6-2. A quantum system has the following energy level diagram. Notice that the temperature is indicated

Size: px
Start display at page:

Download "6-2. A quantum system has the following energy level diagram. Notice that the temperature is indicated"

Transcription

1 Chapter 6 Concept Tests 6-1. In a gas of hydrogen atoms at room temperature, what is the ratio of atoms in the 1 st excited energy state (n=2) to atoms in the ground state(n=1). (Actually H forms H 2 molecules, but let s pretend.) P(n 2) P(n 1)? A) greater than 1 B) about 1 C) less than 1, but not extremely small, between.1 and.5 D) much less than 1, but not infinitesimal, between.1 and 1-6 E) infinitesimal, less than 1-1 Hint: kt room 1/4 ev, for H atom, E n = 13.6eV/n 2 Answer: infinitesimal. The ratio is 4 e - E/kT, where E is about 1 ev (energy difference between ground state and 1 st excited state in hydrogen) and kt room =.25 ev. So the ratio is about 4 e A quantum system has the following energy level diagram. Notice that the temperature is indicated g(e) E 6 3 kt i = Which is true? A) P(i=3) > P(i=2) B) P(i=3) < P(i=2) C) P(i=3) = P(i=2) Answer: P(i=3) = P(i=2) States with the same energy have the same probability, according to the Boltzmann relation.

2 A) P(i=5) > P(i=2) B) P(i=5) < P(i=2) C) P(i=5) = P(i=2) Answer: P(i=5) < P(i=2) States of higher energy are always less probable than states of lower energy. A) P(E= 1 ) > P(E= ) B) P(E= 1 ) < P(E= ) C) P(E= 1 ) = P(E= ) D) Can t tell! Answer: P(E= 1 ) > P(E= ) There are 4 states with E= 1 and only one state with E=. Also, kt is large compared to E = 1, so each of the 1 states is only slightly less probable than the state Does the partition function Z E i /kt e change with temperature? i A) Z increases as T increases B) Z decreases as T increases C) Z could increase, decrease, or stay constant, as T increases, depending on details of the spectrum of states. Answer: Yes, Z increases as T increases. Z is the number of thermally-active microstates.

3 6-4. A quantum system has the following energy level diagram. The ground state energy is set at zero. The first excited energy level has energy. Notice that the temperature is indicated. g(e) E kt i = Roughly, what is the value of Z, the partition function? A) 2.8 B) 3 C) 1 D) 2 E) impossible to tell without more information Answer: Roughly the partition function is equal to the number of thermally excited states, which is roughly the number of states with energies E < or = kt, which, in this case, is 1. This is true when the zero of energy is set to the ground state energy. (The exact answer, for the energy level diagram shown is Z = 7.6) Roughly, what is the probability that the system will be found in the ground state? A) 1 B) 1/3 C) 1/1 D) 1/1 Answer: 1/1. Roughly, each of the states with energy < kt has probability 1/Z. (The exact answer is.13.)

4 6-5. Consider the degeneracy g(e) of a large system, such as a mole of an ideal gas, or a kilogram of copper (modeled as an Einstein solid). How does g(e) depend on E? A) g(e) is a rapidly rising function of E B) g(e) is roughly independent of E C) g(e) decreases with increasing E Answer: g(e) is a very rapidly rising function of E 6-6.Consider a particle in a system with three evenly spaced non-degenerate energy levels, as seen in the figure at right. The probability that the particle is in the n th level is P(n). Is the ratio of the probabilities P3 P 2 than, or equal to the ratio of the probabilities greater than, less P 2 P1? n = 3 n = 2 n = 1.1 ev.5 ev. ev Energy A) greater B) less C) equal Answer: equal, the ratio of the probabilities depends only on the difference of the energies: P(3)/P(2) = exp[-(e 3 -E 2 )/kt]. Since (E 3 -E 2 ) = (E 2 -E 1 ), the ratios P(3)/P(2) and P(2)/P(1) are equal.

5 6-7.This is the energy-level spectrum of a A) 1D simple harmonic oscillator B) a particle in a 1D box C) a hydrogen atom D) a two-state paramagnet E) a quantum rotor E All levels Non-degenerate Answer: 1D simple harmonic oscillator: 6-8.The density of states (E) for a 1D harmonic oscillator is A) E B) E 2 C) E 1/2 D) E = constant E) None of these Answer: E = constant

6 6-9. A quantum system has the following energy level diagram. g(e) E kt 1 i = Which is larger, P(i=3) or P(E= 1 )? A) P(i=3) = P(E= 1 ) B) P(i=3) > P(E= 1 ) C) P(i=3) < P(E= 1 ) Answer: P(i=3) < P(E= 1 )

7 6-1. The number of states in the volume of the shell shown of thickness dn and radius n (assume n>> dn >>1 ) is n z n dn n y n x 1 A) 4 2 n dn B) n dn 83 C) something else Answer: n dn 6-11.A particle (moving in 1D) has position and momentum indicated. Where is the particle in phase space? x p (D) (E) (A) (B) (C) x Answer: (C)

8 6-12.A 1D simple harmonic oscillator is oscillating back and forth. As the system evolves in time, its phase space points traces out which trajectory? x p (A) (B) (C) clockwise x (D) CCW (E) More than one of these is valid. Answer: (C) The energy of a simple harmonic oscillator is E = (1/2)mv 2 + (1/2)kx 2 = p 2 /(2m) + (1/2)kx 2.The is the equation of an ellipse in x-p space. Think about why the direction of evolution of the system is clockwise in phase space.

9 6-13. The gaussian integral e x 2 dx is A) about 1 B) about 1 C) about.1 D) about 1 Answer: Answer: About 1. The exact answer is The curve exp(-x 2 ) has the max value 1 at x = and falls to 1/e at x = 1, so the area under this curve is roughly The distribution of particle kinetic energies in an ideal gas is given below. The rms average kinetic energy is most nearly A B.5.4 C D( x) E(units x of kt) 4 Answer: (C) The rms KE is (3/2)kT, according to the Equipartition Theorem.

10 6-15.What is the probability that a molecule in an ideal gas has an energy between and 3kT A) about.1 B) about.5 C) about.99 D)None of these.5.4 D(E) x) x E(units of kt) 4 Answer: About How would you compute the average speed (mean speed) of a molecule in an ideal gas? D(v) dv is the probability that the speed of a molecule is between v and v+dv. A) v D(v)dv B) 3kT m C) Answers A and B give the same answer Answer (B) is incorrect because it is the root-mean-square average, which is not the same as (A). The root-mean-square-average is 2 v D(v)dv

11 6-17.Suppose a system is put in thermal contact with heat reservoir at temperature T and the system is not, initially, in thermal equilibrium. True(A) or False(B): as the system moves toward thermal equilibrium, its entropy goes to a maximum. Answer: False. The entropy of a system that is NOT isolated can go down. For instance, if you bring the system in contact with another system at lower temperature, its temperature and entropy will decrease. True(A) or False(B): as the system moves toward thermal equilibrium, the entropy of the Universe = (system+reservoir) goes to a maximum. Answer: True 6-18.True(A) or False(B): the entropy of a system in thermal contact with a heat bath cannot decrease. Answer: False True(A) or False(B): the entropy of an isolated system cannot decrease. Answer: True

12 6-2.A ball rolls back and forth in a valley and eventually comes to rest at the bottom of the valley. As the ball rolled to a stop, the Helmholtz free energy F = U TS of the ball A) increased B) decreased C) remained constant D) impossible to tell without more information Answer: decreased. When the entropy of the Universe (ball+valley+earth) is maximized, the Helmholtz Free energy of the system (the ball) is minimized A quantum system has non-degenerate energy levels described by E(n) = C n 2 where C is a constant and n = 1, 2,... This is the energy-level spectrum of a A) 1D simple harmonic oscillator B) a particle in a 1D box C) a hydrogen atom D) a two-state paramagnet E) a quantum rotor Answer: a particle in a 1D box

13 6-22. Consider the function Ae -E/kT, A some constant. What s the area under the curve Ae E / kt de? (Pick closest answer.) A kt 2kT E A) AkT B) 3AkT C) (1/3) AkT D) All these are off by a factor of 2 or more Answer: AkT

14 6-23. Recall F F df dt dv T V V T and df S dt p dv True (A) or False (B) : S p V T T V Answer: True A quantum system has degenerate energy levels described by where C is a constant and n = +1, 2,... This is the energy-level spectrum of a E(n) C n 2 A) 1D simple harmonic oscillator B) a particle in a 1D box C) a hydrogen atom D) a two-state paramagnet E) a quantum rotor Answer: A hydrogen atom 6-25.True(A) or False(B): for x, y, 1, 2.. e e e x y x y x,y x y Answer: True As the temperature decreases, wavepackets describing particles in a gas tend to get A) larger B) smaller C) stay constant in size Answer: larger.

15 6-27.A 1D SHO quantum system is in the high-temperature regime kt>>. What is the thermal average energy of the system? E kt A) kt B) (3/2)kT C) (1/2)kT Answer: kt [2 quadratic terms in energy for 1D SHO, E = (1/2)mv 2 + (1/2)kx 2, and each term contributes (1/2)kT to average energy.] 6-28.An Einstein Solid consists of N independent 1D SHOs. In the hi-t limit, what is the heat capacity C = de/dt of this solid? A) kt B) zero C) NkT D) k E) something else Answer: something else. E = NkT, so C = de/dt = Nk.

16 6-29.A 1D SHO quantum system is in the low-temperature regime kt<<. The thermal average energy of the system is closest to : A) B) kt C) E kt Answer: zero. This is freeze-out.

Physics 176 Topics to Review For the Final Exam

Physics 176 Topics to Review For the Final Exam Physics 176 Topics to Review For the Final Exam Professor Henry Greenside May, 011 Thermodynamic Concepts and Facts 1. Practical criteria for identifying when a macroscopic system is in thermodynamic equilibrium:

More information

) and mass of each particle is m. We make an extremely small

) and mass of each particle is m. We make an extremely small Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, --6, kl 9.-5. Hjälpmedel: Students may use any book including the textbook Thermal physics. Present your solutions in details: it will

More information

Topic 3b: Kinetic Theory

Topic 3b: Kinetic Theory Topic 3b: Kinetic Theory What is temperature? We have developed some statistical language to simplify describing measurements on physical systems. When we measure the temperature of a system, what underlying

More information

Potential Energy and Equilibrium in 1D

Potential Energy and Equilibrium in 1D Potential Energy and Equilibrium in 1D Figures 6-27, 6-28 and 6-29 of Tipler-Mosca. du = F x dx A particle is in equilibrium if the net force acting on it is zero: F x = du dx = 0. In stable equilibrium

More information

Define the notations you are using properly. Present your arguments in details. Good luck!

Define the notations you are using properly. Present your arguments in details. Good luck! Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 0-0-4, kl 9.00-5.00 jälpmedel: Students may use any book(s) including the textbook Thermal physics. Minor notes in the books are also

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

THE KINETIC THEORY OF GASES

THE KINETIC THEORY OF GASES Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

More information

CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

More information

1. Degenerate Pressure

1. Degenerate Pressure . Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

What is Energy conservation Rate in the Universe?

What is Energy conservation Rate in the Universe? Thermal Equilibrium Energy conservation equation Heating by photoionization Cooling by recombination Cooling by brehmsstralung Cooling by collisionally excited lines Collisional de-excitation Detailed

More information

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these. CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

More information

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >> 1,

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >> 1, Chapter 3 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >>, which defines the degenerate Fermi gas. In

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

Time dependence in quantum mechanics Notes on Quantum Mechanics

Time dependence in quantum mechanics Notes on Quantum Mechanics Time dependence in quantum mechanics Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/timedependence.pdf Last updated Thursday, November 20, 2003 13:22:37-05:00 Copyright 2003 Dan

More information

Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 Multiple Choice Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

More information

Kinetic Molecular Theory of Matter

Kinetic Molecular Theory of Matter Kinetic Molecular Theor of Matter Heat capacit of gases and metals Pressure of gas Average speed of electrons in semiconductors Electron noise in resistors Positive metal ion cores Free valence electrons

More information

Kinetic Theory & Ideal Gas

Kinetic Theory & Ideal Gas 1 of 6 Thermodynamics Summer 2006 Kinetic Theory & Ideal Gas The study of thermodynamics usually starts with the concepts of temperature and heat, and most people feel that the temperature of an object

More information

Thermodynamics: Lecture 8, Kinetic Theory

Thermodynamics: Lecture 8, Kinetic Theory Thermodynamics: Lecture 8, Kinetic Theory Chris Glosser April 15, 1 1 OUTLINE I. Assumptions of Kinetic Theory (A) Molecular Flux (B) Pressure and the Ideal Gas Law II. The Maxwell-Boltzmann Distributuion

More information

Lecture 14 Chapter 19 Ideal Gas Law and Kinetic Theory of Gases. Chapter 20 Entropy and the Second Law of Thermodynamics

Lecture 14 Chapter 19 Ideal Gas Law and Kinetic Theory of Gases. Chapter 20 Entropy and the Second Law of Thermodynamics Lecture 14 Chapter 19 Ideal Gas Law and Kinetic Theory of Gases Now we to look at temperature, pressure, and internal energy in terms of the motion of molecules and atoms? Relate to the 1st Law of Thermodynamics

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

Physics 5D - Nov 18, 2013

Physics 5D - Nov 18, 2013 Physics 5D - Nov 18, 2013 30 Midterm Scores B } Number of Scores 25 20 15 10 5 F D C } A- A A + 0 0-59.9 60-64.9 65-69.9 70-74.9 75-79.9 80-84.9 Percent Range (%) The two problems with the fewest correct

More information

1 Introduction. Taking the logarithm of both sides of Equation 1.1:

1 Introduction. Taking the logarithm of both sides of Equation 1.1: j1 1 Introduction The aim of this book is to provide an understanding of the basic processes, at the atomic or molecular level, which are responsible for kinetic processes at the microscopic and macroscopic

More information

Technical Thermodynamics

Technical Thermodynamics Technical Thermodynamics Chapter 2: Basic ideas and some definitions Prof. Dr.-Ing. habil. Egon Hassel University of Rostock, Germany Faculty of Mechanical Engineering and Ship Building Institute of Technical

More information

Some results from the kinetic theory of gases

Some results from the kinetic theory of gases Appendix A Some results from the kinetic theory of gases A. Distribution of molecular velocities in a gas A.. The distribution derived from the barometric formula In Chapter the variation of gas density

More information

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

More information

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas. Tentamen i Statistisk Fysik I den tjugosjunde februari 2009, under tiden 9.00-15.00. Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6

More information

Chapter 1 Classical Thermodynamics: The First Law. 1.2 The first law of thermodynamics. 1.3 Real and ideal gases: a review

Chapter 1 Classical Thermodynamics: The First Law. 1.2 The first law of thermodynamics. 1.3 Real and ideal gases: a review Chapter 1 Classical Thermodynamics: The First Law 1.1 Introduction 1.2 The first law of thermodynamics 1.3 Real and ideal gases: a review 1.4 First law for cycles 1.5 Reversible processes 1.6 Work 1.7

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

A power series about x = a is the series of the form

A power series about x = a is the series of the form POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to

More information

White Dwarf Properties and the Degenerate Electron Gas

White Dwarf Properties and the Degenerate Electron Gas White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................

More information

Lecture 3: Models of Solutions

Lecture 3: Models of Solutions Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

More information

Heating & Cooling in the Interstellar Medium

Heating & Cooling in the Interstellar Medium Section 7 Heating & Cooling in the Interstellar Medium 7.1 Heating In general terms, we can imagine two categories of heating processes in the diuse ISM: 1 large-scale (mechanical, e.g., cloud-cloud collisions),

More information

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy Concept 2 A. Description of light-matter interaction B. Quantitatities in spectroscopy Dipole approximation Rabi oscillations Einstein kinetics in two-level system B. Absorption: quantitative description

More information

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) Introduction Based on known band structures of Si, Ge, and GaAs, we will begin to focus on specific properties of semiconductors,

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Heat and Work. First Law of Thermodynamics 9.1. Heat is a form of energy. Calorimetry. Work. First Law of Thermodynamics.

Heat and Work. First Law of Thermodynamics 9.1. Heat is a form of energy. Calorimetry. Work. First Law of Thermodynamics. Heat and First Law of Thermodynamics 9. Heat Heat and Thermodynamic rocesses Thermodynamics is the science of heat and work Heat is a form of energy Calorimetry Mechanical equivalent of heat Mechanical

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

Review of Statistical Mechanics

Review of Statistical Mechanics Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

More information

Chapter 29: Kinetic Theory of Gases: Equipartition of Energy and the Ideal Gas Law

Chapter 29: Kinetic Theory of Gases: Equipartition of Energy and the Ideal Gas Law Chapter 29: Kinetic Theory of Gases: Equipartition of Energy and the Ideal Gas Law 29.1 Introduction: Gas... 1 29.1.1 Macroscopic vs. Atomistic Description of a Gas... 1 29.1.2 Atoms, Moles, and Avogadro

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

Theoretical calculation of the heat capacity

Theoretical calculation of the heat capacity eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals

More information

Properties of Gases. Dr Claire Vallance First year, Hilary term. Suggested Reading

Properties of Gases. Dr Claire Vallance First year, Hilary term. Suggested Reading 1 Properties of Gases Dr Claire Vallance First year, Hilary term Suggested Reading Physical Chemistry, P. W. Atkins Foundations of Physics for Chemists, G. Ritchie and D. Sivia Physical Chemistry, W. J.

More information

Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B. Multiple Choice Questions Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

Differential Equations

Differential Equations 40 CHAPTER 15 Differential Equations In many natural conditions the rate at which the amount of an object changes is directly proportional to the amount of the object itself. For example: 1) The marginal

More information

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atoms or molecules. Atoms or molecules are considered as particles. This is based on

More information

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

More information

explain your reasoning

explain your reasoning I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

EQUATION OF STATE. e (E µ)/kt ± 1 h 3 dp,

EQUATION OF STATE. e (E µ)/kt ± 1 h 3 dp, EQUATION OF STATE Consider elementary cell in a phase space with a volume x y z p x p y p z = h 3, (st.1) where h = 6.63 1 7 erg s is the Planck constant, x y z is volume in ordinary space measured in

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

Does Quantum Mechanics Make Sense? Size

Does Quantum Mechanics Make Sense? Size Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why

More information

Rate Equations and Detailed Balance

Rate Equations and Detailed Balance Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 5

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 5 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Tuesday March 5 Problem Set 5 Due Tuesday March 12 at 11.00AM Assigned Reading: E&R 6 9, App-I Li. 7 1 4 Ga. 4 7, 6 1,2

More information

Supplementary Notes on Entropy and the Second Law of Thermodynamics

Supplementary Notes on Entropy and the Second Law of Thermodynamics ME 4- hermodynamics I Supplementary Notes on Entropy and the Second aw of hermodynamics Reversible Process A reversible process is one which, having taken place, can be reversed without leaving a change

More information

Oscillations. Vern Lindberg. June 10, 2010

Oscillations. Vern Lindberg. June 10, 2010 Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

More information

of transitions from the upper energy level to the lower one per unit time caused by a spontaneous emission of radiation with the frequency ω = (E E

of transitions from the upper energy level to the lower one per unit time caused by a spontaneous emission of radiation with the frequency ω = (E E THE EERGY DISTRIBUTIO OF ATOMS I THE FIELD OF THERMAL BLACKBODY RADIATIO Fedor V.Prigara Institute of Microelectronics and Informatics, Russian Academy of Sciences, Universitetskaya, 50007 Yaroslavl, Russia

More information

Entropy and the Kinetic Theory: the Molecular Picture

Entropy and the Kinetic Theory: the Molecular Picture previous index next Entropy and the Kinetic Theory: the Molecular Picture Michael Fowler 7/15/08 Searching for a Molecular Description of Entropy Clausius introduced entropy as a new thermodynamic variable

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,

More information

M.Sc Physics Admission Test

M.Sc Physics Admission Test C: EGISTATION NUMBE: M.Sc Physics Admission Test Department of Physics Quaid-i-Aam University Islamabad. September 007 Time: 60 minutes Answer all 0 questions or as many as you can. Each question carries

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Topic 2: Energy in Biological Systems

Topic 2: Energy in Biological Systems Topic 2: Energy in Biological Systems Outline: Types of energy inside cells Heat & Free Energy Energy and Equilibrium An Introduction to Entropy Types of energy in cells and the cost to build the parts

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1 Common Equations Used in Chemistry Equation for density: d= m v Converting F to C: C = ( F - 32) x 5 9 Converting C to F: F = C x 9 5 + 32 Converting C to K: K = ( C + 273.15) n x molar mass of element

More information

SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

More information

THERMAL TO ELECTRIC ENERGY CONVERSION

THERMAL TO ELECTRIC ENERGY CONVERSION THERMAL TO ELECTRIC ENERGY CONVERSION PETER L. HAGELSTEIN Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139,USA E-mail: plh@mit.edu As research in the area

More information

Worked Examples from Introductory Physics Vol. I: Basic Mechanics. David Murdock Tenn. Tech. Univ.

Worked Examples from Introductory Physics Vol. I: Basic Mechanics. David Murdock Tenn. Tech. Univ. Worked Examples from Introductory Physics Vol. I: Basic Mechanics David Murdock Tenn. Tech. Univ. February 24, 2005 2 Contents To the Student. Yeah, You. i 1 Units and Vectors: Tools for Physics 1 1.1

More information

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

A i A i. µ(ion) = Z i X i

A i A i. µ(ion) = Z i X i Lecture 2 Review: calculation of mean atomic weight of an ionized gas (µ) Given a mass fraction X i (or abundance) for an ionic (or atomic) species with atomic weight A i, we can can calculate µ by: For

More information

KINETIC THEORY OF GASES AND THERMODYNAMICS SECTION I Kinetic theory of gases

KINETIC THEORY OF GASES AND THERMODYNAMICS SECTION I Kinetic theory of gases KINETIC THEORY OF GASES AND THERMODYNAMICS SECTION I Kinetic theory of gases Some important terms in kinetic theory of gases Macroscopic quantities: Physical quantities like pressure, temperature, volume,

More information

AP CHEMISTRY 2007 SCORING GUIDELINES. Question 6

AP CHEMISTRY 2007 SCORING GUIDELINES. Question 6 AP CHEMISTRY 2007 SCORING GUIDELINES Question 6 Answer the following questions, which pertain to binary compounds. (a) In the box provided below, draw a complete Lewis electron-dot diagram for the IF 3

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Chapter 12 Kinetic Theory of Gases: Equipartition of Energy and Ideal Gas Law

Chapter 12 Kinetic Theory of Gases: Equipartition of Energy and Ideal Gas Law Chapter 1 Kinetic Theory of Gases: Equipartition of Energy and Ideal Gas Law 1.1 Introduction Macroscopic Description of Gas A gas is a system of particles occupying a volume of space that is very large

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Energy What is Energy? Energy is the ability to do work. Any object that has energy has the ability to create force. Energy is one of the fundamental building blocks of our universe. Energy appears in

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

Energy comes in many flavors!

Energy comes in many flavors! Forms of Energy Energy is Fun! Energy comes in many flavors! Kinetic Energy Potential Energy Thermal/heat Energy Chemical Energy Electrical Energy Electrochemical Energy Electromagnetic Radiation Energy

More information