Providing Secure Representative Data Sets

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Providing Secure Representative Data Sets"

Transcription

1 Test Data Protection Providing Secure Representative Data Sets By Dr. Ron Indeck VelociData Inc. - World Headquarters 321 North Clark Street, Suite 740 Chicago, IL Telephone: Research & Development 349 Marshall Ave, Suite 302 St Louis, MO Telephone:

2 Contents 1. VelociData Enterprise Streaming Compute Appliance (ESCA) 1 2. Test Data 1 3. Creating a Representative Model Copy Challenges in Creating the Model Copy 3 4. VelociData TDP 4 5. Format Preserving Masking 4 6. Deterministic Masking 6 7. TDP Use Cases Use Case 1: Creating a secure, HIPAA-compliant full production dataset from Microsoft SQL Server Use Case 2: Secure data for insertion into an Azure cloud Use Case 3: Securing test data for off-shore developers Use Case 4: Creating daily datasets for Development, QA, and Test Integration Summary Let Us Help You 11 All Content 2015 Velocidata inc.

3 1. VelociData Enterprise Streaming Compute Appliance (ESCA) The VelociData Enterprise Streaming Compute Appliance (ESCA) is the result of over two decades of development and the deployment of hundreds of systems in the most demanding IT environments. The system comprises a unique combination of components in a system that is dedicated to high performance processing of streaming and serial information. Figure 1: The first enterprise streaming compute appliance. Cloud Production Databases Sensitive Data Protection Streaming Data Ingestion Batch Process Delegation Mainframe Enterprise Data Warehouse Streaming Data Masking, Encryption, Transformation & Distribution Application Servers Cloud Hadoop HDFS This white paper focuses on using ESCA to protect sensitive data when it is used for testing software applications. To do this, the data must be rendered unusable but still retain their format (e.g., obfuscated telephone numbers will still be 10 ASCII digits), their volume (no-specific subsetting is required), and their relation (fields will still join properly). These processes can be applied as the data moves from source to target and representative model copies can be different for different targets without slowing the data down. 2. Test Data Development, testing, and quality assurance groups need access to data to build and test applications. For better, more rapid development, that data needs to look and feel like real production data. In many organizations, the way they achieve that look and feel is by copying over production data directly. This is acceptable for some data sets, but when the production environment holds PHI, PCI, or any other PII data, this exposes the company to unnecessary risk, including: Exposing sensitive data to a (drastically) broader set of users provides greater opportunity for breaches due to social engineering IT organizations need to manage and secure more user accounts, more data centers or network segments, and more copies of data at rest All Content 2015 Velocidata inc. Test Data Protection p.1

4 As an alternative, organizations could offer anyone who doesn t truly need the production data access to a Model Copy that holds the key characteristics of the production data, yet doesn t carry any true personally identifying information. To offer this in an effective way, it s important to differentiate between systems or users that need access to actual production data, or a representative model copy: Table 2: Example Data Needs Production Data Transactional Systems Billing Systems Fraud Detection Applications Reporting (user specific) Characteristic Data (Model Copy) Analytics Application Development Testing / QA Reporting (general reports) Proof of Concept / Evaluation Projects The key characteristics of model copies of data is that they must be representative in data character, distribution, and volume, and they must be fast and easy to generate. When these are generated quickly and easily, administrators can strictly limit access to raw production data, while being able to safely and easily provide representative data to a broad set of users. This provides several benefits, including: Less need for limiting user access, compensating controls, securing environments, etc. Less pressure for exposing production data into different development groups (especially when the model copy very closely mirrors the production data) Faster, more productive development, QA, integration testing, etc. 3. Creating a Representative Model Copy One of the best ways to generate a truly representative model copy is to perform a selective, deterministic, format-preserving masking operation on the raw production data to generate a derived output. This will ensure that test data will very closely mirror production for many different purposes. Representative: The test data is derived table for table, row for row from the production data Selective: Any sensitive fields (e.g., PHI) within those tables are masked using a NIST standard algorithm Deterministic: All similar input fields will map to the same masked output value such that correlations and joins can match on the same keys Format-Preserving: Output records must maintain the same data format (text, phone numbers, social security numbers, dates, etc.) When all of these conditions are met, testing environments can use the same database schemas, the same testing algorithms, run the same processing operations, and observe the same volumes and capacities that will be observed in the production environment. All Content 2015 Velocidata inc. Test Data Protection p.2

5 Figure 2: Test Data Protection 3.1 Challenges in Creating the Model Copy There are several concerns with the current solutions in the market that make creating a true model copy in an effective manner challenging: 1. Formatting or Schema changes Many masking solutions require changes to the format of the data elements when encrypting or masking the data 2. Lack of Deterministic Behavior Many simple masking solutions perform pseudo-random operations on the data to mask it, breaking the ability to perform correlations / aggregations / etc. 3. Limited Performance Most software vendors that provide format preserving encryption only transform a few hundred fields per second, which makes large data copies infeasible given typical time windows. 4. Lack of Tool Integration Many masking solutions are not integrated into data movement / data transformation components, requiring the users to create complex multi-product multi step jobs 5. Hard to Use Interfaces Most solutions require complicated tools to access masking functionality 6. Discovery Challenges Identifying PHI / PII elements is often a time-consuming chore 7. Insufficient Throughput Inability to perform daily refreshes or offer production-sized volumes for stress and performance which often results in data sub-setting vs. full model copies All Content 2015 Velocidata inc. Test Data Protection p.3

6 4. VelociData TDP VelociData offers a solution that can perform format-preserving masking while facilitating data movement / data transformations required to move data between production and test / development environments. This solution includes: Table 2: VelociData TDP Feature Format Preserving Masking (static and dynamic) Description Ability to de-identify data without changing its characteristics (permanent and reversible) Note that both static and dynamic operations are fully deterministic Hashing (MD5, SHA-2) Field Redaction Data Transformation Lookup / Replace Combine multiple input fields into a hashed surrogate key that can be used for tokenization Ability to remove / clear sensitive data elements that are not required for the model copy Ability to connect to a wide variety of data sources and to transform data formats in between (e.g. mainframe EBCDIC to ASCII) Ability to perform lookup-based replacements of sensitive terms with non-sensitive values 5. Format Preserving Masking VelociData offers a format preserving masking or format preserving encryption option that conforms to the NIST G standard. This solution can mask or encrypt data without changing the format of the fields. This means that a credit card number that is stored as 16 ASCII numeric digits can be deterministically masked into 16 ASCII numeric digits. A varchar name field in the database can be masked or encrypted into an equivalent number of alphabetic characters. All Content 2015 Velocidata inc. Test Data Protection p.4

7 Figure 3: Example Masking This format preserving characteristic allows users to fully secure their data without needing to change the database schema of development or testing systems. Below are the sets of field types currently supported or in development by VelociData: Table 3: VelociData Masking Data Types Value Description name All alphabetic characters and hyphens numeric ASCII numeric digits: 0-9 alphabetic Upper and lowercase characters: a-z and A-Z alphabetic_uppercase All upper case alphabetic characters: A-Z alphabetic_lowercase All lower case alphabetic characters: a-z alphanumeric All alphabetic characters and base 10 digits: a-z, A-Z, 0-9 alphanumeric_uppercase All upper case alphabetic characters and base 10 digits: A-Z and 0-9 alphanumeric_lowercase All lower case alphabetic characters and base 10 digits: a-z and 0-9 hex_uppercase ASCII numeric digits 0-9 and letters A-F hex_lowercase ASCII numeric digits 0-9 and letters a-f date Dates in ASCII numbers, in the format YYYYMMDD printable All printable ASCII characters everything The full set of ASCII characters mailing_address In Development- Ability to mask addresses into valid USPS mailing address output All Content 2015 Velocidata inc. Test Data Protection p.5

8 Also note that VelociData s performance allows for data to be masked or encrypted at 10 million fields per second. (Where competing solutions can handle hundreds or thousands of fields per second) As many fields are encrypted out of each record in your data set, this means the difference between trickling records through the system in dozens per second or moving data through at hundreds of thousands of records per second. When production data sets contain millions or billions of records, this could mean the difference between being forced to mask only a small subset of your data or being able to mask the entire data set in a matter of minutes. 6. Deterministic Masking Note that the nature of masking is critical in ensuring that data in the model copy are truly representative of your source data set. To clarify what that means, consider the diagram below: Figure 4: Deterministic Masking Notice in this case that John is masked to id Hw each time it is observed in the data, and notice that the patient s SSN is masked to the same output value every time, even when looking at multiple different tables. This allows data sets to be joined and correlated, even when the join keys are being masked. This is a strong feature to consider when choosing a masking solution. Another feature of the VelociData system is the choice between one-way obfuscation versus reversible processing. For most applications involving model copies for test environments there is no need to ever reverse the process and recover the origi- All Content 2015 Velocidata inc. Test Data Protection p.6

9 nal information. In the rare circumstances where the original data need to be recovered, VelociData works with key management systems to enable reversible processing when required. These methods and modes can all be accommodated on data in flight passing through the network or on static data at rest headed for data stores including data warehouses and HDFS. Table 4: VelociData Data Masking Processing Types Form of Obfuscation Redaction/removal Scrambling/shuffling Replacement/substitution Hashing Encryption Format-preserving Encryption Description Removing original information in its entirety (no spaces or other characters left); in some instances a single character e.g., *, may denote a point of redaction No fixed algorithm; information is replaced with a series of (pseudo-)random characters; non-deterministic A fixed character pattern (usually a single character) replaces sensitive information; e.g., phone # may become: (xxx) xxx-xxxx NIST standard MD5 and SHA families; deterministic with the same salt; non-reversible NIST standard (AES and derivatives); block-oriented; deterministic and reversible with the same key NIST standard under consideration; field-oriented; retains field character; deterministic; reversible or non-reversible is user-selectable 7. TDP Use Cases VelociData offers an extremely valuable format-preserving data masking mode. This data security process conforms to the NIST G specification and allows users to encrypt (reversibly) or mask (irreversibly) data without changing its schema or field specifications (lengths and dictionaries are preserved). This enables downstream applications to run without any changes. Use cases include local targets, private and public clouds, and targets where data cross geographic, company, or regulatory boundaries. A data set containing 10 million records with ten sensitive fields in each record can be secured in seconds using VelociData rather than a day using conventional approaches. All Content 2015 Velocidata inc. Test Data Protection p.7

10 Figure 5: Schematic for Creating Secure Model Copies Mainframe Data Sources IMS DB2 VSAM Sensitive Data Data Center Regulatory, Company or Geographic Boundary Application Test Environment QA Database Masked Data (Model Copy) POC / Test RDBMS Log Files CSV Files Non-Mainframe Data Sources Sensitive Data Development Database 7.1 Use Case 1: Creating a secure, HIPAA-compliant full production dataset from Microsoft SQL Server A large health benefits provider needs to create a model copy of a full production dataset for access by their developers. All 18 PHI data field types need to de-identified for HIPAA/HITECH audit compliance. The production data is about 400 GB loaded into Microsoft SQL Server. Following the outline of Figure 5, a workflow is established that: 1. extracts data out of SQL Server; 2. secures the data through the VelociData appliance using format-preserving masking (to ensure data integrity and application usability); and 3. performs a bulk load of the model data into a development set of tables. As an example, one of the tables contains 1 Million records, each of which are comprised of 34 fields. For HIPAA Final Rule compliance 14 of the fields in each record need to be de-identified (totaling 14 M fields). The dataset included a number of different field types (names, SSNs,...) requiring the following dictionaries: Names Numbers Dates Numerics hex_uppercase hex_lowercase alphanumerics alphanumeric_uppercase alphanumeric_lowercase printable characters All Content 2015 Velocidata inc. Test Data Protection p.8

11 The overall processing time for this table including all database queries, masking operations, and insertion into the resulting database, was just over one minute (65 seconds). With the longest running process being the database insert 7.2 Use Case 2: Secure data for insertion into an Azure cloud A retail company must de-identify PII data from records it needs to share with its business partners. This sensitive data contains names, addresses, phone numbers, and other personally identifying data. The manufacturer wants to put the data into a hosted environment but cannot let unprotected data leave its firewall. For this reason they have chosen to use VelociData to de-identify the data in their datacenter before it leaves to enter the cloud. The data contains a large volume of daily transactions. The business associates require the freshest data to address immediate results of campaigns, implementation changes for agile app development, and preparing model reports. Figure 6: Schematic for Securing Data to a Cloud Datastore Corporate Firewall As identified in Figure 6, data move through the VelociData appliance de-identifying the PII data found within the data flow. These records then are allowed to move to the cloud-based storage for access by business associates of the retailer. Since no sensitive data remain there is no risk to the company or the individuals should unauthorized access be gained or data breach occur. All Content 2015 Velocidata inc. Test Data Protection p.9

12 7.3 Use Case 3: Securing test data for off-shore developers A major Telco would like to move production data to India to leverage faster, round-the-clock development and lower costs. In order to remove audit deficiencies they would like to generate a model copy of the data to send to off-shore. While de-identification removes the risk from leaking precious sensitive customer and corporate data the developers require access to a dataset that closely mirrors fresh production data in character such as volume, distribution, and relation. The dataset represents 30 million records and 12 fields per record that need to be de-identified. VelociData can provide a fresh test dataset for the off-shore partners in a minute where the alternate solution takes almost a week before the data are available in test... by then, the developers have a new application built to be tested! 7.4 Use Case 4: Creating daily datasets for Development, QA, and Test Integration A large financial institution needs to provide model datasets with de-identified data to different parts of the development process. While all data needs to be fully de-identified for every user, not all data needs to go to all groups; as an example Web Development may not need a field relating to fraud but Test Integration may need it to complete processing. VelociData Test Data Protection solution has the ability to route different dataset builds to different end users. Leveraging routing is fast and efficient and provides the right data, in the right form, to the right individuals. Proper data arrive at the given locations saving on storage and maintenance of TB of useless replicated data. 8. Summary The VelociData appliance offers an easy to deploy, easy to use solution for test data protection. The system does not require any coding for integration and operation in the existing software and data base environment. Rather, it operates as a simple network resource for automatically masking sensitive data at wire speed. The appliance can communicate with all kinds of systems, including mainframes, commodity servers, and cloud services and can work relational data, flat files, logs, and XML data, and it requires no additional software or hardware to operate. The VelociData Test Data Protection solution reduces regulatory exposure and hacker risk, and it improves software testing speed and agility. All Content 2015 Velocidata inc. Test Data Protection p.10

13 9. Let Us Help You For reducing hacker risk and regulatory exposure in test data protection, VelociData offers the fastest time to safety. If you are using custom coding or packaged software for test data protection, VelociData would like to show you how our unique appliance-based solution can significantly reduce your cost and increase the speed of your test data protection workflow. If you are testing software with sensitive data unprotected, you are taking a huge risk and should consider adopting some remedy immediately, either VelociData s or some other. We would like to show you how quickly you can make this problem go away. Please contact us at to see what we can do for you. Author: Ron Indeck Ron Indeck is the President & CTO of VelociData and has over 25 years of industry and academic experience, most recently as a founder and CTO of Exegy. He was a professor at Washington University in St. Louis, where he was the Das Family Distinguished Professor and Director of the Center for Security Technologies. Among his distinguished professional affiliations, Dr. Indeck was also the President of the Institute of Electrical and Electronics Engineers (IEEE) Magnetics Society. Dr. Indeck has been named the Bar Association Inventor of the Year. All Content 2015 Velocidata inc. Test Data Protection p.11

Data Masking Checklist

Data Masking Checklist Data Masking Checklist Selecting the Right Data Masking Tool Selecting Your Masking Tool Ensuring compliance with current data protection regulations and guidelines has become a mandatory operation. Non-compliance

More information

Example Use Cases. Solving the Need for Speed in Data Ops. Doc Version 2.1

Example Use Cases. Solving the Need for Speed in Data Ops. Doc Version 2.1 Example Use Cases Solving the Need for Speed in Data Ops Doc Version 2.1 Table of Contents 1 Introduction to VelociData...3 1.1 Solution Templates for Accelerating Data Ops... 3 1.2 Extending the Life

More information

Data-Centric security and HP NonStop-centric ecosystems. Andrew Price, XYPRO Technology Corporation Mark Bower, Voltage Security

Data-Centric security and HP NonStop-centric ecosystems. Andrew Price, XYPRO Technology Corporation Mark Bower, Voltage Security Title Data-Centric security and HP NonStop-centric ecosystems A breakthrough strategy for neutralizing sensitive data against advanced threats and attacks Andrew Price, XYPRO Technology Corporation Mark

More information

The Security Issue Data Marketing 2013 Conference Presented by:

The Security Issue Data Marketing 2013 Conference Presented by: The Security Issue Data Marketing 2013 Conference Presented by: Phil Sewell, Canadian Regional Director About Voltage Security Mission: Data-centric security to combat advanced security threats inside

More information

Key Steps to Meeting PCI DSS 2.0 Requirements Using Sensitive Data Discovery and Masking

Key Steps to Meeting PCI DSS 2.0 Requirements Using Sensitive Data Discovery and Masking Key Steps to Meeting PCI DSS 2.0 Requirements Using Sensitive Data Discovery and Masking SUMMARY The Payment Card Industry Data Security Standard (PCI DSS) defines 12 high-level security requirements directed

More information

Example Use Cases. Solving the Need for Speed in Data Ops. Doc Version 2.0

Example Use Cases. Solving the Need for Speed in Data Ops. Doc Version 2.0 Example Use Cases Solving the Need for Speed in Data Ops Doc Version 2.0 2 Table of Contents 1 Introduction to VelociData... 3 2 Identifying the Right Use Cases to Prove the Value... 4 3 Proven Use Case

More information

Protegrity Tokenization

Protegrity Tokenization Securing Sensitive Data for PCI, HIPAA and Other Data Security Initiatives 2011 Edition Who should read it System architects, security experts, and other IT professionals who are looking to use tokenization

More information

Data Refinery with Big Data Aspects

Data Refinery with Big Data Aspects International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data

More information

Data Breaches Gone Mad. Straight Away! Wednesday September 28 th, 2011

Data Breaches Gone Mad. Straight Away! Wednesday September 28 th, 2011 Data Breaches Gone Mad Learn how to Secure your Data Warehouse Straight Away! Wednesday September 28 th, 2011 Martin Willcox Director Product & Solutions Marketing Teradata Europe, Middle East & Africa

More information

Protegrity Data Security Platform

Protegrity Data Security Platform Protegrity Data Security Platform The Protegrity Data Security Platform design is based on a hub and spoke deployment architecture. The Enterprise Security Administrator (ESA) enables the authorized Security

More information

data express DATA SHEET OVERVIEW

data express DATA SHEET OVERVIEW data express DATA SHEET OVERVIEW The reliability of IT systems is a key requirement of almost any organization. Unexpected failure of enterprise systems can be expensive and damaging to an organization.

More information

Teradata and Protegrity High-Value Protection for High-Value Data

Teradata and Protegrity High-Value Protection for High-Value Data Teradata and Protegrity High-Value Protection for High-Value Data 03.16 EB7178 DATA SECURITY Table of Contents 2 Data-Centric Security: Providing High-Value Protection for High-Value Data 3 Visibility:

More information

VelociData Solving the Need for Speed in DataOps. Inside Analysis / Bloor Group Briefing June 13, 2014

VelociData Solving the Need for Speed in DataOps. Inside Analysis / Bloor Group Briefing June 13, 2014 VelociData Solving the Need for Speed in DataOps Inside Analysis / Bloor Group Briefing June 13, 2014 1 Transforming Speed and Economics of Data Operations to Achieve Time-Bound Service Levels, Gain Wire-Speed

More information

Secure Data Across Application Landscapes: On Premise, Offsite & In the Cloud REINVENTING DATA MASKING WHITE PAPER

Secure Data Across Application Landscapes: On Premise, Offsite & In the Cloud REINVENTING DATA MASKING WHITE PAPER Secure Data Across Application Landscapes: On Premise, Offsite & In the Cloud REINVENTING DATA MASKING TABLE OF CONTENTS Data Protection Challenges Across Application Lifecycles... 3 Delphix Service-Based

More information

Datenverwaltung im Wandel - Building an Enterprise Data Hub with

Datenverwaltung im Wandel - Building an Enterprise Data Hub with Datenverwaltung im Wandel - Building an Enterprise Data Hub with Cloudera Bernard Doering Regional Director, Central EMEA, Cloudera Cloudera Your Hadoop Experts Founded 2008, by former employees of Employees

More information

Oracle Database 12c Plug In. Switch On. Get SMART.

Oracle Database 12c Plug In. Switch On. Get SMART. Oracle Database 12c Plug In. Switch On. Get SMART. Duncan Harvey Head of Core Technology, Oracle EMEA March 2015 Safe Harbor Statement The following is intended to outline our general product direction.

More information

Addressing Risk Data Aggregation and Risk Reporting Ben Sharma, CEO. Big Data Everywhere Conference, NYC November 2015

Addressing Risk Data Aggregation and Risk Reporting Ben Sharma, CEO. Big Data Everywhere Conference, NYC November 2015 Addressing Risk Data Aggregation and Risk Reporting Ben Sharma, CEO Big Data Everywhere Conference, NYC November 2015 Agenda 1. Challenges with Risk Data Aggregation and Risk Reporting (RDARR) 2. How a

More information

DISCOVERING AND SECURING SENSITIVE DATA IN HADOOP DATA STORES

DISCOVERING AND SECURING SENSITIVE DATA IN HADOOP DATA STORES DATAGUISE WHITE PAPER SECURING HADOOP: DISCOVERING AND SECURING SENSITIVE DATA IN HADOOP DATA STORES OVERVIEW: The rapid expansion of corporate data being transferred or collected and stored in Hadoop

More information

Why Add Data Masking to Your IBM DB2 Application Environment

Why Add Data Masking to Your IBM DB2 Application Environment Why Add Data Masking to Your IBM DB2 Application Environment dataguise inc. 2010. All rights reserved. Dataguise, Inc. 2201 Walnut Ave., #260 Fremont, CA 94538 (510) 824-1036 www.dataguise.com dataguise

More information

SafeNet DataSecure vs. Native Oracle Encryption

SafeNet DataSecure vs. Native Oracle Encryption SafeNet vs. Native Encryption Executive Summary Given the vital records databases hold, these systems often represent one of the most critical areas of exposure for an enterprise. Consequently, as enterprises

More information

End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ

End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,

More information

The Future of Data Management

The Future of Data Management The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class

More information

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling

More information

nwstor Storage Security Solution 1. Executive Summary 2. Need for Data Security 3. Solution: nwstor isav Storage Security Appliances 4.

nwstor Storage Security Solution 1. Executive Summary 2. Need for Data Security 3. Solution: nwstor isav Storage Security Appliances 4. CONTENTS 1. Executive Summary 2. Need for Data Security 3. Solution: nwstor isav Storage Security Appliances 4. Conclusion 1. EXECUTIVE SUMMARY The advantages of networked data storage technologies such

More information

APPLICATION COMPLIANCE AUDIT & ENFORCEMENT

APPLICATION COMPLIANCE AUDIT & ENFORCEMENT TELERAN SOLUTION BRIEF Building Better Intelligence APPLICATION COMPLIANCE AUDIT & ENFORCEMENT For Exadata and Oracle 11g Data Warehouse Environments BUILDING BETTER INTELLIGENCE WITH BI/DW COMPLIANCE

More information

Making Sense of Big Data in Insurance

Making Sense of Big Data in Insurance Making Sense of Big Data in Insurance Amir Halfon, CTO, Financial Services, MarkLogic Corporation BIG DATA?.. SLIDE: 2 The Evolution of Data Management For your application data! Application- and hardware-specific

More information

High-Volume Data Warehousing in Centerprise. Product Datasheet

High-Volume Data Warehousing in Centerprise. Product Datasheet High-Volume Data Warehousing in Centerprise Product Datasheet Table of Contents Overview 3 Data Complexity 3 Data Quality 3 Speed and Scalability 3 Centerprise Data Warehouse Features 4 ETL in a Unified

More information

Hadoop in the Hybrid Cloud

Hadoop in the Hybrid Cloud Presented by Hortonworks and Microsoft Introduction An increasing number of enterprises are either currently using or are planning to use cloud deployment models to expand their IT infrastructure. Big

More information

12 Key File Sync and Share Advantages of Transporter Over Box for Enterprise

12 Key File Sync and Share Advantages of Transporter Over Box for Enterprise WHITE PAPER 12 Key File Sync and Share Advantages of Transporter Over Box for Enterprise Cloud storage companies invented a better way to manage information that allows files to be automatically synced

More information

White Paper: Cloud Identity is Different. World Leading Directory Technology. Three approaches to identity management for cloud services

White Paper: Cloud Identity is Different. World Leading Directory Technology. Three approaches to identity management for cloud services World Leading Directory Technology White Paper: Cloud Identity is Different Three approaches to identity management for cloud services Published: March 2015 ViewDS Identity Solutions A Changing Landscape

More information

Auditing Data Access Without Bringing Your Database To Its Knees

Auditing Data Access Without Bringing Your Database To Its Knees Auditing Data Access Without Bringing Your Database To Its Knees Black Hat USA 2006 August 1-3 Kimber Spradlin, CISA, CISSP, CPA Sr. Manager Security Solutions Dale Brocklehurst Sr. Sales Consultant Agenda

More information

Streamlining Information Protection Through a Data-centric Security Approach

Streamlining Information Protection Through a Data-centric Security Approach WHITE PAPER Streamlining Information Protection Through a Data-centric Security Approach Overview The sophistication and persistence of criminal attacks on online systems is growing, along with government

More information

Test Data Management Concepts

Test Data Management Concepts Test Data Management Concepts BIZDATAX IS AN EKOBIT BRAND Executive Summary Test Data Management (TDM), as a part of the quality assurance (QA) process is more than ever in the focus among IT organizations

More information

Object Storage: Out of the Shadows and into the Spotlight

Object Storage: Out of the Shadows and into the Spotlight Technology Insight Paper Object Storage: Out of the Shadows and into the Spotlight By John Webster December 12, 2012 Enabling you to make the best technology decisions Object Storage: Out of the Shadows

More information

We are Big Data A Sonian Whitepaper

We are Big Data A Sonian Whitepaper EXECUTIVE SUMMARY Big Data is not an uncommon term in the technology industry anymore. It s of big interest to many leading IT providers and archiving companies. But what is Big Data? While many have formed

More information

CrossPoint for Managed Collaboration and Data Quality Analytics

CrossPoint for Managed Collaboration and Data Quality Analytics CrossPoint for Managed Collaboration and Data Quality Analytics Share and collaborate on healthcare files. Improve transparency with data quality and archival analytics. Ajilitee 2012 Smarter collaboration

More information

Data-Centric Security vs. Database-Level Security

Data-Centric Security vs. Database-Level Security TECHNICAL BRIEF Data-Centric Security vs. Database-Level Security Contrasting Voltage SecureData to solutions such as Oracle Advanced Security Transparent Data Encryption Introduction This document provides

More information

Securing NoSQL Clusters

Securing NoSQL Clusters Presents Securing NoSQL Clusters Adrian Lane, CTO alane@securosis.com Twitter: @AdrianLane David Mortman dmortman@securosis.com Twitter: @ Independent analysts with backgrounds on both the user and vendor

More information

Bridging Strategy and Data. Overview. Version 3.3.18.11

Bridging Strategy and Data. Overview. Version 3.3.18.11 Bridging Strategy and Data Overview Version 3.3.18.11 2 PROBLEM: Top 3 reasons to mask data 3 1: Data Breach AXIS DATA MASKING There has been growing number of attacks on major enterprises. Insider fraud

More information

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications

DBKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications Evaluation of Data Anonymization Tools Sergey Vinogradov Corporate Technology Siemens LLC Saint-Petersburg, Russia sergey.vinogradov@siemens.com Alexander Pastsyak Corporate Technology Siemens LLC Saint-Petersburg,

More information

Leveraging Machine Data to Deliver New Insights for Business Analytics

Leveraging Machine Data to Deliver New Insights for Business Analytics Copyright 2015 Splunk Inc. Leveraging Machine Data to Deliver New Insights for Business Analytics Rahul Deshmukh Director, Solutions Marketing Jason Fedota Regional Sales Manager Safe Harbor Statement

More information

Mucho Big Data y La Seguridad para cuándo?

Mucho Big Data y La Seguridad para cuándo? Mucho Big Data y La Seguridad para cuándo? Juan Carlos Vázquez Sales Systems Engineer, LTAM mayo 9, 2013 Agenda Business Drivers Big Security Data GTI Integration SIEM Architecture & Offering Why McAfee

More information

Active Directory User Management System (ADUMS)

Active Directory User Management System (ADUMS) Active Directory User Management System (ADUMS) Release 2.9.3 User Guide Revision History Version Author Date Comments (MM/DD/YYYY) i RMA 08/05/2009 Initial Draft Ii RMA 08/20/09 Addl functionality and

More information

Unlock your data for fast insights: dimensionless modeling with in-memory column store. By Vadim Orlov

Unlock your data for fast insights: dimensionless modeling with in-memory column store. By Vadim Orlov Unlock your data for fast insights: dimensionless modeling with in-memory column store By Vadim Orlov I. DIMENSIONAL MODEL Dimensional modeling (also known as star or snowflake schema) was pioneered by

More information

OPERATIONAL SCENARIOS USING THE MICROSOFT DATA PLATFORM

OPERATIONAL SCENARIOS USING THE MICROSOFT DATA PLATFORM David Chappell OPERATIONAL SCENARIOS USING THE MICROSOFT DATA PLATFORM A GUIDE FOR IT LEADERS Sponsored by Microsoft Corporation Copyright 2016 Chappell & Associates Contents Microsoft s Data Platform:

More information

SAP Data Services 4.X. An Enterprise Information management Solution

SAP Data Services 4.X. An Enterprise Information management Solution SAP Data Services 4.X An Enterprise Information management Solution Table of Contents I. SAP Data Services 4.X... 3 Highlights Training Objectives Audience Pre Requisites Keys to Success Certification

More information

HDP Hadoop From concept to deployment.

HDP Hadoop From concept to deployment. HDP Hadoop From concept to deployment. Ankur Gupta Senior Solutions Engineer Rackspace: Page 41 27 th Jan 2015 Where are you in your Hadoop Journey? A. Researching our options B. Currently evaluating some

More information

Stay Tuned for Today s Session! NAVIGATING THE DATABASE UNIVERSE"

Stay Tuned for Today s Session! NAVIGATING THE DATABASE UNIVERSE Stay Tuned for Today s Session! NAVIGATING THE DATABASE UNIVERSE" Dr. Michael Stonebraker and Scott Jarr! Navigating the Database Universe" A Few Housekeeping Items! Remember to mute your line! Type your

More information

AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW

AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this

More information

Protecting Enterprise Data In Hadoop HPE SecureData for Hadoop

Protecting Enterprise Data In Hadoop HPE SecureData for Hadoop Protecting Enterprise Data In Hadoop HPE SecureData for Hadoop Introduction Big Data is an exciting concept and emerging set of technologies that hold seemingly unlimited promise to enable organizations

More information

PLATFORA INTERACTIVE, IN-MEMORY BUSINESS INTELLIGENCE FOR HADOOP

PLATFORA INTERACTIVE, IN-MEMORY BUSINESS INTELLIGENCE FOR HADOOP PLATFORA INTERACTIVE, IN-MEMORY BUSINESS INTELLIGENCE FOR HADOOP Your business is swimming in data, and your business analysts want to use it to answer the questions of today and tomorrow. YOU LOOK TO

More information

Advanced Big Data Analytics with R and Hadoop

Advanced Big Data Analytics with R and Hadoop REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional

More information

Myths and Realities of Data Security and Compliance: Ulf Mattsson, CTO, Protegrity

Myths and Realities of Data Security and Compliance: Ulf Mattsson, CTO, Protegrity Myths and Realities of Data Security and Compliance: The Risk-based Data Protection Solution Ulf Mattsson, CTO, Protegrity Ulf Mattsson 20 years with IBM Development, Manufacturing & Services Inventor

More information

Getting Real Real Time Data Integration Patterns and Architectures

Getting Real Real Time Data Integration Patterns and Architectures Getting Real Real Time Data Integration Patterns and Architectures Nelson Petracek Senior Director, Enterprise Technology Architecture Informatica Digital Government Institute s Enterprise Architecture

More information

and NoSQL Data Governance for Regulated Industries Using Hadoop Justin Makeig, Director Product Management, MarkLogic October 2013

and NoSQL Data Governance for Regulated Industries Using Hadoop Justin Makeig, Director Product Management, MarkLogic October 2013 Data Governance for Regulated Industries Using Hadoop and NoSQL Justin Makeig, Director Product Management, MarkLogic October 2013 Who am I? Product Manager for 6 years at MarkLogic Background in FinServ

More information

Alliance Key Manager Solution Brief

Alliance Key Manager Solution Brief Alliance Key Manager Solution Brief KEY MANAGEMENT Enterprise Encryption Key Management On the road to protecting sensitive data assets, data encryption remains one of the most difficult goals. A major

More information

How Multi-Pay Tokens Can Reduce Security Risks and the PCI Compliance Burden for ecommerce Merchants

How Multi-Pay Tokens Can Reduce Security Risks and the PCI Compliance Burden for ecommerce Merchants How Multi-Pay Tokens Can Reduce Security Risks and the PCI Compliance Burden for ecommerce Merchants 2012 First Data Corporation. All trademarks, service marks and trade names referenced in this material

More information

Microsoft Big Data Solutions. Anar Taghiyev P-TSP E-mail: b-anarta@microsoft.com;

Microsoft Big Data Solutions. Anar Taghiyev P-TSP E-mail: b-anarta@microsoft.com; Microsoft Big Data Solutions Anar Taghiyev P-TSP E-mail: b-anarta@microsoft.com; Why/What is Big Data and Why Microsoft? Options of storage and big data processing in Microsoft Azure. Real Impact of Big

More information

EAS Application Retirement Case Study: Health Insurance

EAS Application Retirement Case Study: Health Insurance EAS Application Retirement Case Study: Health Insurance Introduction A major health insurance organization contracted with Flatirons Solutions to assist them in retiring a number of aged applications that

More information

6 Steps to Faster Data Blending Using Your Data Warehouse

6 Steps to Faster Data Blending Using Your Data Warehouse 6 Steps to Faster Data Blending Using Your Data Warehouse Self-Service Data Blending and Analytics Dynamic market conditions require companies to be agile and decision making to be quick meaning the days

More information

IBM InfoSphere Optim Test Data Management

IBM InfoSphere Optim Test Data Management IBM InfoSphere Optim Test Data Management Highlights Create referentially intact, right-sized test databases or data warehouses Automate test result comparisons to identify hidden errors and correct defects

More information

Cloud models and compliance requirements which is right for you?

Cloud models and compliance requirements which is right for you? Cloud models and compliance requirements which is right for you? Bill Franklin, Director, Coalfire Stephanie Tayengco, VP of Technical Operations, Logicworks March 17, 2015 Speaker Introduction Bill Franklin,

More information

Integrated Data Management: Discovering what you may not know

Integrated Data Management: Discovering what you may not know Integrated Data Management: Discovering what you may not know Eric Naiburg ericnaiburg@us.ibm.com Agenda Discovering existing data assets is hard What is Discovery Discovery and archiving Discovery, test

More information

Data Security: Strategy and Tactics for Success

Data Security: Strategy and Tactics for Success Data Security: Strategy and Tactics for Success DatabaseVisions,Inc. Fairfax, Va Oracle Gold Partner Solution Provider Oracle Security Specialized www.databasevisions.com Overview Cloud Computing presents

More information

Getting Started Practical Input For Your Roadmap

Getting Started Practical Input For Your Roadmap Getting Started Practical Input For Your Roadmap Mike Ferguson Managing Director, Intelligent Business Strategies BA4ALL Big Data & Analytics Insight Conference Stockholm, May 2015 About Mike Ferguson

More information

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the

More information

BOLDCHAT ARCHITECTURE & APPLICATION CONTROL

BOLDCHAT ARCHITECTURE & APPLICATION CONTROL ARCHITECTURE & APPLICATION CONTROL A technical overview of BoldChat s security. INTRODUCTION LogMeIn offers consistently reliable service to its BoldChat customers and is vigilant in efforts to provide

More information

An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics

An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,

More information

Debunking The Myths of Column-level Encryption

Debunking The Myths of Column-level Encryption Debunking The Myths of Column-level Encryption Vormetric, Inc. 888.267.3732 408.433.6000 sales@vormetric.com www.vormetric.com Page 1 Column-level Encryption Overview Enterprises have a variety of options

More information

Enabling Real-Time Sharing and Synchronization over the WAN

Enabling Real-Time Sharing and Synchronization over the WAN Solace message routers have been optimized to very efficiently distribute large amounts of data over wide area networks, enabling truly game-changing performance by eliminating many of the constraints

More information

Myths & Realities of Data Security & Compliance: The Risk-based Data. Ulf Mattsson, CTO, Protegrity

Myths & Realities of Data Security & Compliance: The Risk-based Data. Ulf Mattsson, CTO, Protegrity Myths & Realities of Data Security & Compliance: The Risk-based Data Protection Solution Ulf Mattsson, CTO, Protegrity Ulf Mattsson 20 years with IBM Development, Manufacturing & Services Inventor of 21

More information

HIPAA and HITECH Compliance Simplification. Sol Cates CSO @solcates scates@vormetric.com

HIPAA and HITECH Compliance Simplification. Sol Cates CSO @solcates scates@vormetric.com HIPAA and HITECH Compliance Simplification Sol Cates CSO @solcates scates@vormetric.com Quick Agenda Why comply? What does Compliance look like? New Cares vs Rental Cars vs Custom Cars Vormetric Q&A Slide

More information

Extraction Transformation Loading ETL Get data out of sources and load into the DW

Extraction Transformation Loading ETL Get data out of sources and load into the DW Lection 5 ETL Definition Extraction Transformation Loading ETL Get data out of sources and load into the DW Data is extracted from OLTP database, transformed to match the DW schema and loaded into the

More information

IBM InfoSphere Optim Test Data Management Solution

IBM InfoSphere Optim Test Data Management Solution IBM InfoSphere Optim Test Data Management Solution Highlights Create referentially intact, right-sized test databases Automate test result comparisons to identify hidden errors Easily refresh and maintain

More information

THE PERSPECSYS KNOWLEDGE SERIES. Solving Privacy, Residency and Security in the Cloud. PerpecSys Inc. 2012. All rights reserved.

THE PERSPECSYS KNOWLEDGE SERIES. Solving Privacy, Residency and Security in the Cloud. PerpecSys Inc. 2012. All rights reserved. THE PERSPECSYS KNOWLEDGE SERIES Solving Privacy, Residency and Security in the Cloud Data Compliance and the Enterprise Cloud Computing is generating an incredible amount of excitement and interest from

More information

A Scalable Data Transformation Framework using the Hadoop Ecosystem

A Scalable Data Transformation Framework using the Hadoop Ecosystem A Scalable Data Transformation Framework using the Hadoop Ecosystem Raj Nair Director Data Platform Kiru Pakkirisamy CTO AGENDA About Penton and Serendio Inc Data Processing at Penton PoC Use Case Functional

More information

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014 5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for

More information

Web applications today are part of every IT operation within an organization.

Web applications today are part of every IT operation within an organization. 1 Introduction Web applications today are part of every IT operation within an organization. Independent software vendors (ISV) as well as enterprises create web applications to support their customers,

More information

Hayri Tarhan, Sr. Manager, Public Sector Security, Oracle Ron Carovano, Manager, Business Development, F5 Networks

Hayri Tarhan, Sr. Manager, Public Sector Security, Oracle Ron Carovano, Manager, Business Development, F5 Networks EXTENDING ACCESS WHILE ENHANCING CONTROL FOR YOUR ORGANIZATION S DATA LEVERAGE THE POWER OF F5 AND ORACLE TO DELIVER SECURE ACCESS TO APPLICATIONS AND DATABASES Hayri Tarhan, Sr. Manager, Public Sector

More information

Enterprise Key Management: A Strategic Approach ENTERPRISE KEY MANAGEMENT A SRATEGIC APPROACH. White Paper February 2010 www.alvandsolutions.

Enterprise Key Management: A Strategic Approach ENTERPRISE KEY MANAGEMENT A SRATEGIC APPROACH. White Paper February 2010 www.alvandsolutions. Enterprise Key Management: A Strategic Approach ENTERPRISE KEY MANAGEMENT A SRATEGIC APPROACH White Paper February 2010 www.alvandsolutions.com Overview Today s increasing security threats and regulatory

More information

Develop HIPAA-Compliant Mobile Apps with Verivo Akula

Develop HIPAA-Compliant Mobile Apps with Verivo Akula Develop HIPAA-Compliant Mobile Apps with Verivo Akula Verivo Software 1000 Winter Street Waltham MA 02451 781.795.8200 sales@verivo.com Verivo Software 1000 Winter Street Waltham MA 02451 781.795.8200

More information

Fighting Today s Cybercrime

Fighting Today s Cybercrime SECURELY ENABLING BUSINESS Fighting Today s Cybercrime Ongoing PCI Compliance Using Data-Centric Security Technologies HOUSEKEEPING ITEMS All phone lines have been muted for the duration of the webinar.

More information

Tomislav Križan Consultancy Poslovna Inteligencija d.o.o

Tomislav Križan Consultancy Poslovna Inteligencija d.o.o In-Situ Anonymization of Big Data Tomislav Križan Consultancy Director @ Poslovna Inteligencija d.o.o Abstract Vast amount of data is being generated from versatile sources and organizations are primarily

More information

Solving data residency and privacy compliance challenges Delivering business agility, regulatory compliance and risk reduction

Solving data residency and privacy compliance challenges Delivering business agility, regulatory compliance and risk reduction Solving data residency and privacy compliance challenges Delivering business agility, regulatory compliance and risk reduction Introduction In today s dynamic business environment, corporation s intangible

More information

Testing Big data is one of the biggest

Testing Big data is one of the biggest Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing

More information

Taming Big Data. 1010data ACCELERATES INSIGHT

Taming Big Data. 1010data ACCELERATES INSIGHT Taming Big Data 1010data ACCELERATES INSIGHT Lightning-fast and transparent, 1010data analytics gives you instant access to all your data, without technical expertise or expensive infrastructure. TAMING

More information

Building the Internet of Things Jim Green - CTO, Data & Analytics Business Group, Cisco Systems

Building the Internet of Things Jim Green - CTO, Data & Analytics Business Group, Cisco Systems Building the Internet of Things Jim Green - CTO, Data & Analytics Business Group, Cisco Systems Brian McCarson Sr. Principal Engineer & Sr. System Architect, Internet of Things Group, Intel Corp Mac Devine

More information

Practical Advice for Cloud Data Protection

Practical Advice for Cloud Data Protection Practical Advice for Cloud Data Protection Ulf Mattsson CTO, Protegrity Ulf.Mattsson@protegrity.com Ulf Mattsson, Protegrity CTO Cloud Security Alliance (CSA) PCI Security Standards Council Cloud & Virtualization

More information

OTM in the Cloud. Ryan Haney

OTM in the Cloud. Ryan Haney OTM in the Cloud Ryan Haney The Cloud The Cloud is a set of services and technologies that delivers real-time and ondemand computing resources Software as a Service (SaaS) delivers preconfigured applications,

More information

Copyright 2011 Sentry Data Systems, Inc. All Rights Reserved. No Unauthorized Reproduction.

Copyright 2011 Sentry Data Systems, Inc. All Rights Reserved. No Unauthorized Reproduction. The Datanex Platform is a healthcare focused cloud computing platform that allows solution providers to construct rich healthcare business intelligence applications that leverage the world s fastest and

More information

Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies

Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data, Cloud Computing, Spatial Databases Steven Hagan Vice President Server Technologies Big Data: Global Digital Data Growth Growing leaps and bounds by 40+% Year over Year! 2009 =.8 Zetabytes =.08

More information

Centricity 360 Case Exchange

Centricity 360 Case Exchange GE Healthcare Centricity 360 Case Exchange Helping distributed teams collaborate on patient cases, through a professional social network Introduction Centricity 360 with Case Exchange helps hospital administrators

More information

BIG DATA SURVEY 2014 SURVEY

BIG DATA SURVEY 2014 SURVEY BIG DATA SURVEY 2014 SURVEY There has been a tremendous amount of hype around Big Data projects and applications in recent years, but relatively little quantifiable evidence proving what, if any, business

More information

Data Loss Prevention Best Practices to comply with PCI-DSS An Executive Guide

Data Loss Prevention Best Practices to comply with PCI-DSS An Executive Guide Data Loss Prevention Best Practices to comply with PCI-DSS An Executive Guide. Four steps for success Implementing a Data Loss Prevention solution to address PCI requirements may be broken into four key

More information

Implementing a Data Warehouse with Microsoft SQL Server

Implementing a Data Warehouse with Microsoft SQL Server Course Code: M20463 Vendor: Microsoft Course Overview Duration: 5 RRP: 2,025 Implementing a Data Warehouse with Microsoft SQL Server Overview This course describes how to implement a data warehouse platform

More information

Accelerate Data Loading for Big Data Analytics Attunity Click-2-Load for HP Vertica

Accelerate Data Loading for Big Data Analytics Attunity Click-2-Load for HP Vertica Accelerate Data Loading for Big Data Analytics Attunity Click-2-Load for HP Vertica Menachem Brouk, Regional Director - EMEA Agenda» Attunity update» Solutions for : 1. Big Data Analytics 2. Live Reporting

More information

LogInspect 5 Product Features Robust. Dynamic. Unparalleled.

LogInspect 5 Product Features Robust. Dynamic. Unparalleled. LogInspect 5 Product Features Robust. Dynamic. Unparalleled. Enjoy ultra fast search capabilities in simple and complex modes optimized for Big Data Easily filter and display relevant topics, eg: Top 10

More information

White paper. Planning for SaaS Integration

White paper. Planning for SaaS Integration White paper Planning for SaaS Integration KEY PLANNING CONSIDERATIONS: Business Process Modeling Data Moderling and Mapping Data Ownership Integration Strategy Security Quality of Data (Data Cleansing)

More information

PCI Compliance in Oracle E-Business Suite

PCI Compliance in Oracle E-Business Suite PCI Compliance in Oracle E-Business Suite May 14, 2015 Mike Miller Chief Security Officer Integrigy Corporation David Kilgallon Oracle Integration Manager CardConnect Moderated by Phil Reimann, Director

More information

Instructor Introduction

Instructor Introduction Securing Big Data Instructor Introduction Leighton R. Johnson, III CISA, CISSP, CISM, MBCI, CSSLP, CIFI, CFCP, CAP, CRISC SC-ISACA Chapter Instructor Member: IEEE, ACM, ASIS, ISSA, IISFA, ISACA, ISC2,

More information