Meteorological Forecasting of DNI, clouds and aerosols

Size: px
Start display at page:

Download "Meteorological Forecasting of DNI, clouds and aerosols"

Transcription

1 Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR)

2 Overview What do we want to forecast? Local and short forecasts of DNI How to forecast? Different methods based on observations and numerical modeling Why is it difficult? Atmospheric phenomena have limited predictability. Combining different methods for the best forecast

3 What do we want to forecast? Direct normal irradiance Clouds Aerosols Local forecast for a solar power plant, about 1 square kilometre Forecast length: 0 to 240 minutes

4 How to forecast Ground-based observations by all-sky imagers: Calibrated images for cloud detection and classification Cloud velocities from two consecutive images Forecast with extrapolation Forecast length: ~ 30 minutes Spatial resolution: ~ 100 m Domain: local, ~ 1 km

5 Forecast with all-sky imagers Cloud Motion vector Forecast time t + 30 min

6 How to forecast Satellite-based observations: Utilize satellite imagers Optimize with rapid scan and highresolution observations Cloud motion vectors from optical flow techniques Forecast with extrapolation Forecast length: ~ 5-60 minutes, possibly up to 240 minutes Spatial resolution: ~ 3 km Domain: regional

7 Satellite-based observations Cloud fields from Meteosat Second Generation High Resolution Visible, centered over Greece (source DLR-IPA)

8 How to forecast Numerical weather prediction: Estimating initial state using all available information Solving the forecast equations as realistically as possible Time-critical production limits computational size Forecast length: up to 240 minutes, and longer Spatial resolution: ~ 3-20 km Domain: regional to global

9 Numerical weather prediction WRF (Meteotest), Harmonie (SMHI), WRF-Ensemble (DLR)

10 Difficulty with models: Parameterisation of unresolved physical processes Aerosol chemistry Turbulent mixing

11 Forecasting of DNI with Numerical weather prediction models Direct normal irradiance (DNI) is normally not a direct output of NWP models. DNI can be calculated with an external radiation code on basis of NWP input. NWP input: Clouds, water vapour (, precipitation) Winds, water vapour and temperature for aerosol chemistry and transport Winds also for advection of observed clouds

12 How to forecast aerosols Collect available observational information, e.g. from the WMO Sand and Dust Storm Warning Assessment and Advisory System s (SDSWAS) activity

13 How to forecast aerosols Global data assimilation of aerosols in the project Monitoring Atmospheric Composition and Climate (MACC) MACC delivers for Europe / Northern Africa generally good estimations Easily (and freely) available MBE Positive Bias Negative bias MBE of MACC AOD 550 nm Source: Mines Paristech / IEA SHC 46 MACC homepage

14 How to forecast aerosols High resolution aerosol modelling with COSMO- MUSCAT (TROPOS) Source: TROPOS

15 Targeted spatial and temporal scales Target Sky imagers Satellite Limited area NWP Global NWP 100 km Spatial resolution (log scale) 10 km 1 km 100 m 10 m 0.1 min 1 min 5 min 45 min 240 min 1 day Forecast time (log scale)

16 Why is forecasting difficult? Theoretical growth of forecast error

17 Error growth for different length scales From Lorenz-96 model: Error growth for two different length scales. The smaller length scale meso-gamma saturates faster.

18 Is higher resolution useful? Small-scale features in clouds have only a short predictability, if initialized correctly. Use of neighborhood method Take forecast over certain surrounding area, e.g. 20km x 20km and time interval. Calculate statistical measure for area: min, max, mean, median Result: Probability forecast for area Useful information for energy production?

19 Combining methods for the best forecast 3 Forecast error Forecast length

20 Combining methods for the best forecast Ground based methods Satellite based methods NWP based methods Images: SMHI, DLR Machine learning techniques (soft computing) combine the different forecasts in an optimal way. For example: FIS (Fuzzy inference systems), SVM (Support vector machine) KNN (K nearest neirbourgs) NN (Neural networks) ESTIMATIONS MEASUREMENTS

21 Meteotest: Shortest term forecast model satellite data cloud index cloud mask IR nighttime update: 15 min Numerical weather model WRF wind vectors update: 2x per day Meteotest WRF / different sources Aerosol data Meteotest / diff. sources Calculation of cloud index trajectories Prediction cloud position steps 15 min MACC / diff. so. ~16 min Post processing to reduce uncertainty Clearsky model prediction global & direct irradiance

22 Satellite & NWP based wind vectors Comparison of cloud motion vectors (CMV) based on satellite or NWP: quality is comparable but NWP based vectors much faster Comparison of Univ. Oldenburg (IEA SHC 46) Sat: satellite estimation NWP: NWP forecast CMV org: satellite based CMV 3500 m: NWP wind vectors at 3500 m

23 Cloud index & wind trajectories Source: Meteotest

24 Post processing Post processing: Kalman filter depending on cloud situation (only used for clear or totally cloudy situation but not for mixed) (Source: Meteotest)

25 Results: Forecast error for Global horizontal irradiance Opt. Modell (ECMWF/MOS)

26 Conclusions Methods for DNI forecasts include ground- and satellitebased observations, post-processing as well as numerical weather prediction. Different spatial and temporal scales are adressed by the methods. Predictability of atmospheric phenomena is scaledependent, extending from hours to weeks. Best forecast can be achieved by a combination of the different methods. Wind vectors from NWP and CMV are equally good. RMSE for 0-6 hours / all stations, GHI: W/m 2 (20-60%)

27 Thank you for your attention!

Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD

Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models. Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Energy Forecasting Using Numerical Weather Prediction (NWP) Models Patrick Mathiesen, Sanyo Fellow, UCSD Jan Kleissl, UCSD Solar Radiation Reaching the Surface Incoming solar radiation can be reflected,

More information

Solarstromprognosen für Übertragungsnetzbetreiber

Solarstromprognosen für Übertragungsnetzbetreiber Solarstromprognosen für Übertragungsnetzbetreiber Elke Lorenz, Jan Kühnert, Annette Hammer, Detlev Heienmann Universität Oldenburg 1 Outline grid integration of photovoltaic power (PV) in Germany overview

More information

Partnership to Improve Solar Power Forecasting

Partnership to Improve Solar Power Forecasting Partnership to Improve Solar Power Forecasting Venue: EUPVSEC, Paris France Presenter: Dr. Manajit Sengupta Date: October 1 st 2013 NREL is a national laboratory of the U.S. Department of Energy, Office

More information

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning.

A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. A system of direct radiation forecasting based on numerical weather predictions, satellite image and machine learning. 31st Annual International Symposium on Forecasting Lourdes Ramírez Santigosa Martín

More information

Solar and PV forecasting in Canada

Solar and PV forecasting in Canada Solar and PV forecasting in Canada Sophie Pelland, CanmetENERGY IESO Wind Power Standing Committee meeting Toronto, September 23, 2010 Presentation Plan Introduction How are PV forecasts generated? Solar

More information

SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY

SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY SOLAR IRRADIANCE FORECASTING, BENCHMARKING of DIFFERENT TECHNIQUES and APPLICATIONS of ENERGY METEOROLOGY Wolfgang Traunmüller 1 * and Gerald Steinmaurer 2 1 BLUE SKY Wetteranalysen, 4800 Attnang-Puchheim,

More information

User Perspectives on Project Feasibility Data

User Perspectives on Project Feasibility Data User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia marcel.suri@geomodel.eu http://geomodelsolar.eu http://solargis.info Solar Resources

More information

Development of a. Solar Generation Forecast System

Development of a. Solar Generation Forecast System ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,

More information

Deutsches Zentrum für Luft- und Raumfahrt (DLR) Earth Observation Center (EOC) Deutsches Fernerkundungsdatenzentrum (DFD)

Deutsches Zentrum für Luft- und Raumfahrt (DLR) Earth Observation Center (EOC) Deutsches Fernerkundungsdatenzentrum (DFD) Evaluierung von Global- und Direktstrahlungsvorhersagen des ECMWF insbesondere auch von Strahlungsvorhersagen basierend auf den neuen MACC Aerosolvorhersagen Deutsches Zentrum für Luft- und Raumfahrt (DLR)

More information

IEA SHC TASK 46 SOLAR RESOURCE ASSESSMENT AND FORECASTING

IEA SHC TASK 46 SOLAR RESOURCE ASSESSMENT AND FORECASTING Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK Bundesamt für Energie BFE IEA SHC TASK 46 SOLAR RESOURCE ASSESSMENT AND FORECASTING Annual Report 2012 Author and Co-Authors

More information

Expert System for Solar Thermal Power Stations. Deutsches Zentrum für Luft- und Raumfahrt e.v. Institute of Technical Thermodynamics

Expert System for Solar Thermal Power Stations. Deutsches Zentrum für Luft- und Raumfahrt e.v. Institute of Technical Thermodynamics Expert System for Solar Thermal Power Stations Institute of Technical Thermodynamics Stuttgart, July 2001 - Expert System for Solar Thermal Power Stations 2 Solar radiation and land resources for solar

More information

Forecasting of Solar Radiation

Forecasting of Solar Radiation Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University, Institute of Physics, Energy and Semiconductor Research Laboratory, Energy Meteorology Group 26111 Oldenburg,

More information

Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction

Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Solar Irradiance Forecasting Using Multi-layer Cloud Tracking and Numerical Weather Prediction Jin Xu, Shinjae Yoo, Dantong Yu, Dong Huang, John Heiser, Paul Kalb Solar Energy Abundant, clean, and secure

More information

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:

More information

Solar Resource Assessment

Solar Resource Assessment Introduction to Resource Assessments Carsten Hoyer-Klick Folie 1 Solar Resource Assessment Folie 2 1 Global Horizontal Irradiation (GHI) Direct Horizontal Irradiation (DHI) Diffuse Irradiation (DIF) GHI

More information

Photovoltaic and Solar Forecasting: State of the Art

Photovoltaic and Solar Forecasting: State of the Art Photovoltaic and Solar Forecasting: State of the Art Forecast PV power Actual PV power Report IEA PVPS T14 01:2013 Photo credits cover page Upper left image: Environment Canada, Data courtesy of NOAA (February

More information

NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada

NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada NOWCASTING OF PRECIPITATION Isztar Zawadzki* McGill University, Montreal, Canada 1. INTRODUCTION Short-term methods of precipitation nowcasting range from the simple use of regional numerical forecasts

More information

Review of solar irradiance forecasting methods and a proposition for small-scale insular grids

Review of solar irradiance forecasting methods and a proposition for small-scale insular grids Review of solar irradiance forecasting methods and a proposition for small-scale insular grids Hadja Maïmouna Diagne, Mathieu David, Philippe Lauret, John Boland, Nicolas Schmutz To cite this version:

More information

EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US

EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US EVALUATION OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, Perez@asrc.albany,edu Mark Beauharnois ASRC, Albany, NY mark@asrc..albany,edu Karl Hemker,

More information

Operational Mesoscale NWP at the Japan Meteorological Agency. Tabito HARA Numerical Prediction Division Japan Meteorological Agency

Operational Mesoscale NWP at the Japan Meteorological Agency. Tabito HARA Numerical Prediction Division Japan Meteorological Agency Operational Mesoscale NWP at the Japan Meteorological Agency Tabito HARA Numerical Prediction Division Japan Meteorological Agency NWP at JMA JMA has been operating two NWP models. GSM (Global Spectral

More information

Assessment report for global and direct irradiance forecasts

Assessment report for global and direct irradiance forecasts MACC-II Deliverable D_123.1 Assessment report for global and direct irradiance forecasts Date: 12/2013 Lead Beneficiary: DLR (#11) Nature: R Dissemination level: PP Grant agreement n 283576 Work-package

More information

Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation

Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation ENERGY Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation Global Horizontal Irradiance 70 Introduction Solar energy production is directly correlated to the amount of radiation received

More information

Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis

Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis Authors Name/s per 1st Affiliation (Author) Authors Name/s per 2nd Affiliation (Author) line 1 (of Affiliation): dept. name

More information

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA M.Derrien 1, H.Le Gléau 1, Jean-François Daloze 2, Martial Haeffelin 2 1 Météo-France / DP / Centre de Météorologie Spatiale. BP 50747.

More information

Improving Accuracy of Solar Forecasting February 14, 2013

Improving Accuracy of Solar Forecasting February 14, 2013 Improving Accuracy of Solar Forecasting February 14, 2013 Solar Resource Forecasting Objectives: Improve accuracy of solar resource forecasts Enable widespread use of solar forecasts in power system operations

More information

The impact of window size on AMV

The impact of window size on AMV The impact of window size on AMV E. H. Sohn 1 and R. Borde 2 KMA 1 and EUMETSAT 2 Abstract Target size determination is subjective not only for tracking the vector but also AMV results. Smaller target

More information

The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service

The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in

More information

Site Assessment of Solar Resource

Site Assessment of Solar Resource Site Assessment of Solar Resource Upington Solar Park Province Northern Cape, South Africa rev. 2 Date: 14 June 2011 Customer: Supplier: Stellenbosch University Contact: Mr. Riaan Meyer Centre for Renewable

More information

Solar Resource & Radiometry Tasks in Antofagasta

Solar Resource & Radiometry Tasks in Antofagasta Solar Resource & Radiometry Tasks in Antofagasta, Ph.D. aitor.marzo@uantof.cl Mauricio Trigo, Mg. Tania Varas, Mg. Antofagasta, January 14nd, 2015 Index Introduction to Solar Radiation Measurements Climates

More information

INTRODUCTION TO EUMETSAT DATA CENTRE

INTRODUCTION TO EUMETSAT DATA CENTRE Joint COSPAR and WMO Capacity Building Workshop on Satellite Remote Sensing, Water Cycle and Climate Change 29 July,2014 Tver, Russia MONITORING WEATHER AND CLIMATE FROM SPACE INTRODUCTION TO EUMETSAT

More information

Nowcasting: analysis and up to 6 hours forecast

Nowcasting: analysis and up to 6 hours forecast Nowcasting: analysis and up to 6 hours forecast Very high resoultion in time and space Better than NWP Rapid update Application oriented NWP problems for 0 6 forecast: Incomplete physics Resolution space

More information

The potential role of forecasting for integrating solar generation into the Australian National Electricity Market

The potential role of forecasting for integrating solar generation into the Australian National Electricity Market The potential role of forecasting for integrating solar generation into the Australian National Electricity Market Ben Elliston 1, Iain MacGill 1,2 1 School of Electrical Engineering and Telecommunications

More information

HUNGARIAN METEOROLOGICAL SERVICE, BUDAPEST

HUNGARIAN METEOROLOGICAL SERVICE, BUDAPEST WWW TECHNICAL PROGRESS REPORT ON THE GLOBAL DATA- PROCESSING AND FORECASTING SYSTEM (GDPFS), AND THE ANNUAL NUMERICAL WEATHER PREDICTION (NWP) PROGRESS REPORT FOR THE YEAR 2005 HUNGARIAN METEOROLOGICAL

More information

Overview of the IR channels and their applications

Overview of the IR channels and their applications Ján Kaňák Slovak Hydrometeorological Institute Jan.kanak@shmu.sk Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation

More information

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,

More information

The Copernicus Atmosphere Monitoring Service (CAMS)

The Copernicus Atmosphere Monitoring Service (CAMS) The Copernicus Atmosphere Monitoring Service (CAMS) Products, services and opportunities Vincent Henri Peuch Head of CAMS Vincent Henri.Peuch@ecmwf.int Funded by the European Union Implemented by Atmospheric

More information

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF

Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF 3 Working Group on Verification and Case Studies 56 Comparative Evaluation of High Resolution Numerical Weather Prediction Models COSMO-WRF Bogdan Alexandru MACO, Mihaela BOGDAN, Amalia IRIZA, Cosmin Dănuţ

More information

Integrating Big Data for Environmental Intelligence. Dr Sue Barrell Deputy Director (Observations and Infrastructure)

Integrating Big Data for Environmental Intelligence. Dr Sue Barrell Deputy Director (Observations and Infrastructure) Integrating Big Data for Environmental Intelligence Dr Sue Barrell Deputy Director (Observations and Infrastructure) Public Safety Societal Wellbeing National Security ENVIRONMENTAL INTELLIGENCE Conclusions

More information

MACHINE LEARNING TECHNIQUES FOR SHORT TERM SOLAR FORECASTING

MACHINE LEARNING TECHNIQUES FOR SHORT TERM SOLAR FORECASTING SASEC2015 Third Southern African Solar Energy Conference 11 13 May 2015 Kruger National Park, South Africa MACHINE LEARNING TECHNIQUES FOR SHORT TERM SOLAR FORECASTING Lauret P.*, David M. and Tapachès

More information

Solar Input Data for PV Energy Modeling

Solar Input Data for PV Energy Modeling June 2012 Solar Input Data for PV Energy Modeling Marie Schnitzer, Christopher Thuman, Peter Johnson Albany New York, USA Barcelona Spain Bangalore India Company Snapshot Established in 1983; nearly 30

More information

IBM Big Green Innovations Environmental R&D and Services

IBM Big Green Innovations Environmental R&D and Services IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project

More information

The use of detailed weather information in farm management

The use of detailed weather information in farm management The use of detailed weather information in farm management Smart AgriMatics 2014, Paris Luka Honzak, Marko Novak, Vanja Blažica, Andrej Ceglar BO - MO, LTD. luka@bo-mo.si Outlook Introduction Company,

More information

Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS

Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS Boundary layer challenges for aviation forecaster Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS 3.12.2012 Forecast for general public We can live with it - BUT Not

More information

The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation

The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation Energies 2015, 8, 9594-9619; doi:10.3390/en8099594 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies The Weather Intelligence for Renewable Energies Benchmarking Exercise on Short-Term

More information

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,

More information

CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA

CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA Marcel Suri 1, Tomas Cebecauer 1, Artur Skoczek 1, Ronald Marais 2, Crescent Mushwana 2, Josh Reinecke 3 and Riaan Meyer 4 1 GeoModel

More information

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners

More information

Statistical Learning for Short-Term Photovoltaic Power Predictions

Statistical Learning for Short-Term Photovoltaic Power Predictions Statistical Learning for Short-Term Photovoltaic Power Predictions Björn Wolff 1, Elke Lorenz 2, Oliver Kramer 1 1 Department of Computing Science 2 Institute of Physics, Energy and Semiconductor Research

More information

VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT

VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT VALIDATION OF THE SUNY SATELLITE MODEL IN A METEOSAT ENVIRONMENT Richard Perez ASRC, 251 Fuller Rd Albany, NY, 12203 Perez@asrc.cestm.albany,edu Jim Schlemmer ASRC Jim@asrc.cestm.albany,edu Shannon Cowlin

More information

Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements

Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College

More information

Cloud Mask Product: Product Guide

Cloud Mask Product: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/801027 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 21 August 2015 http://www.eumetsat.int WBS : EUMETSAT

More information

Solar Variability and Forecasting

Solar Variability and Forecasting Solar Variability and Forecasting Jan Kleissl, Chi Chow, Matt Lave, Patrick Mathiesen, Anders Nottrott, Bryan Urquhart Mechanical & Environmental Engineering, UC San Diego http://solar.ucsd.edu Variability

More information

Development of an Integrated Data Product for Hawaii Climate

Development of an Integrated Data Product for Hawaii Climate Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes

More information

VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US

VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US VALIDATION OF SHORT AND MEDIUM TERM OPERATIONAL SOLAR RADIATION FORECASTS IN THE US Richard Perez, Sergey Kivalov, James Schlemmer, Karl Hemker Jr., ASRC, University at Albany David Renné National Renewable

More information

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,

More information

Proposals of Summer Placement Programme 2015

Proposals of Summer Placement Programme 2015 Proposals of Summer Placement Programme 2015 Division Project Title Job description Subject and year of study required A2 Impact of dual-polarization Doppler radar data on Mathematics or short-term related

More information

The APOLLO cloud product statistics Web service

The APOLLO cloud product statistics Web service The APOLLO cloud product statistics Web service Introduction DLR and Transvalor are preparing a new Web service to disseminate the statistics of the APOLLO cloud physical parameters as a further help in

More information

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low

More information

Forecasting Solar Power with Adaptive Models A Pilot Study

Forecasting Solar Power with Adaptive Models A Pilot Study Forecasting Solar Power with Adaptive Models A Pilot Study Dr. James W. Hall 1. Introduction Expanding the use of renewable energy sources, primarily wind and solar, has become a US national priority.

More information

http://www.isac.cnr.it/~ipwg/

http://www.isac.cnr.it/~ipwg/ The CGMS International Precipitation Working Group: Experience and Perspectives Vincenzo Levizzani CNR-ISAC, Bologna, Italy and Arnold Gruber NOAA/NESDIS & Univ. Maryland, College Park, MD, USA http://www.isac.cnr.it/~ipwg/

More information

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating

More information

SATELLITE USES FOR PURPOSE OF NOWCASTING. Introduction

SATELLITE USES FOR PURPOSE OF NOWCASTING. Introduction SATELLITE USES FOR PURPOSE OF NOWCASTING Kedir, Mohammed National Meteorological Agency of Ethiopia Introduction The application(uses) of satellite sensing data deals to obtain information about the basic

More information

Solar Radiation Measurement. Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011

Solar Radiation Measurement. Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011 Solar Radiation Measurement Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011 Why Do We Need Data on Solar Energy? Global Climate System Climate Energy Balance Solar Exposure and Irradiance

More information

Cloud Correction and its Impact on Air Quality Simulations

Cloud Correction and its Impact on Air Quality Simulations Cloud Correction and its Impact on Air Quality Simulations Arastoo Pour Biazar 1, Richard T. McNider 1, Andrew White 1, Bright Dornblaser 3, Kevin Doty 1, Maudood Khan 2 1. University of Alabama in Huntsville

More information

Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography

Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for

More information

163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS

163 ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS ANALYSIS OF THE URBAN HEAT ISLAND EFFECT COMPARISON OF GROUND-BASED AND REMOTELY SENSED TEMPERATURE OBSERVATIONS Rita Pongrácz *, Judit Bartholy, Enikő Lelovics, Zsuzsanna Dezső Eötvös Loránd University,

More information

FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING

FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING FORECASTING SOLAR POWER INTERMITTENCY USING GROUND-BASED CLOUD IMAGING Vijai Thottathil Jayadevan Jeffrey J. Rodriguez Department of Electrical and Computer Engineering University of Arizona Tucson, AZ

More information

CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING

CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT CALIFORNIA RENEWABLE ENERGY FORECASTING, RESOURCE DATA, AND MAPPING Prepared for: Prepared by: California Energy Commission Regents of

More information

Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG

Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG Ralf Meerkötter, Luca Bugliaro, Knut Dammann, Gerhard Gesell, Christine König, Waldemar Krebs, Hermann Mannstein, Bernhard Mayer, presented

More information

Clarity. Helping you understand the facts about weather forecasting

Clarity. Helping you understand the facts about weather forecasting Clarity Helping you understand the facts about weather forecasting Forecasting the weather is essential to help you prepare for the best and the worst of our climate. Met Office forecasters work 24/7,

More information

IRS Level 2 Processing Concept Status

IRS Level 2 Processing Concept Status IRS Level 2 Processing Concept Status Stephen Tjemkes, Jochen Grandell and Xavier Calbet 6th MTG Mission Team Meeting 17 18 June 2008, Estec, Noordwijk Page 1 Content Introduction Level 2 Processing Concept

More information

Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM

Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM Mode-S Enhanced Surveillance derived observations from multiple Air Traffic Control Radars and the impact in hourly HIRLAM 1 Introduction Upper air wind is one of the most important parameters to obtain

More information

National Database of Air Quality and Meteorological Information. Gregor Feig South African Weather Service

National Database of Air Quality and Meteorological Information. Gregor Feig South African Weather Service National Database of Air Quality and Meteorological Information Gregor Feig South African Weather Service Air Quality at the South African Weather Service 1. South African Air Quality Information System

More information

Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality

Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality M. E. Splitt University of Utah Salt Lake City, Utah C. P. Bahrmann Cooperative Institute for Meteorological Satellite Studies

More information

2014 SORCE Science Meeting. Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the

2014 SORCE Science Meeting. Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer-Langley Technique. D. Bolsée, N. Pereira, W. Decuyper, D. Gillotay, H. Yu Belgian Institute

More information

Wintry weather: improved nowcasting through data fusion

Wintry weather: improved nowcasting through data fusion Wintry weather: improved nowcasting through data fusion Arnold Tafferner, Felix Keis DLR Institut für Physik der Atmosphäre (IPA) Wetter&Fliegen Final Colloquium, MAC MUC, 15 March 2012 1 Outline The problem

More information

USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY

USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew J. Reno Sandia National Laboratories Georgia Institute of Technology 777 Atlantic Drive NW Atlanta, GA 3332-25, USA matthew.reno@gatech.edu

More information

Very High Resolution Arctic System Reanalysis for 2000-2011

Very High Resolution Arctic System Reanalysis for 2000-2011 Very High Resolution Arctic System Reanalysis for 2000-2011 David H. Bromwich, Lesheng Bai,, Keith Hines, and Sheng-Hung Wang Polar Meteorology Group, Byrd Polar Research Center The Ohio State University

More information

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu

More information

1861-35. European Conference on Severe Storms (ECSS 2007) 10-14 September 2007

1861-35. European Conference on Severe Storms (ECSS 2007) 10-14 September 2007 1861-35 European Conference on Severe Storms (ECSS 2007) 10-14 September 2007 Development of an operational thunderstorm forecast system for air traffic FORSTER Caroline Institut fuer Physik der Atmosphere,

More information

Power Output Analysis of Photovoltaic Systems in San Diego County Mohammad Jamaly, Juan L Bosch, Jan Kleissl

Power Output Analysis of Photovoltaic Systems in San Diego County Mohammad Jamaly, Juan L Bosch, Jan Kleissl 1 Power Output Analysis of Photovoltaic Systems in San Diego County Mohammad Jamaly, Juan L Bosch, Jan Kleissl Abstract Aggregate ramp rates of 86 distributed photovoltaic (PV) systems installed in Southern

More information

Solar Atlas for the Southern and Eastern Mediterranean

Solar Atlas for the Southern and Eastern Mediterranean Solar Atlas for the Southern and Eastern Mediterranean Carsten Hoyer-Klick 1, Lucien Wald 2, Lionel Menard 2, Philippe Blanc 2, Etienne Wey 3, Marcel Suri 4, Tomas Cebecauer 4, Thomas Huld 5, Houda Allal

More information

Next generation models at MeteoSwiss: communication challenges

Next generation models at MeteoSwiss: communication challenges Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Next generation models at MeteoSwiss: communication challenges Tanja Weusthoff, MeteoSwiss Material from

More information

Cloud Masking and Cloud Products

Cloud Masking and Cloud Products Cloud Masking and Cloud Products MODIS Operational Algorithm MOD35 Paul Menzel, Steve Ackerman, Richard Frey, Kathy Strabala, Chris Moeller, Liam Gumley, Bryan Baum MODIS Cloud Masking Often done with

More information

The Wind Integration National Dataset (WIND) toolkit

The Wind Integration National Dataset (WIND) toolkit The Wind Integration National Dataset (WIND) toolkit EWEA Wind Power Forecasting Workshop, Rotterdam December 3, 2013 Caroline Draxl NREL/PR-5000-60977 NREL is a national laboratory of the U.S. Department

More information

IMPROVEMENT OF THE WEATHER RESEARCH AND FORECASTING (WRF) MODEL FOR SOLAR RESOURCE ASSESSMENTS AND FORECASTS UNDER CLEAR SKIES

IMPROVEMENT OF THE WEATHER RESEARCH AND FORECASTING (WRF) MODEL FOR SOLAR RESOURCE ASSESSMENTS AND FORECASTS UNDER CLEAR SKIES World Renewable Energy Forum, Denver, CO, 2012 IMPROVEMENT OF THE WEATHER RESEARCH AND FORECASTING (WRF) MODEL FOR SOLAR RESOURCE ASSESSMENTS AND FORECASTS UNDER CLEAR SKIES José A. Ruiz-Arias NCAR/MMM,

More information

Big Data Assimilation Revolutionizing Weather Prediction

Big Data Assimilation Revolutionizing Weather Prediction February 23, 2015, ISDA2015, Kobe Big Data Assimilation Revolutionizing Weather Prediction M. Kunii, J. Ruiz, G.-Y. Lien, K. Kondo, S. Otsuka, Y. Maejima, and Takemasa Miyoshi* RIKEN Advanced Institute

More information

Solar forecasting for grid management with high PV penetration

Solar forecasting for grid management with high PV penetration Solar forecasting for grid management with high PV penetration Lu ZHAO, Wilfred Walsh Solar Energy Research Institute of Singapore (SERIS) InterMET Asia 23 Apri 2015 1! Presentation outline About SERIS

More information

Synoptic assessment of AMV errors

Synoptic assessment of AMV errors NWP SAF Satellite Application Facility for Numerical Weather Prediction Visiting Scientist mission report Document NWPSAF-MO-VS-038 Version 1.0 4 June 2009 Synoptic assessment of AMV errors Renato Galante

More information

Data Analytic-Based Adaptive Solar Energy Forecasting Framework 1

Data Analytic-Based Adaptive Solar Energy Forecasting Framework 1 > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Data Analytic-Based Adaptive Solar Energy Forecasting Framework 1 Y. S. Manjili 2, Student Member, IEEE, R. E.

More information

Wind resources map of Spain at mesoscale. Methodology and validation

Wind resources map of Spain at mesoscale. Methodology and validation Wind resources map of Spain at mesoscale. Methodology and validation Martín Gastón Edurne Pascal Laura Frías Ignacio Martí Uxue Irigoyen Elena Cantero Sergio Lozano Yolanda Loureiro e-mail:mgaston@cener.com

More information

Improving Cloud Impacts on Photolysis Rates in Off-Line AQMs

Improving Cloud Impacts on Photolysis Rates in Off-Line AQMs Improving Cloud Impacts on Photolysis Rates in Off-Line AQMs Chris Emery ENVIRON Corporation June 24, 2009 Acknowledgements: K. Baker, B. Timin, EPA/OAQPS Introduction Photochemistry is strongly influenced

More information

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington

More information

MM5/COSMO-DE Model Inter-Comparison and Model Validation

MM5/COSMO-DE Model Inter-Comparison and Model Validation MM5/COSMO-DE Model Inter-Comparison and Model Validation Klaus Dengler and Christian Keil DLR, Institute of Atmospheric Physics Assessment of forecast quality using observations of the FRA airport campaign

More information

GlobCurrent User Consultation Modelling & Prediction needs Mike Bell November Crown copyright Met Office

GlobCurrent User Consultation Modelling & Prediction needs Mike Bell November Crown copyright Met Office GlobCurrent User Consultation Modelling & Prediction needs Mike Bell November 2014 Crown copyright Met Office Contents Different types of - motion - use - modelling and prediction - data Some examples

More information

AMVs at the Met Office: activities to improve their impact in NWP

AMVs at the Met Office: activities to improve their impact in NWP AMVs at the Met Office: activities to improve their impact in NWP James Cotton, Mary Forsythe Met Office, FitzRoy Road, Exeter EX1 3PB, UK Abstract Atmospheric motion vectors (AMVs) are an important source

More information

Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS

Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS Data Integration and long-term planning of the Observing Systems as a cross-cutting process in a NMS ECAC Zurich, Setpember 15 2020 Ch. Häberli Deputy Head Climate Division/Head Meteorological Data Coordination

More information

PREDICTION OF PHOTOVOLTAIC SYSTEMS PRODUCTION USING WEATHER FORECASTS

PREDICTION OF PHOTOVOLTAIC SYSTEMS PRODUCTION USING WEATHER FORECASTS PREDICTION OF PHOTOVOLTAIC SYSTEMS PRODUCTION USING WEATHER FORECASTS Jure Vetršek* 1 and prof. Sašo Medved 1 1University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Sustainable Technologies

More information

SOLAR IRRADIATION FORECASTING: STATE-OF-THE-ART AND PROPOSITION FOR FUTURE DEVELOPMENTS FOR SMALL-SCALE INSULAR GRIDS

SOLAR IRRADIATION FORECASTING: STATE-OF-THE-ART AND PROPOSITION FOR FUTURE DEVELOPMENTS FOR SMALL-SCALE INSULAR GRIDS SOLAR IRRADIATION FORECASTING: STATE-OF-THE-ART AND PROPOSITION FOR FUTURE DEVELOPMENTS FOR SMALL-SCALE INSULAR GRIDS Hadja Maïmouna Diagne 1,2 1 Réuniwatt, 14, rue de la Guadeloupe 97490 Sainte-Clotilde

More information

How can I forecast tomorrow s weather?

How can I forecast tomorrow s weather? How can I forecast tomorrow s weather? A laboratory experiment from the Little Shop of Physics at Colorado State University CMMAP Reach for the sky. Overview While there are considerable difficulties in

More information