SEARCH ENGINE OPTIMIZATION USING D-DICTIONARY

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "SEARCH ENGINE OPTIMIZATION USING D-DICTIONARY"

Transcription

1 SEARCH ENGINE OPTIMIZATION USING D-DICTIONARY G.Evangelin Jenifer #1, Mrs.J.Jaya Sherin *2 # PG Scholar, Department of Electronics and Communication Engineering(Communication and Networking), CSI Institute of Technology, Thovalai. * Assistant Professor, Department of Electronics and Communication Engineering, CSI Institute of Technology, Thovalai. ABSTRACT Many problems in natural language processing, data mining, information retrieval, and bioinformatics can be formalized as string transformation, which is a task as follows. Given an input string the system generates the k most likely output strings corresponding to the input string. This project proposes a novel and probabilistic approach to string transformation which is both accurate and efficient. The approach includes the use of a log linear model, a method for training the model, and an algorithm for generating the top k candidates, whether there is or is not a predefined dictionary. The log linear model is defined as a conditional probability distribution of an output string and a rule set for the transformation conditioned on an input string. The learning method employs maximum likelihood estimation for parameter estimation. The string generation algorithm based on pruning is guaranteed to generate the optimal top k candidates. The proposed method is applied to correction of spelling errors in queries as well as reformulation of queries in web search. Experimental results on large scale data show that the proposed approach is very accurate and efficient improving upon existing methods in terms of accuracy and efficiency in different settings. I INTRODUCTION Many problems in natural language processing, data mining, information retrieval, and bioinformatics can be formalized as string transformation, which is a task as follows. The main objective of the project is to develop an efficient string transformation technique while performing data mining in various research domains or can be used for search engine optimization. This project proposes a novel and probabilistic approach called Trivial String Reformulation Technique to string transformation which is both accurate and efficient. The main objective of this technique is to develop a sufficient framework that can learn the strings and can generate strings with the leaning process and finally can transform the string to give an accurate and effective data mining results. 1

2 II OVERVIEW OF THE PROJECT This project addresses string transformation, which is an essential problem, in many applications. In natural language processing, pronunciation generation, spelling error correction, word transliteration, and word stemming can all be formalized as string transformation. String transformation can also be used in query reformulation and query suggestion in search. In data mining, string transformation can be employed in the mining of synonyms and database record matching. As many of the above are online applications, the transformation must be conducted not only accurately but also efficiently. String transformation can be defined in the following way. Given an input string and a set of operators, we are able to transform the input string to the k most likely output strings by applying a number of operators. Here the strings can be strings of words, characters, or any type of tokens. Each operator is a transformation rule that defines the replacement of a substring with another substring. The likelihood of transformation can represent similarity, relevance, and association between two strings in a specific application. Although certain progress has been made, further investigation of the task is still necessary, particularly from the viewpoint of enhancing both accuracy and efficiency, which is precisely the goal of this work String transformation can be conducted at two different settings, depending on whether or not a dictionary is used. When a dictionary is used, the output strings must exist in the given dictionary, while the size of the dictionary can be very large. Without loss of generality, we specifically study correction of spelling errors in queries as well as reformulation of queries in web search in this paper. However, efficiency is not an important factor taken into consideration in these methods. In contrast, our work in this paper aims to learn a model for string transformation which can achieve both high accuracy and efficiency. There are three fundamental problems with string transformation: How to define a model which can achieve both high accuracy and efficiency, How to accurately and efficiently train the model from training instances, How to efficiently generate the top k output strings given the input string, with or without using a dictionary. A PROBLEM STATEMENT String transformation has many applications in data mining, natural language processing, information retrieval, and bioinformatics. String transformation has been studied in different specific tasks such as database record matching, spelling error correction, query reformulation and synonym mining. The major difference between our work and the existing work is that we focus on enhancement of both accuracy and efficiency of string transformation. The types of the transformation rules are predefined such as stemming, prefix, suffix and acronym. Okazaki incorporated rules into an L1- regularized logistic regression model and utilized the model for string transformation. 2

3 Dreyer also proposed a log linear model for string transformation, with features representing latent alignments between the input and output strings. Finite-state transducers are employed to generate the candidates. Efficiency is not their main consideration since it is used for offline application. Our model is different from Dreyer model in several points. Particularly our model is designed for both accurate and efficient string transformation, with transformation rules as features and non-positive values as feature weights. Okazaki model is largely different from the model proposed in this project although both are discriminative models. The approximation string transformation search, which is the problem of identifying strings in a given dictionary that are similar to an input string. In approximate string search, it is usually assumed that the model (similarity or distance) is fixed and the objective is to efficiently find all the strings in the dictionary. Most existing methods attempt to find all the candidates within a fixed range and employ. There are also methods for finding the top k candidates by using n-grams. Efficiency is the major focus for these methods and the similarity functions in them are predefined. In contrast, our work in this paper aims to learn and utilize a similarity function which can achieve both high accuracy and efficiency. B PROPOSED SYSTEM This project proposes a novel and probabilistic approach called Trivial String Reformulation Technique (TSRT) to string transformation which is both accurate and efficient. (1) a log-linear (discriminative) model for string transformation, (2) an effective and accurate algorithm for model learning, and (3) an efficient algorithm for string generation. The log linear model is defined as a conditional probability distribution of an output string and a rule set for the transformation given an input string. The learning method is based on maximum likelihood estimation. Thus, the model is trained toward the objective of generating strings with the largest likelihood given input strings. The generation algorithm efficiently performs the top k candidate s generation using top k pruning. It is guaranteed to find the best k candidates without enumerating all the possibilities. A tree is employed to index transformation rules in the model. When a dictionary is used in the transformation a tree is used to efficiently retrieve the strings in the dictionary. We empirically evaluated our method in spelling error correction of queries and reformulation of queries in web search. The experimental results on the two problems demonstrate that our method consistently and significantly performs better than the baseline methods of generative model and logistic regression model in terms of accuracy and efficiency. We have also applied our method to the Microsoft Speller Challenge and found that our method can achieve a performance comparable to those of the best performing systems in the challenge. In this section, we introduce how to efficiently generate the top k output strings. We 3

4 employ top k pruning, which can guarantee to find the optimal k output strings. We also exploit two special data structures to facilitate efficient generation. We index the rules with an tree. When a dictionary is utilized, we index the dictionary with a tree. Spelling Error Correction Spelling error correction normally consists of candidate generation and candidate selection.. For single-word candidate generation, a rule based approach is commonly used. The use of edit distance is a typical approach, which exploits operations of character deletion, insertion and substitution. Some methods generate candidates within a fixed range of edit distance or different ranges for strings with different lengths. Other methods learn weighted edit distance to enhance the representation power. Edit distance does not take context information into consideration. To address the challenge, some researchers proposed using a large number of substitution rules in this project, we propose using a discriminative model. Both approaches have pros and cons, and normally a discriminative model can work better than a generative model because it is trained for enhancing accuracy. Since users behavior of misspelling and correction can be frequently observed in web search log data, it has been proposed to mine spelling-error and correction pairs by using search log data. The mined pairs can be directly used in spelling error correction. Methods of selecting spelling and correction pairs with a maximum entropy model and similarity functions have been developed. Only high frequency pairs can be found from log data, however. In this project, we work on candidate generation at the character level, which can be applied to spelling error correction for both high and low frequency words. Query Reformulation Query reformulation involves rewriting the original query with its similar queries and enhancing the effectiveness of search. Most existing methods manage to mine transformation rules from pairs of queries in the search logs. One represents an original query and the other represents a similar query. First identifies phrase-based transformation rules from query pairs, and then segments the input query into phrases, and generates a number of candidates based on substitutions of each phrase using the rules. The weights of the transformation rules are calculated based on log likelihood ratio. A query dictionary is used in this case. The existing methods mainly focused on how to extract useful patterns and rank the candidates with the patterns, while the models for candidate generation are simple. In this project, we work on query reformulation as an example of string transformation and we employ a more sophisticated model. Rule Index The rule index stores all the rules and their weights using an Aho-Corasick tree which can make the references of rules very efficient. The AC tree is a trie with failure links, on which the Aho-Corasick string matching algorithm can be executed. The Aho-Corasick 4

5 algorithm is a well-known dictionary-matching algorithm which can quickly locate the elements of a finite set of strings (here strings are the αs in the rules α β) within an input string. The time complexity of the algorithm is of linear order in the length of input string plus the number of matched entries. We construct an AC tree using all the α s in the rules. Each leaf node corresponds to an α and the corresponding βs are stored in an associated list in decreasing order of rule weights λ. One may want to further improve the efficiency by using a tree rather than a ranking list to store the β s associated with the same α. However the improvement would not be significant because the number of β s associated with each α is usually small. In string generation, given an input string, we first retrieve all the applicable rules and their weights from the AC tree in time complexity of input string length plus number of matched entries. Top k Pruning The string generation problem amounts to that of finding the top k output strings given the input string. We assume that the input string s i consists of tokens ^t 1 t 2 tn $.In the figure, for example, c11 is the token transformed from t1, and c 1 is the token transformed from t4t5t6. In this case, the top k candidates correspond with the top k paths in the lattice. Note that the length of the candidate string can be shorter or longer than the input string. We employ the top k pruning techniques to efficiently conduct the string generation task. We use triple (pos; string; score) to denote each path generated so far, corresponding to the position, the content and the score of the path. Qpathis a priority queue storing paths, and it is initialized with path (1, ^,0). Stopkis a set storing the best k candidates and their scores (string; score) found so far and it is empty at the beginning. The algorithm expands the path by following the path from its current position. After one path is processed, another path is popped up from the priority queue with heuristics. The algorithm uses the top k pruning strategy to eliminate unlikely paths and thus improve efficiency. If the score of a path is smaller than the minimum score of the top k list Stop k, then the path will be discarded and not be used further. This pruning strategy works, because the weights of rules are all non positive and applying additional rules cannot generate a candidate with higher probability. Therefore, it is not difficult to prove that the best k candidates in terms of the scores can be guaranteed to be found. In this project we use heuristics, which are intuitively reasonable and work well in practice. III SYSTEM ARCHITECTURE 5

6 Fig 3.1 System Architecture IV DATABASE DESIGN Database design is recognized as a standard of MIS and is available for virtually every computer system. In database environment, common data are available which several authorized user can use. General theme behind a database is to integrate all the information. A database is an organized mechanism that has the capability of storing information through which a user can retrieve stored information in an effective and efficient manner. The data is the purpose of any database and must be protected. The database design is a two level process. In the first step, user requirements are gathered together and a database is designed which will meet these requirements as clearly as possible. This step is called Information Level Design and it is taken independent of any individual DBMS. In the second step, this Information level design is transferred into a design for the specific DBMS that will be used to implement the system in question. This step is called Physical Level Design, concerned with the characteristics of the specific DBMS that will be used. A database design runs parallel with the system design. The organization of the data in the database is aimed to achieve the following two major objectives. Data Integrity Data independence To structure the data so that there is no repetition of data, this helps in saving. A database is an integrated collection of data and provides a centralized access to the data. Usually centralized data managing software is called RDBMS. The main significant difference between RDBMS and other type of DBMS is the separation of data as seen by the program and data as stored on direct access to storage device. This is the difference between logical and physical data. While designing a database, several objectives must be considered. They include the redundancy of Easy to leaving and use Data independence More information at low cost Accuracy and integrity While creating the tables, above objectives were considered to avoid redundancy of data. V CONCLUSION The proposed model called Trivial String Reformulation Technique (TSRT) to 6

7 string transformation which is both accurate and efficient introduced in this system has successfully solves several issues of string transformation in data mining. The approach includes the use of a log linear model, a method for training the model, and an algorithm for generating the top k candidates whether there is or is not a predefined dictionary. Two specific applications are addressed with this method are spelling error correction of queries and query reformulation in web search. Experimental results on very large data sets show that the proposed method improves upon the baselines in terms of accuracy and efficiency. REFERENCES 1. Li, Y. Zhang, M. Zhu, and M. Zhou, (2006) Exploring distributional similarity based models for query spelling correction, in Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics, ser. ACL 06. Morristown, NJ, USA: Association for Computational Linguistics, pp R. Golding and D. Roth,( 1999) A winnow-based approach to context-sensitive spelling correction, Mach. Learn., vol. 34, pp , February. 3. Guo, G. Xu, H. Li, and X. Cheng,( 2008) A unified and discriminative model for query refinement, in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, ser. SIGIR 08. New York, NY, USA: ACM, pp Behm, S. Ji, C. Li, and J. Lu, (2009) Space-constrained gram-based indexing for efficient approximate string search, in Proceedings of the 2009 IEEE International Conference on Data Engineering, ser. ICDE 09. Washington, DC, USA: IEEE Computer Society, p Brill and R. C. Moore,( 2000) An improved error model for noisy channel spelling correction, in Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, ser. ACL 00. Morristown, NJ, USA: Association for Computational Linguistics, pp Okazaki, Y. Tsuruoka, S. Ananiadou, and J. Tsujii,( 2008) A discriminative candidate generator for string transformations, in Proceedings of the Conference on Empirical Methods in Natural Language Processing, ser. EMNLP 08. Morristown, NJ, USA: Association for Computational Linguistic, pp Dreyer, J. R. Smith, and J. Eisner,( 2008) Latent-variable modeling of string transductions with finite-state methods, in Proceedings of the Conference on Empirical Methods in Natural Language Processing, ser. EMNLP 08. Stroudsburg, PA, USA: Association for Computational Linguistics, pp

8 8. Arasu, S. Chaudhuri, and R. Kaushik,( 2009) Learning string transformations from examples, Proc. VLDB Endow., vol. 2, pp Tejada, C. A. Knoblock, and S. Minton,( 2002) Learning domainindependent string transformation weights for high accuracy object identification, in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ser. KDD 02. New York, NY, USA: ACM, pp Hadjieleftheriou and C. Li,( 2009) Efficient approximate search on string collections, Proc. VLDB Endow., vol. 2, pp Li, B. Wang, and X. Yang,( 2007) Vgram: improving performance of approximate queries on string collections using variable-length grams, in Proceedings of the 33rd international conference on Very large data bases, ser. VLDB 07. VLDB Endowment, pp Yang, B. Wang, and C. Li, (2008) Costbased variable-length-gram selection for string collections to support approximate queries efficiently, in Proceedings of the 2008 ACM SIGMOD international conference on Management of data, ser. SIGMOD 08. New York, NY, USA: ACM, pp Li, J. Lu, and Y. Lu,( 2008) Efficient merging and filtering algorithms for approximate string searches, in Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, ser. ICDE 08. Washington, DC, USA: IEEE Computer Society, pp Ji, G. Li, C. Li, and J. Feng,( 2009) Efficient interactive fuzzy keyword search, in Proceedings of the 18th international conference on World wide web, ser. WWW 09. New York, NY, USA: ACM,p Vernica and C. Li,( 2009) Efficient top-k algorithms for fuzzy search in string collections, in Proceedings of the First International Workshop on Keyword Search on Structured Data, ser. KEYS 09. New York, NY, USA: ACM, pp Yang, J. Yu, and M. Kitsuregawa,( 2010) Fast algorithms for top-k approximate string matching, in Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, ser. AAAI 10, pp Whitelaw, B. Hutchinson, G. Y. Chung, and G. Ellis,( 2009) Using the web for language independent spellchecking and autocorrection, in Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, ser. EMNLP 09. Morristown, NJ, USA: Association for Computational Linguistics, pp S. Ristad and P. N. Yianilos, (2000) Learning string-edit distance, IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp

KEYWORD SEARCH IN RELATIONAL DATABASES

KEYWORD SEARCH IN RELATIONAL DATABASES KEYWORD SEARCH IN RELATIONAL DATABASES N.Divya Bharathi 1 1 PG Scholar, Department of Computer Science and Engineering, ABSTRACT Adhiyamaan College of Engineering, Hosur, (India). Data mining refers to

More information

Effective Data Retrieval Mechanism Using AML within the Web Based Join Framework

Effective Data Retrieval Mechanism Using AML within the Web Based Join Framework Effective Data Retrieval Mechanism Using AML within the Web Based Join Framework Usha Nandini D 1, Anish Gracias J 2 1 ushaduraisamy@yahoo.co.in 2 anishgracias@gmail.com Abstract A vast amount of assorted

More information

MEMBERSHIP LOCALIZATION WITHIN A WEB BASED JOIN FRAMEWORK

MEMBERSHIP LOCALIZATION WITHIN A WEB BASED JOIN FRAMEWORK MEMBERSHIP LOCALIZATION WITHIN A WEB BASED JOIN FRAMEWORK 1 K. LALITHA, 2 M. KEERTHANA, 3 G. KALPANA, 4 S.T. SHWETHA, 5 M. GEETHA 1 Assistant Professor, Information Technology, Panimalar Engineering College,

More information

Automatic Mining of Internet Translation Reference Knowledge Based on Multiple Search Engines

Automatic Mining of Internet Translation Reference Knowledge Based on Multiple Search Engines , 22-24 October, 2014, San Francisco, USA Automatic Mining of Internet Translation Reference Knowledge Based on Multiple Search Engines Baosheng Yin, Wei Wang, Ruixue Lu, Yang Yang Abstract With the increasing

More information

The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2

The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016) The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2 1 School of

More information

Automatic Annotation Wrapper Generation and Mining Web Database Search Result

Automatic Annotation Wrapper Generation and Mining Web Database Search Result Automatic Annotation Wrapper Generation and Mining Web Database Search Result V.Yogam 1, K.Umamaheswari 2 1 PG student, ME Software Engineering, Anna University (BIT campus), Trichy, Tamil nadu, India

More information

ALIAS: A Tool for Disambiguating Authors in Microsoft Academic Search

ALIAS: A Tool for Disambiguating Authors in Microsoft Academic Search Project for Michael Pitts Course TCSS 702A University of Washington Tacoma Institute of Technology ALIAS: A Tool for Disambiguating Authors in Microsoft Academic Search Under supervision of : Dr. Senjuti

More information

Research of Postal Data mining system based on big data

Research of Postal Data mining system based on big data 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA 2015) Research of Postal Data mining system based on big data Xia Hu 1, Yanfeng Jin 1, Fan Wang 1 1 Shi Jiazhuang Post & Telecommunication

More information

Data Mining in Web Search Engine Optimization and User Assisted Rank Results

Data Mining in Web Search Engine Optimization and User Assisted Rank Results Data Mining in Web Search Engine Optimization and User Assisted Rank Results Minky Jindal Institute of Technology and Management Gurgaon 122017, Haryana, India Nisha kharb Institute of Technology and Management

More information

SEARCH ENGINE WITH PARALLEL PROCESSING AND INCREMENTAL K-MEANS FOR FAST SEARCH AND RETRIEVAL

SEARCH ENGINE WITH PARALLEL PROCESSING AND INCREMENTAL K-MEANS FOR FAST SEARCH AND RETRIEVAL SEARCH ENGINE WITH PARALLEL PROCESSING AND INCREMENTAL K-MEANS FOR FAST SEARCH AND RETRIEVAL Krishna Kiran Kattamuri 1 and Rupa Chiramdasu 2 Department of Computer Science Engineering, VVIT, Guntur, India

More information

Binary Coded Web Access Pattern Tree in Education Domain

Binary Coded Web Access Pattern Tree in Education Domain Binary Coded Web Access Pattern Tree in Education Domain C. Gomathi P.G. Department of Computer Science Kongu Arts and Science College Erode-638-107, Tamil Nadu, India E-mail: kc.gomathi@gmail.com M. Moorthi

More information

Multi-source hybrid Question Answering system

Multi-source hybrid Question Answering system Multi-source hybrid Question Answering system Seonyeong Park, Hyosup Shim, Sangdo Han, Byungsoo Kim, Gary Geunbae Lee Pohang University of Science and Technology, Pohang, Republic of Korea {sypark322,

More information

Domain Classification of Technical Terms Using the Web

Domain Classification of Technical Terms Using the Web Systems and Computers in Japan, Vol. 38, No. 14, 2007 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J89-D, No. 11, November 2006, pp. 2470 2482 Domain Classification of Technical Terms Using

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. REVIEW ARTICLE ISSN: 2321-7758 UPS EFFICIENT SEARCH ENGINE BASED ON WEB-SNIPPET HIERARCHICAL CLUSTERING MS.MANISHA DESHMUKH, PROF. UMESH KULKARNI Department of Computer Engineering, ARMIET, Department

More information

Natural Language to Relational Query by Using Parsing Compiler

Natural Language to Relational Query by Using Parsing Compiler Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 3, March 2015,

More information

Oracle8i Spatial: Experiences with Extensible Databases

Oracle8i Spatial: Experiences with Extensible Databases Oracle8i Spatial: Experiences with Extensible Databases Siva Ravada and Jayant Sharma Spatial Products Division Oracle Corporation One Oracle Drive Nashua NH-03062 {sravada,jsharma}@us.oracle.com 1 Introduction

More information

International Journal of Advance Research in Computer Science and Management Studies

International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 11, November 2015 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS INTRODUCTION

A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS INTRODUCTION A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS Kyoungjin Park Alper Yilmaz Photogrammetric and Computer Vision Lab Ohio State University park.764@osu.edu yilmaz.15@osu.edu ABSTRACT Depending

More information

IMPROVING BUSINESS PROCESS MODELING USING RECOMMENDATION METHOD

IMPROVING BUSINESS PROCESS MODELING USING RECOMMENDATION METHOD Journal homepage: www.mjret.in ISSN:2348-6953 IMPROVING BUSINESS PROCESS MODELING USING RECOMMENDATION METHOD Deepak Ramchandara Lad 1, Soumitra S. Das 2 Computer Dept. 12 Dr. D. Y. Patil School of Engineering,(Affiliated

More information

Blog Post Extraction Using Title Finding

Blog Post Extraction Using Title Finding Blog Post Extraction Using Title Finding Linhai Song 1, 2, Xueqi Cheng 1, Yan Guo 1, Bo Wu 1, 2, Yu Wang 1, 2 1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 2 Graduate School

More information

VGRAM: Improving Performance of Approximate Queries on String Collections Using Variable-Length Grams

VGRAM: Improving Performance of Approximate Queries on String Collections Using Variable-Length Grams VGRAM: Improving Performance of Approximate Queries on String Collections Using Variable-Length Grams Chen Li University of California, Irvine CA 9697, USA chenli@ics.uci.edu Bin Wang Northeastern University

More information

POSBIOTM-NER: A Machine Learning Approach for. Bio-Named Entity Recognition

POSBIOTM-NER: A Machine Learning Approach for. Bio-Named Entity Recognition POSBIOTM-NER: A Machine Learning Approach for Bio-Named Entity Recognition Yu Song, Eunji Yi, Eunju Kim, Gary Geunbae Lee, Department of CSE, POSTECH, Pohang, Korea 790-784 Soo-Jun Park Bioinformatics

More information

Achieve Better Ranking Accuracy Using CloudRank Framework for Cloud Services

Achieve Better Ranking Accuracy Using CloudRank Framework for Cloud Services Achieve Better Ranking Accuracy Using CloudRank Framework for Cloud Services Ms. M. Subha #1, Mr. K. Saravanan *2 # Student, * Assistant Professor Department of Computer Science and Engineering Regional

More information

A UPS Framework for Providing Privacy Protection in Personalized Web Search

A UPS Framework for Providing Privacy Protection in Personalized Web Search A UPS Framework for Providing Privacy Protection in Personalized Web Search V. Sai kumar 1, P.N.V.S. Pavan Kumar 2 PG Scholar, Dept. of CSE, G Pulla Reddy Engineering College, Kurnool, Andhra Pradesh,

More information

Optimization of Search Results with Duplicate Page Elimination using Usage Data A. K. Sharma 1, Neelam Duhan 2 1, 2

Optimization of Search Results with Duplicate Page Elimination using Usage Data A. K. Sharma 1, Neelam Duhan 2 1, 2 Optimization of Search Results with Duplicate Page Elimination using Usage Data A. K. Sharma 1, Neelam Duhan 2 1, 2 Department of Computer Engineering, YMCA University of Science & Technology, Faridabad,

More information

Sustaining Privacy Protection in Personalized Web Search with Temporal Behavior

Sustaining Privacy Protection in Personalized Web Search with Temporal Behavior Sustaining Privacy Protection in Personalized Web Search with Temporal Behavior N.Jagatheshwaran 1 R.Menaka 2 1 Final B.Tech (IT), jagatheshwaran.n@gmail.com, Velalar College of Engineering and Technology,

More information

Type Ahead Search in Database using SQL

Type Ahead Search in Database using SQL Type Ahead Search in Database using SQL Salunke Shrikant Dadasaheb Dattakala Group of Institutions, Faculty of Engineering University of Pune shrikantsalunke25@gmail.com Prof. Bere Sachin Sukhadeo Dattakala

More information

Collecting Polish German Parallel Corpora in the Internet

Collecting Polish German Parallel Corpora in the Internet Proceedings of the International Multiconference on ISSN 1896 7094 Computer Science and Information Technology, pp. 285 292 2007 PIPS Collecting Polish German Parallel Corpora in the Internet Monika Rosińska

More information

Efficient Query Optimizing System for Searching Using Data Mining Technique

Efficient Query Optimizing System for Searching Using Data Mining Technique Vol.1, Issue.2, pp-347-351 ISSN: 2249-6645 Efficient Query Optimizing System for Searching Using Data Mining Technique Velmurugan.N Vijayaraj.A Assistant Professor, Department of MCA, Associate Professor,

More information

A Review on Document Retrieval from Unstructured Text

A Review on Document Retrieval from Unstructured Text International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-2, Issue-11 E-ISSN: 2347-2693 A Review on Document Retrieval from Unstructured Text Sneha Lohbare 1 * and Ashwini

More information

REVIEW ON QUERY CLUSTERING ALGORITHMS FOR SEARCH ENGINE OPTIMIZATION

REVIEW ON QUERY CLUSTERING ALGORITHMS FOR SEARCH ENGINE OPTIMIZATION Volume 2, Issue 2, February 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: A REVIEW ON QUERY CLUSTERING

More information

Wikipedia and Web document based Query Translation and Expansion for Cross-language IR

Wikipedia and Web document based Query Translation and Expansion for Cross-language IR Wikipedia and Web document based Query Translation and Expansion for Cross-language IR Ling-Xiang Tang 1, Andrew Trotman 2, Shlomo Geva 1, Yue Xu 1 1Faculty of Science and Technology, Queensland University

More information

Duplicate Detection Algorithm In Hierarchical Data Using Efficient And Effective Network Pruning Algorithm: Survey

Duplicate Detection Algorithm In Hierarchical Data Using Efficient And Effective Network Pruning Algorithm: Survey www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3 Issue 12 December 2014, Page No. 9766-9773 Duplicate Detection Algorithm In Hierarchical Data Using Efficient

More information

A New Input Method for Human Translators: Integrating Machine Translation Effectively and Imperceptibly

A New Input Method for Human Translators: Integrating Machine Translation Effectively and Imperceptibly Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) A New Input Method for Human Translators: Integrating Machine Translation Effectively and Imperceptibly

More information

PRODUCT REVIEW RANKING SUMMARIZATION

PRODUCT REVIEW RANKING SUMMARIZATION PRODUCT REVIEW RANKING SUMMARIZATION N.P.Vadivukkarasi, Research Scholar, Department of Computer Science, Kongu Arts and Science College, Erode. Dr. B. Jayanthi M.C.A., M.Phil., Ph.D., Associate Professor,

More information

Efficient Techniques for Improved Data Classification and POS Tagging by Monitoring Extraction, Pruning and Updating of Unknown Foreign Words

Efficient Techniques for Improved Data Classification and POS Tagging by Monitoring Extraction, Pruning and Updating of Unknown Foreign Words , pp.290-295 http://dx.doi.org/10.14257/astl.2015.111.55 Efficient Techniques for Improved Data Classification and POS Tagging by Monitoring Extraction, Pruning and Updating of Unknown Foreign Words Irfan

More information

A Survey on Product Aspect Ranking

A Survey on Product Aspect Ranking A Survey on Product Aspect Ranking Charushila Patil 1, Prof. P. M. Chawan 2, Priyamvada Chauhan 3, Sonali Wankhede 4 M. Tech Student, Department of Computer Engineering and IT, VJTI College, Mumbai, Maharashtra,

More information

THUTR: A Translation Retrieval System

THUTR: A Translation Retrieval System THUTR: A Translation Retrieval System Chunyang Liu, Qi Liu, Yang Liu, and Maosong Sun Department of Computer Science and Technology State Key Lab on Intelligent Technology and Systems National Lab for

More information

Cross-Lingual Concern Analysis from Multilingual Weblog Articles

Cross-Lingual Concern Analysis from Multilingual Weblog Articles Cross-Lingual Concern Analysis from Multilingual Weblog Articles Tomohiro Fukuhara RACE (Research into Artifacts), The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba JAPAN http://www.race.u-tokyo.ac.jp/~fukuhara/

More information

ACCELERATING SELECT WHERE AND SELECT JOIN QUERIES ON A GPU

ACCELERATING SELECT WHERE AND SELECT JOIN QUERIES ON A GPU Computer Science 14 (2) 2013 http://dx.doi.org/10.7494/csci.2013.14.2.243 Marcin Pietroń Pawe l Russek Kazimierz Wiatr ACCELERATING SELECT WHERE AND SELECT JOIN QUERIES ON A GPU Abstract This paper presents

More information

Survey On: Nearest Neighbour Search With Keywords In Spatial Databases

Survey On: Nearest Neighbour Search With Keywords In Spatial Databases Survey On: Nearest Neighbour Search With Keywords In Spatial Databases SayaliBorse 1, Prof. P. M. Chawan 2, Prof. VishwanathChikaraddi 3, Prof. Manish Jansari 4 P.G. Student, Dept. of Computer Engineering&

More information

Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis

Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 5 (Nov. - Dec. 2012), PP 36-41 Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis

More information

The XMU Phrase-Based Statistical Machine Translation System for IWSLT 2006

The XMU Phrase-Based Statistical Machine Translation System for IWSLT 2006 The XMU Phrase-Based Statistical Machine Translation System for IWSLT 2006 Yidong Chen, Xiaodong Shi Institute of Artificial Intelligence Xiamen University P. R. China November 28, 2006 - Kyoto 13:46 1

More information

PULLING OUT OPINION TARGETS AND OPINION WORDS FROM REVIEWS BASED ON THE WORD ALIGNMENT MODEL AND USING TOPICAL WORD TRIGGER MODEL

PULLING OUT OPINION TARGETS AND OPINION WORDS FROM REVIEWS BASED ON THE WORD ALIGNMENT MODEL AND USING TOPICAL WORD TRIGGER MODEL Journal homepage: www.mjret.in ISSN:2348-6953 PULLING OUT OPINION TARGETS AND OPINION WORDS FROM REVIEWS BASED ON THE WORD ALIGNMENT MODEL AND USING TOPICAL WORD TRIGGER MODEL Utkarsha Vibhute, Prof. Soumitra

More information

Web based English-Chinese OOV term translation using Adaptive rules and Recursive feature selection

Web based English-Chinese OOV term translation using Adaptive rules and Recursive feature selection Web based English-Chinese OOV term translation using Adaptive rules and Recursive feature selection Jian Qu, Nguyen Le Minh, Akira Shimazu School of Information Science, JAIST Ishikawa, Japan 923-1292

More information

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information Eric Hsueh-Chan Lu Chi-Wei Huang Vincent S. Tseng Institute of Computer Science and Information Engineering

More information

Image Compression through DCT and Huffman Coding Technique

Image Compression through DCT and Huffman Coding Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul

More information

EFFICIENT DATA PRE-PROCESSING FOR DATA MINING

EFFICIENT DATA PRE-PROCESSING FOR DATA MINING EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College

More information

Enhanced Algorithm for Efficient Retrieval of Data from a Secure Cloud

Enhanced Algorithm for Efficient Retrieval of Data from a Secure Cloud OPEN JOURNAL OF MOBILE COMPUTING AND CLOUD COMPUTING Volume 1, Number 2, November 2014 OPEN JOURNAL OF MOBILE COMPUTING AND CLOUD COMPUTING Enhanced Algorithm for Efficient Retrieval of Data from a Secure

More information

Dynamic Data in terms of Data Mining Streams

Dynamic Data in terms of Data Mining Streams International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining

More information

Search and Information Retrieval

Search and Information Retrieval Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search

More information

Term extraction for user profiling: evaluation by the user

Term extraction for user profiling: evaluation by the user Term extraction for user profiling: evaluation by the user Suzan Verberne 1, Maya Sappelli 1,2, Wessel Kraaij 1,2 1 Institute for Computing and Information Sciences, Radboud University Nijmegen 2 TNO,

More information

Florida International University - University of Miami TRECVID 2014

Florida International University - University of Miami TRECVID 2014 Florida International University - University of Miami TRECVID 2014 Miguel Gavidia 3, Tarek Sayed 1, Yilin Yan 1, Quisha Zhu 1, Mei-Ling Shyu 1, Shu-Ching Chen 2, Hsin-Yu Ha 2, Ming Ma 1, Winnie Chen 4,

More information

Efficient Integration of Data Mining Techniques in Database Management Systems

Efficient Integration of Data Mining Techniques in Database Management Systems Efficient Integration of Data Mining Techniques in Database Management Systems Fadila Bentayeb Jérôme Darmont Cédric Udréa ERIC, University of Lyon 2 5 avenue Pierre Mendès-France 69676 Bron Cedex France

More information

RANKING WEB PAGES RELEVANT TO SEARCH KEYWORDS

RANKING WEB PAGES RELEVANT TO SEARCH KEYWORDS ISBN: 978-972-8924-93-5 2009 IADIS RANKING WEB PAGES RELEVANT TO SEARCH KEYWORDS Ben Choi & Sumit Tyagi Computer Science, Louisiana Tech University, USA ABSTRACT In this paper we propose new methods for

More information

Investigating Clinical Care Pathways Correlated with Outcomes

Investigating Clinical Care Pathways Correlated with Outcomes Investigating Clinical Care Pathways Correlated with Outcomes Geetika T. Lakshmanan, Szabolcs Rozsnyai, Fei Wang IBM T. J. Watson Research Center, NY, USA August 2013 Outline Care Pathways Typical Challenges

More information

Performance Evaluation of some Online Association Rule Mining Algorithms for sorted and unsorted Data sets

Performance Evaluation of some Online Association Rule Mining Algorithms for sorted and unsorted Data sets Performance Evaluation of some Online Association Rule Mining Algorithms for sorted and unsorted Data sets Pramod S. Reader, Information Technology, M.P.Christian College of Engineering, Bhilai,C.G. INDIA.

More information

VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter

VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter Gerard Briones and Kasun Amarasinghe and Bridget T. McInnes, PhD. Department of Computer Science Virginia Commonwealth University Richmond,

More information

Response prediction using collaborative filtering with hierarchies and side-information

Response prediction using collaborative filtering with hierarchies and side-information Response prediction using collaborative filtering with hierarchies and side-information Aditya Krishna Menon 1 Krishna-Prasad Chitrapura 2 Sachin Garg 2 Deepak Agarwal 3 Nagaraj Kota 2 1 UC San Diego 2

More information

Keyword Search in Graphs: Finding r-cliques

Keyword Search in Graphs: Finding r-cliques Keyword Search in Graphs: Finding r-cliques Mehdi Kargar and Aijun An Department of Computer Science and Engineering York University, Toronto, Canada {kargar,aan}@cse.yorku.ca ABSTRACT Keyword search over

More information

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES ADVANCED AND ROBUST MOBILE SEARCH ENGINE FOR PERSONALIZED Mr. Yogesh B.Jadhao *1 and Assoc.Prof. Shyam S. Gupta 2 *1 Research scholar,computer Engineering,

More information

SEMANTIC WEB BASED INFERENCE MODEL FOR LARGE SCALE ONTOLOGIES FROM BIG DATA

SEMANTIC WEB BASED INFERENCE MODEL FOR LARGE SCALE ONTOLOGIES FROM BIG DATA SEMANTIC WEB BASED INFERENCE MODEL FOR LARGE SCALE ONTOLOGIES FROM BIG DATA J.RAVI RAJESH PG Scholar Rajalakshmi engineering college Thandalam, Chennai. ravirajesh.j.2013.mecse@rajalakshmi.edu.in Mrs.

More information

Mining Signatures in Healthcare Data Based on Event Sequences and its Applications

Mining Signatures in Healthcare Data Based on Event Sequences and its Applications Mining Signatures in Healthcare Data Based on Event Sequences and its Applications Siddhanth Gokarapu 1, J. Laxmi Narayana 2 1 Student, Computer Science & Engineering-Department, JNTU Hyderabad India 1

More information

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM

TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM Thanh-Nghi Do College of Information Technology, Cantho University 1 Ly Tu Trong Street, Ninh Kieu District Cantho City, Vietnam

More information

Record Deduplication By Evolutionary Means

Record Deduplication By Evolutionary Means Record Deduplication By Evolutionary Means Marco Modesto, Moisés G. de Carvalho, Walter dos Santos Departamento de Ciência da Computação Universidade Federal de Minas Gerais 31270-901 - Belo Horizonte

More information

Guest Editors Introduction: Machine Learning in Speech and Language Technologies

Guest Editors Introduction: Machine Learning in Speech and Language Technologies Guest Editors Introduction: Machine Learning in Speech and Language Technologies Pascale Fung (pascale@ee.ust.hk) Department of Electrical and Electronic Engineering Hong Kong University of Science and

More information

QOS Based Web Service Ranking Using Fuzzy C-means Clusters

QOS Based Web Service Ranking Using Fuzzy C-means Clusters Research Journal of Applied Sciences, Engineering and Technology 10(9): 1045-1050, 2015 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2015 Submitted: March 19, 2015 Accepted: April

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 5 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 5 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 5 INTELLIGENT MULTIDIMENSIONAL DATABASE INTERFACE Mona Gharib Mohamed Reda Zahraa E. Mohamed Faculty of Science,

More information

HadoopSPARQL : A Hadoop-based Engine for Multiple SPARQL Query Answering

HadoopSPARQL : A Hadoop-based Engine for Multiple SPARQL Query Answering HadoopSPARQL : A Hadoop-based Engine for Multiple SPARQL Query Answering Chang Liu 1 Jun Qu 1 Guilin Qi 2 Haofen Wang 1 Yong Yu 1 1 Shanghai Jiaotong University, China {liuchang,qujun51319, whfcarter,yyu}@apex.sjtu.edu.cn

More information

Supporting Privacy Protection in Personalized Web Search

Supporting Privacy Protection in Personalized Web Search Supporting Privacy Protection in Personalized Web Search Kamatam Amala P.G. Scholar (M. Tech), Department of CSE, Srinivasa Institute of Technology & Sciences, Ukkayapalli, Kadapa, Andhra Pradesh. ABSTRACT:

More information

Learning to Rank Revisited: Our Progresses in New Algorithms and Tasks

Learning to Rank Revisited: Our Progresses in New Algorithms and Tasks The 4 th China-Australia Database Workshop Melbourne, Australia Oct. 19, 2015 Learning to Rank Revisited: Our Progresses in New Algorithms and Tasks Jun Xu Institute of Computing Technology, Chinese Academy

More information

72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD

72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD 72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD Paulo Gottgtroy Auckland University of Technology Paulo.gottgtroy@aut.ac.nz Abstract This paper is

More information

Ming-Wei Chang. Machine learning and its applications to natural language processing, information retrieval and data mining.

Ming-Wei Chang. Machine learning and its applications to natural language processing, information retrieval and data mining. Ming-Wei Chang 201 N Goodwin Ave, Department of Computer Science University of Illinois at Urbana-Champaign, Urbana, IL 61801 +1 (917) 345-6125 mchang21@uiuc.edu http://flake.cs.uiuc.edu/~mchang21 Research

More information

Mobile Phone APP Software Browsing Behavior using Clustering Analysis

Mobile Phone APP Software Browsing Behavior using Clustering Analysis Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis

More information

An Order-Invariant Time Series Distance Measure [Position on Recent Developments in Time Series Analysis]

An Order-Invariant Time Series Distance Measure [Position on Recent Developments in Time Series Analysis] An Order-Invariant Time Series Distance Measure [Position on Recent Developments in Time Series Analysis] Stephan Spiegel and Sahin Albayrak DAI-Lab, Technische Universität Berlin, Ernst-Reuter-Platz 7,

More information

Enhanced Boosted Trees Technique for Customer Churn Prediction Model

Enhanced Boosted Trees Technique for Customer Churn Prediction Model IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V5 PP 41-45 www.iosrjen.org Enhanced Boosted Trees Technique for Customer Churn Prediction

More information

On-line Data De-duplication. Ιωάννης Κρομμύδας

On-line Data De-duplication. Ιωάννης Κρομμύδας On-line Data De-duplication Ιωάννης Κρομμύδας Roadmap Data Cleaning Importance Data Cleaning Tasks Challenges for Fuzzy Matching Baseline Method (fuzzy match data cleaning) Improvements: online data cleaning

More information

Assisting bug Triage in Large Open Source Projects Using Approximate String Matching

Assisting bug Triage in Large Open Source Projects Using Approximate String Matching Assisting bug Triage in Large Open Source Projects Using Approximate String Matching Amir H. Moin and Günter Neumann Language Technology (LT) Lab. German Research Center for Artificial Intelligence (DFKI)

More information

A Knowledge-Poor Approach to BioCreative V DNER and CID Tasks

A Knowledge-Poor Approach to BioCreative V DNER and CID Tasks A Knowledge-Poor Approach to BioCreative V DNER and CID Tasks Firoj Alam 1, Anna Corazza 2, Alberto Lavelli 3, and Roberto Zanoli 3 1 Dept. of Information Eng. and Computer Science, University of Trento,

More information

Introducing diversity among the models of multi-label classification ensemble

Introducing diversity among the models of multi-label classification ensemble Introducing diversity among the models of multi-label classification ensemble Lena Chekina, Lior Rokach and Bracha Shapira Ben-Gurion University of the Negev Dept. of Information Systems Engineering and

More information

Query term suggestion in academic search

Query term suggestion in academic search Query term suggestion in academic search Suzan Verberne 1, Maya Sappelli 1,2, and Wessel Kraaij 2,1 1. Institute for Computing and Information Sciences, Radboud University Nijmegen 2. TNO, Delft Abstract.

More information

Micro blogs Oriented Word Segmentation System

Micro blogs Oriented Word Segmentation System Micro blogs Oriented Word Segmentation System Yijia Liu, Meishan Zhang, Wanxiang Che, Ting Liu, Yihe Deng Research Center for Social Computing and Information Retrieval Harbin Institute of Technology,

More information

Web Database Integration

Web Database Integration Web Database Integration Wei Liu School of Information Renmin University of China Beijing, 100872, China gue2@ruc.edu.cn Xiaofeng Meng School of Information Renmin University of China Beijing, 100872,

More information

A Mixed Trigrams Approach for Context Sensitive Spell Checking

A Mixed Trigrams Approach for Context Sensitive Spell Checking A Mixed Trigrams Approach for Context Sensitive Spell Checking Davide Fossati and Barbara Di Eugenio Department of Computer Science University of Illinois at Chicago Chicago, IL, USA dfossa1@uic.edu, bdieugen@cs.uic.edu

More information

An Effective Character Separation Method for Online Cursive Uyghur Handwriting

An Effective Character Separation Method for Online Cursive Uyghur Handwriting An Effective Character Separation Method for Online Cursive Uyghur Handwriting Mayire Ibrahim 1,3, Heng Zhang 2, Cheng-Lin Liu 2, and Askar Hamdulla 3 1 School of Electronic Information, Wuhan University,

More information

Horizontal Aggregations In SQL To Generate Data Sets For Data Mining Analysis In An Optimized Manner

Horizontal Aggregations In SQL To Generate Data Sets For Data Mining Analysis In An Optimized Manner 24 Horizontal Aggregations In SQL To Generate Data Sets For Data Mining Analysis In An Optimized Manner Rekha S. Nyaykhor M. Tech, Dept. Of CSE, Priyadarshini Bhagwati College of Engineering, Nagpur, India

More information

Large-Scale Test Mining

Large-Scale Test Mining Large-Scale Test Mining SIAM Conference on Data Mining Text Mining 2010 Alan Ratner Northrop Grumman Information Systems NORTHROP GRUMMAN PRIVATE / PROPRIETARY LEVEL I Aim Identify topic and language/script/coding

More information

Top Top 10 Algorithms in Data Mining

Top Top 10 Algorithms in Data Mining ICDM 06 Panel on Top Top 10 Algorithms in Data Mining 1. The 3-step identification process 2. The 18 identified candidates 3. Algorithm presentations 4. Top 10 algorithms: summary 5. Open discussions ICDM

More information

Web Forensic Evidence of SQL Injection Analysis

Web Forensic Evidence of SQL Injection Analysis International Journal of Science and Engineering Vol.5 No.1(2015):157-162 157 Web Forensic Evidence of SQL Injection Analysis 針 對 SQL Injection 攻 擊 鑑 識 之 分 析 Chinyang Henry Tseng 1 National Taipei University

More information

Efficient Algorithm for Predicting QOS in Cloud Services Sangeeta R. Alagi, Srinu Dharavath

Efficient Algorithm for Predicting QOS in Cloud Services Sangeeta R. Alagi, Srinu Dharavath Efficient Algorithm for Predicting QOS in Cloud Services Sangeeta R. Alagi, Srinu Dharavath Abstract Now a days, Cloud computing is becoming more popular research topic. Building high-quality cloud applications

More information

LDA Based Security in Personalized Web Search

LDA Based Security in Personalized Web Search LDA Based Security in Personalized Web Search R. Dhivya 1 / PG Scholar, B. Vinodhini 2 /Assistant Professor, S. Karthik 3 /Prof & Dean Department of Computer Science & Engineering SNS College of Technology

More information

Protecting Websites from Dissociative Identity SQL Injection Attacka Patch for Human Folly

Protecting Websites from Dissociative Identity SQL Injection Attacka Patch for Human Folly International Journal of Computer Sciences and Engineering Open Access ReviewPaper Volume-4, Special Issue-2, April 2016 E-ISSN: 2347-2693 Protecting Websites from Dissociative Identity SQL Injection Attacka

More information

Preparing Data Sets for the Data Mining Analysis using the Most Efficient Horizontal Aggregation Method in SQL

Preparing Data Sets for the Data Mining Analysis using the Most Efficient Horizontal Aggregation Method in SQL Preparing Data Sets for the Data Mining Analysis using the Most Efficient Horizontal Aggregation Method in SQL Jasna S MTech Student TKM College of engineering Kollam Manu J Pillai Assistant Professor

More information

A Comparative Study on Sentiment Classification and Ranking on Product Reviews

A Comparative Study on Sentiment Classification and Ranking on Product Reviews A Comparative Study on Sentiment Classification and Ranking on Product Reviews C.EMELDA Research Scholar, PG and Research Department of Computer Science, Nehru Memorial College, Putthanampatti, Bharathidasan

More information

On line construction of suffix trees 1

On line construction of suffix trees 1 (To appear in ALGORITHMICA) On line construction of suffix trees 1 Esko Ukkonen Department of Computer Science, University of Helsinki, P. O. Box 26 (Teollisuuskatu 23), FIN 00014 University of Helsinki,

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

Web Mining. Margherita Berardi LACAM. Dipartimento di Informatica Università degli Studi di Bari berardi@di.uniba.it

Web Mining. Margherita Berardi LACAM. Dipartimento di Informatica Università degli Studi di Bari berardi@di.uniba.it Web Mining Margherita Berardi LACAM Dipartimento di Informatica Università degli Studi di Bari berardi@di.uniba.it Bari, 24 Aprile 2003 Overview Introduction Knowledge discovery from text (Web Content

More information

Log Mining Based on Hadoop s Map and Reduce Technique

Log Mining Based on Hadoop s Map and Reduce Technique Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, anujapandit25@gmail.com Amruta Deshpande Department of Computer Science, amrutadeshpande1991@gmail.com

More information

Opinion Mining and Preferences Mining in Mobile Search

Opinion Mining and Preferences Mining in Mobile Search Opinion Mining and Preferences Mining in Mobile Search P. Anandajayam 1, D. Ashok Kumar 2. Asst.Professor, Dept. of Computer Science, MANAKULA VINAYAGAR INSTITUTE OF TECHNOLOGY, India 1. PG Scholar, MANAKULA

More information

Introduction to IR Systems: Supporting Boolean Text Search. Information Retrieval. IR vs. DBMS. Chapter 27, Part A

Introduction to IR Systems: Supporting Boolean Text Search. Information Retrieval. IR vs. DBMS. Chapter 27, Part A Introduction to IR Systems: Supporting Boolean Text Search Chapter 27, Part A Database Management Systems, R. Ramakrishnan 1 Information Retrieval A research field traditionally separate from Databases

More information