alternatives for 3GPP2 Femto Cells Jen M. Chen, et al. QUALCOMM Incorporated Jen M. Chen QUALCOMM Incorporated 858-658-2543
Administrivia. CSMA/CA: Recap. Mobility Management. Mobility Management. Channel Partitioning, Random Access and Scheduling
Administrivia No lecture on Thurs. Last work will be out this week (not due, covers wireless) Extra office hours for next week and the week after. Channel Partitioning, Random Access and Scheduling Channel
IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP
IP and Mobility Chapter 2 Technical Basics: Layer Methods for Medium Access: Layer 2 Chapter Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Telecommunication Networks: GSM, GPRS, UMTS
Abstract. 2 Overview of mobility in WLAN. 1 Introduction
A study of mobility in WLAN Fengping Li Helsinki University of Technology Telecommunication Software and Multimedia Laboratory [email protected] Abstract This paper studies mobility in wireless LAN (WLAN,
Customer Training Catalog Training Programs WCDMA RNP&RNO Technical Training
Customer Training Catalog Training Programs Customer Training Catalog Training Programs WCDMA RNP&RNO Technical Training HUAWEI Learning Service 2015 COMMERCIAL IN CONFIDENCE 1 Customer Training Catalog
Standardization on Mobility Management Architectures and Protocols for All-IP Mobile Networks
Standardization on Mobility Management Architectures and Protocols for All-IP Mobile Networks This paper gives an overview of standardization activities on mobility management (MM) architectures and protocols
2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above
CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network
VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.
VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : VII/ IV Section : CSE-1 & 2 Subject Code : CS2402 Subject Name : MOBILE
Tomás P. de Miguel DIT-UPM. dit UPM
Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability
MOBILE VIDEO WITH MOBILE IPv6
MOBILE VIDEO WITH MOBILE IPv6 DANIEL MINOLI WILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS PREFACE ABOUT THE AUTHOR xi xiii 1 THE MOBILE USER ENVIRONMENT: SMART PHONES, PORTABLE MEDIA PLAYERS (PMPs),
A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access
A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access Kyung-ah Kim 1, Chong-Kwon Kim 2, and Tongsok Kim 1 1 Marketing & Technology Lab., KT, Seoul, Republic of Korea, {kka1,tongsok}@kt.co.kr
Protocol Signaling Procedures in LTE
White Paper Protocol Signaling Procedures in LTE By: V. Srinivasa Rao, Senior Architect & Rambabu Gajula, Lead Engineer Overview The exploding growth of the internet and associated services has fueled
Optimization Handoff in Mobility Management for the Integrated Macrocell - Femtocell LTE Network
Optimization Handoff in Mobility Management for the Integrated Macrocell - Femtocell LTE Network Ms.Hetal Surti PG Student, Electronics & Communication PIT, Vadodara E-mail Id:[email protected] Mr.Ketan
Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1
Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer
Cellular Technology Sections 6.4 & 6.7
Overview Cellular Technology Sections 6. & 6.7 CSC 9 December, 0 Cellular architecture evolution Cellular telephony and internet terminology Mobility for cellular mobiles 6- Components of cellular architecture
Customer Training Catalog Course Descriptions WCDMA RNP&RNO Technical Training
Customer Training Catalog Course Descriptions Customer Training Catalog Course Descriptions WCDMA RNP&RNO Technical Training HUAWEI Learning Service 2015 COMMERCIAL IN CONFIDENCE 1 Customer Training Catalog
AMPHIGEAN LTE WORKSHOP SERIES LTE Radio Network Planning Conversion DURATION: 2 DAYS
AMPHIGEAN LTE WORKSHOP SERIES LTE Radio Network Planning Conversion DURATION: 2 DAYS Audience This workshop is aimed at planning engineers with experience of planning 2G and 3G networks and optimisation
Network Optimization based on performance and capacity criteria
Network Optimization based on performance and capacity criteria Kimmo Aaltonen Wireless Development Manager 2011 EXFO Inc. All rights reserved. 1 I fully agree with this guy 2010 2012 EXFO Inc. All rights
Configuration Guide. How to Configure the AP Profile on the DWC-1000. Overview
Configuration Guide How to Configure the AP Profile on the DWC-1000 Overview This guide describes how to configure the DWC-1000 D-Link Unified Controller s AP profile for batch AP management. How to Configure
G.Vijaya kumar et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1413-1418
An Analytical Model to evaluate the Approaches of Mobility Management 1 G.Vijaya Kumar, *2 A.Lakshman Rao *1 M.Tech (CSE Student), Pragati Engineering College, Kakinada, India. [email protected]
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 Important: The solutions to the homework problems from the course book have been provided by the authors.
MOBILITY SUPPORT USING INTELLIGENT USER SHADOWS FOR NEXT-GENERATION WIRELESS NETWORKS
MOBILITY SUPPORT USING INTELLIGENT USER SADOWS FOR NEXT-GENERATION WIRELESS NETWORKS Gergely V. Záruba, Wei Wu, Mohan J. Kumar, Sajal K. Das enter for Research in Wireless Mobility and Networking Department
Configuration Notes Trapeze Networks Infrastructure in Ascom VoWiFi System
Configuration Notes Trapeze Networks Infrastructure in Ascom VoWiFi System Contents 1 Introduction... 1 1.1 Abbreviations and Glossary... 1 2 Configuration... 2 2.1 Radio Settings... 2 2.1.1 Radio Channels...
Infrastructure-less networks
Infrastructure-less networks Csaba Simon Dept. of Telecommunications and Media Informatics [email protected] Convergent Networks and Services (VITMM156) 1 Mobility management 2 Mobility Mobile station,
Cloud RAN. ericsson White paper Uen 284 23-3271 September 2015
ericsson White paper Uen 284 23-3271 September 2015 Cloud RAN the benefits of virtualization, centralization and coordination Mobile networks are evolving quickly in terms of coverage, capacity and new
Mobility Management for All-IP Core Network
Mobility Management for All-IP Core Network Mobility Management All-IP Core Network Standardization Special Articles on SAE Standardization Technology Mobility Management for All-IP Core Network PMIPv6
Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur
Pradipta Biswas Roll No. 04IT6007 M. Tech. (IT) School of Information Technology Indian Institute of Technology, Kharagpur ABSTRACT W-CDMA (Wideband Code-Division Multiple Access), an ITU standard derived
a new sdn-based control plane architecture for 5G
a new sdn-based control plane architecture for 5G With a Case Study on Connectivity Management m. outline what is sdn? 5G proposed control plane connectivity control software-defined networking The needs
Mobility on IPv6 Networks
Mobility on IPv6 Networks Pedro M. Ruiz Project Manager Agora Systems S.A. Global IPv6 Summit Madrid 13-15 March 2002 Pedro M. Ruiz (c) Agora Systems S.A, 2002 1 Outline Motivation MIPv6 architecture MIPv6
3G/Wi-Fi Seamless Offload
Qualcomm Incorporated March 2010 Table of Contents [1] Introduction... 1 [2] The Role of WLAN... 2 [3] 3G/Wi-Fi Seamless Offload Pathway... 2 [4] Application-Based Switching... 3 [5] Wi-Fi Mobility...
The 3GPP and 3GPP2 Movements Towards an All IP Mobile Network. 1 Introduction
The 3GPP and 3GPP2 Movements Towards an All IP Mobile Network Girish Patel Wireless Solutions Nortel Networks Richardson, TX [email protected] Steven Dennett Personal Communications Sector Motorola
Mobile Networking Concepts and Protocols CNT 5517
Mobile Networking Concepts and Protocols CNT 5517 Some slides are adapted from Dr. Dave Johnson Notes Dr. Sumi Helal, Ph.D. Professor Computer & Information Science & Engineering Department University
Advanced SIP Series: SIP and 3GPP Operations
Advanced S Series: S and 3GPP Operations, Award Solutions, Inc Abstract The Session Initiation Protocol has been chosen by the 3GPP for establishing multimedia sessions in UMTS Release 5 (R5) networks.
UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Departamento de Informática
1 1. This is a frequency evaluation test. 2. Read the questions carefully before answering. 3. Write your answers in the answer sheet provided. 4. Return only the answer sheet with your name, number and
Analysis of Mobile IP in Wireless LANs
ENSC 835: COMMUNICATION NETWORKS FINAL PROJECT PRESENTATIONS Spring 2011 Analysis of Mobile IP in Wireless LANs www.sfu.ca/~bshahabi Babak Shahabi ([email protected]( [email protected]) 301102998 Shaoyun Yang
Advanced Internetworking
Hands-On TCP-IP / IPv6 / VoIP Course Description In this Hands-On 3-day course, gives a deeper understanding of internetworking and routed network protocols. The focus of the course is the design, operation,
LTE - Can SDN paradigm be applied?
LTE - Can SDN paradigm be applied? Source of this presentation: Towards Software Defined Cellular Networks Li Erran Li (Bell Labs, Alcatel-Lucent) Morley Mao (University of Michigan) Jennifer Rexford (Princeton
Software Defined Networking to Improve Mobility Management Performance
Department of Computer Science and the Electrical Engineering, The Netherlands Software Defined Networking to Improve Mobility Management Performance Morteza Karimzadeh, Anna Sperotto, and Aiko Pras [email protected]
Role and Evolution of Radio Network Controllers
01001000100000110000001000001100 010010001000 Role and Evolution of Radio Network Controllers Pekka Varis SPRP501 Senior R&D Manager / Senior Specialist Nokia [email protected] Agenda Radio Network
Basic Network Design
Frequency Reuse and Planning Cellular Technology enables mobile communication because they use of a complex two-way radio system between the mobile unit and the wireless network. It uses radio frequencies
LTE X2 Handover Messaging
LTE X2 Handover Messaging 2013 Inc. All Rights Reserved LTE X2 Handover Sequence Diagram UE Target enodeb Source enodeb MME SGW Handover Confirm X2AP Handover Request X2AP Handover Request Acknowledge
A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks
A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks Min-Kim, Jong-min Kim, Hwa-sung Kim Dept. of Electronics and Communications Engineering Kwangwoon University
Mobile@Home GSM services over wireless LAN
Mobile@Home GSM services over wireless LAN Martin Bäckström, Andreas Havdrup, Tomas Nylander, Jari Vikberg and Peter Öhman What do you get when you combine mobile telephony with voice over IP (VoIP)? Mobile@Home.
OFDMA Orthogonal Frequency Division Multiple Access
ECE 645 Wireless Communication Systems Presentation OFDMA Orthogonal Frequency Division Multiple Access Presented by: Chenxi Bao Chao Xie Nan Wu Outline Theory of OFDM Architecture of RAN and CN Compare
Emerging Standards for Mobility Management in Next-Generation All-IP Networks
Invited Paper ICMU2006 Emerging Standards for Mobility Management in Next-Generation All-IP Networks Hidetoshi Yokota Akira Idoue KDDI R&D Laboratories, Inc. 2-1-15 Ohara, Fujimino, Saitama, 356 8502,
NTT DOCOMO Technical Journal. Core Network Infrastructure and Congestion Control Technology for M2M Communications
M2M 3GPP Standardization Further Development of LTE/LTE-Advanced LTE Release 10/11 Standardization Trends Core Network Infrastructure and Congestion Control Technology for M2M Communications The number
Requirements and Service Scenarios for QoS enabled Mobile VoIP Service
Requirements and Service Scenarios for QoS enabled Mobile VoIP Service Kyu Ouk Lee, Ho Young Song Electronics and Telecommunications Research Institute (ETRI) [email protected], [email protected] Abstract.
ScaleNet Converged Network of the Future
ScaleNet Converged Network of the Future ComNets Workshop 2008, Dr. Bangnan Xu, T-Systems Nov.21.2008 1 What is the deciding factors for the success of networking technologies? Simple Telecom 2.0 WLAN
192620010 Mobile & Wireless Networking. Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4]
192620010 Mobile & Wireless Networking Lecture 5: Cellular Systems (UMTS / LTE) (1/2) [Schiller, Section 4.4] Geert Heijenk Outline of Lecture 5 Cellular Systems (UMTS / LTE) (1/2) q Evolution of cellular
