A Parallel Processor for Distributed Genetic Algorithm with Redundant Binary Number

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Parallel Processor for Distributed Genetic Algorithm with Redundant Binary Number"

Transcription

1 A Parallel Processor for Distributed Genetic Algorithm with Redundant Binary Number 1 Tomohiro KAMIMURA, 2 Akinori KANASUGI 1 Department of Electronics, Tokyo Denki University, 2 Graduate School of Engineering, Tokyo Denki University, Abstract Genetic algorithm (GA) is one of optimization algorithm based on an idea for evolution of life. GA can be applied various combination optimization problem. This paper proposes a parallel processor for distributed genetic algorithm (DGA) with redundant binary number. Since a redundant binary number has redundancy, solution expression becomes variegated. For this reason, it is expected the algorithm easily find the optimized solution, and the error rates decrease. Since DGA is a parallel algorithm, the performance can be improved by using a specified parallel processor. The effectiveness of the proposed processor was confirmed by some simulations and experiments using FPGA circuit board. 1. Introduction Keywords: Parallel Processor, Distributed GA, Redundant Binary Number Genetic algorithm (GA) is one of optimization algorithm based on an idea for evolution of life [1]. GA can be applied various problems such as combination optimization problem, machine learning and so on. A distributed genetic algorithm (DGA) divides a solution group into some solution groups island, and performs genetic operation in each island [2]. In DGA, in order to exchange the solution among each island, migration operation is performed. Since DGA has few numbers of individuals per island, premature convergence takes place easily. However, since diversity is also maintainable by migration, compared with conventional GA, effective solution search is expectable. This paper proposes a novel DGA with redundant binary number, while conventional DGA expresses chromosomes in binary number. Since a redundant binary number has redundancy, solution expression becomes variegated. For this reason, it is expected the algorithm easily find the optimized solution, and the error rates decrease. In the proposed algorithm, different numerical systems are used on each island. Therefore, since diversity is further maintainable, the further improvement in performance is expectable. Since DGA is a parallel algorithm, the performance can be improved by using a specified parallel processor. The effectiveness of the proposed processor was confirmed by some simulations and experiments using FPGA circuit board. 2. Distributed genetic algorithm A Genetic algorithm (GA) is proposed in 1975 by Prof. John Holland. The algorithm is based on Darwin's evolutionary theory and likens solution to gene. The flow chart of GA is shown in figure 1. The procedure of GA is as follows. (1) Initialization: The first process decides initial genotype, namely value and genetic length. For example, if we assume values are 0 and 1, and length is 8, a chromosome is shown in figure 2. (2) Evaluation: The second process calculates the fitness for each individual with the target function. The evaluation depends on each problem. (3) Termination Judgment: If the process satisfies the termination condition, the operation finishes and output the individual with the best fitness as the optimized solution. (4) Selection: To generate the children, this process chooses parents from individuals. For example, if we assume parents the first generation, children become the second generation. The children International Journal of Information Processing and Management(IJIPM) Volume 4, Number 1, January 2013 doi: /ijipm.vol4.issue

2 generate the next children again. The children inherited the characteristic of the parents are generated in this way. (5) Crossover: This process crosses individuals chosen by selection operation and generates the individuals of the next generation. Example of crossover operation is shown in figure 3. (6) Mutation: This process mutates the chromosome of new generation. The mutation is effective to escape from a local optimum solution. Example of crossover operation is shown in figure 4. Figure 1. Flow chart of GA Figure 2. An example of chromosome Figure 3. Example of crossover operation 2.1. Distributed genetic algorithm Figure 4. Example of mutation operation A distributed genetic algorithm (DGA) divides a solution group into some solution groups island, and performs genetic operation in each island. In DGA, in order to exchange the solution among each island, migration operation is performed (figure 5). Since DGA has few numbers of individuals per island, premature convergence takes place easily. However, since diversity is also maintainable by migration, compared with conventional GA, effective solution search is expectable. Figure 5. Concept of distributed genetic algorithm (DGA) 99

3 2.2. Redundant binary number In this paper, redundant binary number system is utilized [3]. The advantage of GA with redundant binary number is increase of total expression number of optimized solution. From this advantage, we can expect that improvement in the searching speed and decrease of the error rate. The redundant binary number uses values 0, 1 and -1. However, because hardware cannot deal the value -1, we express each genetic information in two bits. We assume that 0 sets 00 or 11, 1 sets 01, -1 sets 10. These correspondences are summarized in table 1. For example, we express decimal number seven in binary number of the four bits precision and redundant binary number, as shown in figure 6. As shown in figure 6, chromosomes of the redundant binary number become longer in comparison with the normal binary number. However, there are many expression way. For example, there are nine ways in the case of figure 6. The GA based on redundant binary number is almost the same as conventional GA. However, decoding from redundant binary number to binary number is required. In this paper, we separate chromosomes into odd number bit and even number bit. Then we subtract even number bit from odd number bit. An example is shown in figure 7. Table 1. Bit strings of genetic information Bit String 00, Figure 6. A comparison between binary number and redundant binary number 3. Proposed DGA Figure 7. Decoding method from redundant binary number to binary number The concept of DGA proposed in this paper is shown in figure 8. In this figure, GA_B, GA_G, and GA_RB express GA using binary number, GA using Gray code, and GA using redundant binary number, respectively. Figure 9 shows the selection method of a migration place. As shown in Fig. 9, one migration operation is performed in a ring shape. The number of the chromosomes which emigrate is one. The random number r chooses the island where a chromosome moves. A part of solutions are exchanged through the migration unit. Of course in the case of migration, code conversions are performed. Although search results depend on type of solution code, stable good results are expected to many problems by the proposed DGA. In Fig. 8, although there are two sets of GA with binary number, one set of GA with Gray code, and one set of GA with redundant binary number, this is only an example. Of course, various combinations are possible. In order to suppress the circuit scale, the composition of figure 8 was illustrated. Namely, since the scale is small, two sets of circuits treating a binary number are used, and since the scale is large, as for the circuit treating a gray code or a redundant binary number, only one set is used. 100

4 Figure 8. Concept of proposed DGA 4. Simulation Figure 9. The selection method of a migration place The evaluation by simulation was performed in four GA (binary number, Gray code, redundant binary and proposed DGA). The performance of each GA was evaluated by solving following three functions. f ( x) x (Solution: x 141) (1) f ( x) x (Solution: x 44721) (2) 2 f ( x) ( x 100)( x 40000) (Solution: x ) (3) The simulation program was implemented in C language. The error rates of three functions are summarized in figure 10. Each result is the average of 500 times of trial. The parameters are summarized in table 2. In addition, although the solution is denoted by 16 bits in GA with binary number and Gray code, the solution is denoted by 32 bits in GA with redundant binary number. In calculation of error rate, only the case where a solution is completely same as the optimal solution is judged as a correct answer. Therefore, if a solution is not in agreement with the optimal solution, even if very close to the optimal solution, it has judged as an error. Figure 10 shows that good results were obtained by the proposed DGA in various problems. 101

5 5. Design of processor Figure 10. Error rate Table 2. GA Parameters Parameter Value Generation 100 Population 32 (8 x 4) Selection Crossover Ranking One point Crossover rate 1 Mutation rate Since DGA is a parallel algorithm, the performance can be improved by using a specified parallel processor. Then, the processor which specialized in proposed DGA was designed. The block diagram is shown in Fig. 11. Figure 11. Block diagram The processor consists of four islands and one migration unit. Each island consists of a memory, a crossover unit, mutation units and an evaluation unit. Two islands are assigned to GA with usual binary number, one island is assigned to GA with gray code and one island is assigned to GA with redundant binary number. By using microprocessors for evaluation units, the proposed processor is applicable to many problems. However, in this paper, the specified evaluation unit for solving the above-mentioned equation 2 was designed for simplification. The processor was described by VHDL. The integrated design environment ISE 11.1 of Xilinx Corporation was used for logic simulation and implementation. The target FPGA is Virtex4 (xc4vlx25) of Xilinx Corporation. Figure 12 shows the result of logic simulation. This simulation result shows that the suitable solution is obtained. The situation of experiment is shown in figure 13. The FPGA evaluation 102

6 board is connected to a display monitor, and the result is displayed. The result is displayed by the hexadecimal number. Since AEB1 of a hexadecimal number is of a decimal number, it is the right result. Figure 12. Logic simulation results 6. Conclusion Figure 13. Experiment with FPGA board In this paper, a parallel processor for distributed genetic algorithm with redundant binary number was presented. It was confirmed that the proposed processor was effective for improvement of error rate by simulation and experimental results. The future works are evaluation for practical problems. 7. Acknowledgement This work was supported by Tokyo Denki University Science Promotion Fund (Q12J-03) 8. References [1] L. Davis, Handbook of Genetic Algorithms. Van Nostrand Reinhold, [2] R. Tanese, Distributed Genetic Algorithms, Proceeding of the 3rd International Conference on Genetic Algorithms, pp , [3] M. Aoshima, A. Kanasugi, A Processor for Genetic Algorithm based on Redundant Binary Number, Proceeding of AICIT International Conference on Convergence and Hybrid Information Technology, Vol.1, pp ,

7 [4] A. Murayama, A. Kanasugi, A novel coding method for genetic algorithms based on redundant binary number, Proceeding of International Symposium on Artificial Life and Robotics, pp , [5] P. Graham, B. Nelson, A hardware genetic algorithm for the traveling salesman problem on SPLASH2, Proceeding of International Workshop on Field Lecture Notes In Computer Science, Vol. 975, pp , [6] S. Seto, A. Kanasugi, A Novel Distributed Genetic Algorithm with Redundant Binary Number, Proceeding of AICIT International Conference on Information Science and Digital Content Technology, pp , [7] M. Aoshima, A. Kanasugi, A Processor for Genetic Algorithm based on Redundant Binary Number, Journal of AICIT Next Generation Information Technology, Vol. 1, No. 3, pp , [8] M. Murayama, A. Kanasugi, A Processor for GA based on Redundant Binary Number using FPGA, Journal of Next Generation Information Technology, Vol. 3, No. 3, pp. 1-9,

Numerical Research on Distributed Genetic Algorithm with Redundant

Numerical Research on Distributed Genetic Algorithm with Redundant Numerical Research on Distributed Genetic Algorithm with Redundant Binary Number 1 Sayori Seto, 2 Akinori Kanasugi 1,2 Graduate School of Engineering, Tokyo Denki University, Japan 10kme41@ms.dendai.ac.jp,

More information

Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk

Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk BMAS 2005 VHDL-AMS based genetic optimization of a fuzzy logic controller for automotive active suspension systems Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk Outline Introduction and system

More information

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 Transistor Level Fault Finding in VLSI Circuits using Genetic Algorithm Lalit A. Patel, Sarman K. Hadia CSPIT, CHARUSAT, Changa., CSPIT, CHARUSAT, Changa Abstract This paper presents, genetic based algorithm

More information

Comparison of Major Domination Schemes for Diploid Binary Genetic Algorithms in Dynamic Environments

Comparison of Major Domination Schemes for Diploid Binary Genetic Algorithms in Dynamic Environments Comparison of Maor Domination Schemes for Diploid Binary Genetic Algorithms in Dynamic Environments A. Sima UYAR and A. Emre HARMANCI Istanbul Technical University Computer Engineering Department Maslak

More information

A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN)

A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) ISSN: 2278 1323 All Rights Reserved 2014 IJARCET 3910 A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) Miss: KIRTI JOSHI Abstract A Genetic Algorithm (GA) is an intelligent search

More information

ON SUITABILITY OF FPGA BASED EVOLVABLE HARDWARE SYSTEMS TO INTEGRATE RECONFIGURABLE CIRCUITS WITH HOST PROCESSING UNIT

ON SUITABILITY OF FPGA BASED EVOLVABLE HARDWARE SYSTEMS TO INTEGRATE RECONFIGURABLE CIRCUITS WITH HOST PROCESSING UNIT 216 ON SUITABILITY OF FPGA BASED EVOLVABLE HARDWARE SYSTEMS TO INTEGRATE RECONFIGURABLE CIRCUITS WITH HOST PROCESSING UNIT *P.Nirmalkumar, **J.Raja Paul Perinbam, @S.Ravi and #B.Rajan *Research Scholar,

More information

14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)

14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,

More information

Architecture bits. (Chromosome) (Evolved chromosome) Downloading. Downloading PLD. GA operation Architecture bits

Architecture bits. (Chromosome) (Evolved chromosome) Downloading. Downloading PLD. GA operation Architecture bits A Pattern Recognition System Using Evolvable Hardware Masaya Iwata 1 Isamu Kajitani 2 Hitoshi Yamada 2 Hitoshi Iba 1 Tetsuya Higuchi 1 1 1-1-4,Umezono,Tsukuba,Ibaraki,305,Japan Electrotechnical Laboratory

More information

Evolutionary SAT Solver (ESS)

Evolutionary SAT Solver (ESS) Ninth LACCEI Latin American and Caribbean Conference (LACCEI 2011), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-5, 2011,

More information

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Manal F. Younis Computer Department, College

More information

A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0

A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0 212 International Conference on System Engineering and Modeling (ICSEM 212) IPCSIT vol. 34 (212) (212) IACSIT Press, Singapore A Binary Model on the Basis of Imperialist Competitive Algorithm in Order

More information

A Robust Method for Solving Transcendental Equations

A Robust Method for Solving Transcendental Equations www.ijcsi.org 413 A Robust Method for Solving Transcendental Equations Md. Golam Moazzam, Amita Chakraborty and Md. Al-Amin Bhuiyan Department of Computer Science and Engineering, Jahangirnagar University,

More information

Introduction To Genetic Algorithms

Introduction To Genetic Algorithms 1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: rkbc@iitg.ernet.in References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization

More information

Genetic Algorithm Evolution of Cellular Automata Rules for Complex Binary Sequence Prediction

Genetic Algorithm Evolution of Cellular Automata Rules for Complex Binary Sequence Prediction Brill Academic Publishers P.O. Box 9000, 2300 PA Leiden, The Netherlands Lecture Series on Computer and Computational Sciences Volume 1, 2005, pp. 1-6 Genetic Algorithm Evolution of Cellular Automata Rules

More information

Proposal and Analysis of Stock Trading System Using Genetic Algorithm and Stock Back Test System

Proposal and Analysis of Stock Trading System Using Genetic Algorithm and Stock Back Test System Proposal and Analysis of Stock Trading System Using Genetic Algorithm and Stock Back Test System Abstract: In recent years, many brokerage firms and hedge funds use a trading system based on financial

More information

Solving Timetable Scheduling Problem by Using Genetic Algorithms

Solving Timetable Scheduling Problem by Using Genetic Algorithms Solving Timetable Scheduling Problem by Using Genetic Algorithms Branimir Sigl, Marin Golub, Vedran Mornar Faculty of Electrical Engineering and Computing, University of Zagreb Unska 3, 1 Zagreb, Croatia

More information

Programming Risk Assessment Models for Online Security Evaluation Systems

Programming Risk Assessment Models for Online Security Evaluation Systems Programming Risk Assessment Models for Online Security Evaluation Systems Ajith Abraham 1, Crina Grosan 12, Vaclav Snasel 13 1 Machine Intelligence Research Labs, MIR Labs, http://www.mirlabs.org 2 Babes-Bolyai

More information

Genetic algorithms for changing environments

Genetic algorithms for changing environments Genetic algorithms for changing environments John J. Grefenstette Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC 375, USA gref@aic.nrl.navy.mil Abstract

More information

International Journal of Software and Web Sciences (IJSWS) www.iasir.net

International Journal of Software and Web Sciences (IJSWS) www.iasir.net International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

More information

College of information technology Department of software

College of information technology Department of software University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/2011-2012 ***************************************************************************

More information

ECONOMIC GENERATION AND SCHEDULING OF POWER BY GENETIC ALGORITHM

ECONOMIC GENERATION AND SCHEDULING OF POWER BY GENETIC ALGORITHM ECONOMIC GENERATION AND SCHEDULING OF POWER BY GENETIC ALGORITHM RAHUL GARG, 2 A.K.SHARMA READER, DEPARTMENT OF ELECTRICAL ENGINEERING, SBCET, JAIPUR (RAJ.) 2 ASSOCIATE PROF, DEPARTMENT OF ELECTRICAL ENGINEERING,

More information

Optimal PID Controller Design for AVR System

Optimal PID Controller Design for AVR System Tamkang Journal of Science and Engineering, Vol. 2, No. 3, pp. 259 270 (2009) 259 Optimal PID Controller Design for AVR System Ching-Chang Wong*, Shih-An Li and Hou-Yi Wang Department of Electrical Engineering,

More information

A Method of Cloud Resource Load Balancing Scheduling Based on Improved Adaptive Genetic Algorithm

A Method of Cloud Resource Load Balancing Scheduling Based on Improved Adaptive Genetic Algorithm Journal of Information & Computational Science 9: 16 (2012) 4801 4809 Available at http://www.joics.com A Method of Cloud Resource Load Balancing Scheduling Based on Improved Adaptive Genetic Algorithm

More information

CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT

CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT 77 CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT 6.1 INTRODUCTION The idea of evolutionary computing was introduced by (Ingo Rechenberg 1971) in his work Evolutionary strategies.

More information

Proceedings of the First IEEE Conference on Evolutionary Computation - IEEE World Congress on Computational Intelligence, June

Proceedings of the First IEEE Conference on Evolutionary Computation - IEEE World Congress on Computational Intelligence, June Proceedings of the First IEEE Conference on Evolutionary Computation - IEEE World Congress on Computational Intelligence, June 26-July 2, 1994, Orlando, Florida, pp. 829-833. Dynamic Scheduling of Computer

More information

FPGA IMPLEMENTATION OF 4D-PARITY BASED DATA CODING TECHNIQUE

FPGA IMPLEMENTATION OF 4D-PARITY BASED DATA CODING TECHNIQUE FPGA IMPLEMENTATION OF 4D-PARITY BASED DATA CODING TECHNIQUE Vijay Tawar 1, Rajani Gupta 2 1 Student, KNPCST, Hoshangabad Road, Misrod, Bhopal, Pin no.462047 2 Head of Department (EC), KNPCST, Hoshangabad

More information

A Service Revenue-oriented Task Scheduling Model of Cloud Computing

A Service Revenue-oriented Task Scheduling Model of Cloud Computing Journal of Information & Computational Science 10:10 (2013) 3153 3161 July 1, 2013 Available at http://www.joics.com A Service Revenue-oriented Task Scheduling Model of Cloud Computing Jianguang Deng a,b,,

More information

Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province

Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province Research on a Heuristic GA-Based Decision Support System for Rice in Heilongjiang Province Ran Cao 1,1, Yushu Yang 1, Wei Guo 1, 1 Engineering college of Northeast Agricultural University, Haerbin, China

More information

A SURVEY ON GENETIC ALGORITHM FOR INTRUSION DETECTION SYSTEM

A SURVEY ON GENETIC ALGORITHM FOR INTRUSION DETECTION SYSTEM A SURVEY ON GENETIC ALGORITHM FOR INTRUSION DETECTION SYSTEM MS. DIMPI K PATEL Department of Computer Science and Engineering, Hasmukh Goswami college of Engineering, Ahmedabad, Gujarat ABSTRACT The Internet

More information

GA as a Data Optimization Tool for Predictive Analytics

GA as a Data Optimization Tool for Predictive Analytics GA as a Data Optimization Tool for Predictive Analytics Chandra.J 1, Dr.Nachamai.M 2,Dr.Anitha.S.Pillai 3 1Assistant Professor, Department of computer Science, Christ University, Bangalore,India, chandra.j@christunivesity.in

More information

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM *Shabnam Ghasemi 1 and Mohammad Kalantari 2 1 Deparment of Computer Engineering, Islamic Azad University,

More information

A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem

A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem American Journal of Industrial and Business Management, 2016, 6, 774-789 Published Online June 2016 in SciRes. http://www.scirp.org/journal/ajibm http://dx.doi.org/10.4236/ajibm.2016.66071 A Study of Crossover

More information

Genetic Algorithm based Approach to Solve Non Fractional (0/1) Knapsack Optimization Problem

Genetic Algorithm based Approach to Solve Non Fractional (0/1) Knapsack Optimization Problem Genetic Algorithm based Approach to Solve Non Fractional (0/1) Knapsack Optimization Problem Vikas Thada Asst. Prof (CSE), ASET, Amity University, Gurgaon, India Shivali Dhaka Asst. Prof (CSE), ASET, Amity

More information

Alpha Cut based Novel Selection for Genetic Algorithm

Alpha Cut based Novel Selection for Genetic Algorithm Alpha Cut based Novel for Genetic Algorithm Rakesh Kumar Professor Girdhar Gopal Research Scholar Rajesh Kumar Assistant Professor ABSTRACT Genetic algorithm (GA) has several genetic operators that can

More information

Extended Finite-State Machine Inference with Parallel Ant Colony Based Algorithms

Extended Finite-State Machine Inference with Parallel Ant Colony Based Algorithms Extended Finite-State Machine Inference with Parallel Ant Colony Based Algorithms Daniil Chivilikhin PhD student ITMO University Vladimir Ulyantsev PhD student ITMO University Anatoly Shalyto Dr.Sci.,

More information

Practical Applications of Evolutionary Computation to Financial Engineering

Practical Applications of Evolutionary Computation to Financial Engineering Hitoshi Iba and Claus C. Aranha Practical Applications of Evolutionary Computation to Financial Engineering Robust Techniques for Forecasting, Trading and Hedging 4Q Springer Contents 1 Introduction to

More information

PROCESS OF LOAD BALANCING IN CLOUD COMPUTING USING GENETIC ALGORITHM

PROCESS OF LOAD BALANCING IN CLOUD COMPUTING USING GENETIC ALGORITHM PROCESS OF LOAD BALANCING IN CLOUD COMPUTING USING GENETIC ALGORITHM Md. Shahjahan Kabir 1, Kh. Mohaimenul Kabir 2 and Dr. Rabiul Islam 3 1 Dept. of CSE, Dhaka International University, Dhaka, Bangladesh

More information

Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm

Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 7(July 2012), PP 141-147 Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm 1 Sourav Banerjee, 2 Mainak Adhikari,

More information

Genetic Algorithm Based Interconnection Network Topology Optimization Analysis

Genetic Algorithm Based Interconnection Network Topology Optimization Analysis Genetic Algorithm Based Interconnection Network Topology Optimization Analysis 1 WANG Peng, 2 Wang XueFei, 3 Wu YaMing 1,3 College of Information Engineering, Suihua University, Suihua Heilongjiang, 152061

More information

A Hybrid Tabu Search Method for Assembly Line Balancing

A Hybrid Tabu Search Method for Assembly Line Balancing Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 443 A Hybrid Tabu Search Method for Assembly Line Balancing SUPAPORN

More information

Towards Heuristic Web Services Composition Using Immune Algorithm

Towards Heuristic Web Services Composition Using Immune Algorithm Towards Heuristic Web Services Composition Using Immune Algorithm Jiuyun Xu School of Computer & Communication Engineering China University of Petroleum xujiuyun@ieee.org Stephan Reiff-Marganiec Department

More information

Design and FPGA Implementation of a Novel Square Root Evaluator based on Vedic Mathematics

Design and FPGA Implementation of a Novel Square Root Evaluator based on Vedic Mathematics International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 15 (2014), pp. 1531-1537 International Research Publications House http://www. irphouse.com Design and FPGA

More information

Management Science Letters

Management Science Letters Management Science Letters 4 (2014) 905 912 Contents lists available at GrowingScience Management Science Letters homepage: www.growingscience.com/msl Measuring customer loyalty using an extended RFM and

More information

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday

More information

AUTOMATIC ADJUSTMENT FOR LASER SYSTEMS USING A STOCHASTIC BINARY SEARCH ALGORITHM TO COPE WITH NOISY SENSING DATA

AUTOMATIC ADJUSTMENT FOR LASER SYSTEMS USING A STOCHASTIC BINARY SEARCH ALGORITHM TO COPE WITH NOISY SENSING DATA INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 2, JUNE 2008 AUTOMATIC ADJUSTMENT FOR LASER SYSTEMS USING A STOCHASTIC BINARY SEARCH ALGORITHM TO COPE WITH NOISY SENSING DATA

More information

LOAD BALANCING IN CLOUD COMPUTING

LOAD BALANCING IN CLOUD COMPUTING LOAD BALANCING IN CLOUD COMPUTING Neethu M.S 1 PG Student, Dept. of Computer Science and Engineering, LBSITW (India) ABSTRACT Cloud computing is emerging as a new paradigm for manipulating, configuring,

More information

Implementation of Modified Booth Algorithm (Radix 4) and its Comparison with Booth Algorithm (Radix-2)

Implementation of Modified Booth Algorithm (Radix 4) and its Comparison with Booth Algorithm (Radix-2) Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 683-690 Research India Publications http://www.ripublication.com/aeee.htm Implementation of Modified Booth

More information

Genetic Algorithms. Part 2: The Knapsack Problem. Spring 2009 Instructor: Dr. Masoud Yaghini

Genetic Algorithms. Part 2: The Knapsack Problem. Spring 2009 Instructor: Dr. Masoud Yaghini Genetic Algorithms Part 2: The Knapsack Problem Spring 2009 Instructor: Dr. Masoud Yaghini Outline Genetic Algorithms: Part 2 Problem Definition Representations Fitness Function Handling of Constraints

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0020 ISSN (Online): 2279-0039 International

More information

SOFTWARE TESTING STRATEGY APPROACH ON SOURCE CODE APPLYING CONDITIONAL COVERAGE METHOD

SOFTWARE TESTING STRATEGY APPROACH ON SOURCE CODE APPLYING CONDITIONAL COVERAGE METHOD SOFTWARE TESTING STRATEGY APPROACH ON SOURCE CODE APPLYING CONDITIONAL COVERAGE METHOD Jaya Srivastaval 1 and Twinkle Dwivedi 2 1 Department of Computer Science & Engineering, Shri Ramswaroop Memorial

More information

KNOWLEDGE MANAGEMENT, ORGANIZATIONAL INTELLIGENCE AND LEARNING, AND COMPLEXITY - Vol. I - Genetic Algorithms - Calabretta R.

KNOWLEDGE MANAGEMENT, ORGANIZATIONAL INTELLIGENCE AND LEARNING, AND COMPLEXITY - Vol. I - Genetic Algorithms - Calabretta R. GENETIC ALGORITHMS Calabretta R. Institute of Cognitive Sciences and Technologies, National Research Council, Italy Keywords: Simulation, computational models of evolution, evolutionary computation, evolutionary

More information

New binary representation in Genetic Algorithms for solving TSP by mapping permutations to a list of ordered numbers

New binary representation in Genetic Algorithms for solving TSP by mapping permutations to a list of ordered numbers Proceedings of the 5th WSEAS Int Conf on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 0-, 006 363 New binary representation in Genetic Algorithms for solving

More information

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory. 1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components

More information

Using Genetic Algorithm for Network Intrusion Detection

Using Genetic Algorithm for Network Intrusion Detection Using Genetic Algorithm for Network Intrusion Detection Wei Li Department of Computer Science and Engineering Mississippi State University, Mississippi State, MS 39762 Email: wli@cse.msstate.edu Abstract

More information

Vol. 35, No. 3, Sept 30,2000 ملخص تعتبر الخوارزمات الجينية واحدة من أفضل طرق البحث من ناحية األداء. فبالرغم من أن استخدام هذه الطريقة ال يعطي الحل

Vol. 35, No. 3, Sept 30,2000 ملخص تعتبر الخوارزمات الجينية واحدة من أفضل طرق البحث من ناحية األداء. فبالرغم من أن استخدام هذه الطريقة ال يعطي الحل AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Vol. 35, No. 3, Sept 30,2000 SCIENTIFIC BULLETIN Received on : 3/9/2000 Accepted on: 28/9/2000 pp : 337-348 GENETIC ALGORITHMS AND ITS USE WITH BACK- PROPAGATION

More information

Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/ Vol. 3. No. 3 : pp.

Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/ Vol. 3. No. 3 : pp. Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/ Vol. 3. No. 3 : pp.49-54 : isrp13-005 Optimized Communications on Cloud Computer Processor by Using

More information

A NEW EFFICIENT FPGA DESIGN OF RESIDUE-TO-BINARY CONVERTER

A NEW EFFICIENT FPGA DESIGN OF RESIDUE-TO-BINARY CONVERTER A NEW EFFICIENT FPGA DESIGN OF RESIDUE-TO-BINARY CONVERTER Edem Kwedzo Bankas and Kazeem Alagbe Gbolagade Department of Computer Science, Faculty of Mathematical Science, University for Development Studies,

More information

Intelligent Modeling of Sugar-cane Maturation

Intelligent Modeling of Sugar-cane Maturation Intelligent Modeling of Sugar-cane Maturation State University of Pernambuco Recife (Brazil) Fernando Buarque de Lima Neto, PhD Salomão Madeiro Flávio Rosendo da Silva Oliveira Frederico Bruno Alexandre

More information

New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem

New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem Radovic, Marija; and Milutinovic, Veljko Abstract One of the algorithms used for solving Traveling Salesman

More information

Genetic Algorithm for Solving Simple Mathematical Equality Problem

Genetic Algorithm for Solving Simple Mathematical Equality Problem Genetic Algorithm for Solving Simple Mathematical Equality Problem Denny Hermawanto Indonesian Institute of Sciences (LIPI), INDONESIA Mail: denny.hermawanto@gmail.com Abstract This paper explains genetic

More information

A Comparison of Genotype Representations to Acquire Stock Trading Strategy Using Genetic Algorithms

A Comparison of Genotype Representations to Acquire Stock Trading Strategy Using Genetic Algorithms 2009 International Conference on Adaptive and Intelligent Systems A Comparison of Genotype Representations to Acquire Stock Trading Strategy Using Genetic Algorithms Kazuhiro Matsui Dept. of Computer Science

More information

A Novel Binary Particle Swarm Optimization

A Novel Binary Particle Swarm Optimization Proceedings of the 5th Mediterranean Conference on T33- A Novel Binary Particle Swarm Optimization Motaba Ahmadieh Khanesar, Member, IEEE, Mohammad Teshnehlab and Mahdi Aliyari Shoorehdeli K. N. Toosi

More information

A Performance Comparison of GA and ACO Applied to TSP

A Performance Comparison of GA and ACO Applied to TSP A Performance Comparison of GA and ACO Applied to TSP Sabry Ahmed Haroun Laboratoire LISER, ENSEM, UH2C Casablanca, Morocco. Benhra Jamal Laboratoire LISER, ENSEM, UH2C Casablanca, Morocco. El Hassani

More information

FACULTY OF COMPUTER SCIENCE AND ENGINEERING CURRICULUM FOR POSTGRADUATE PROGRAMMES. (Master in Information Technology)

FACULTY OF COMPUTER SCIENCE AND ENGINEERING CURRICULUM FOR POSTGRADUATE PROGRAMMES. (Master in Information Technology) FACULTY OF COMPUTER SCIENCE AND ENGINEERING CURRICULUM FOR POSTGRADUATE PROGRAMMES (Master in Information Technology) MASTER IN INFORMATION TECHNOLOGY (MIT) CURRICULUM 1.1 Introduction This programme is

More information

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Journal of Computer Science 2 (2): 118-123, 2006 ISSN 1549-3636 2006 Science Publications Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Alaa F. Sheta Computers

More information

Influence of the Crossover Operator in the Performance of the Hybrid Taguchi GA

Influence of the Crossover Operator in the Performance of the Hybrid Taguchi GA Influence of the Crossover Operator in the Performance of the Hybrid Taguchi GA Stjepan Picek Faculty of Electrical Engineering and Computing Unska 3, Zagreb, Croatia Email: stjepan@computer.org Marin

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Cellular Automaton: The Roulette Wheel and the Landscape Effect

Cellular Automaton: The Roulette Wheel and the Landscape Effect Cellular Automaton: The Roulette Wheel and the Landscape Effect Ioan Hălălae Faculty of Engineering, Eftimie Murgu University, Traian Vuia Square 1-4, 385 Reşiţa, Romania Phone: +40 255 210227, Fax: +40

More information

USING GENETIC ALGORITHM IN NETWORK SECURITY

USING GENETIC ALGORITHM IN NETWORK SECURITY USING GENETIC ALGORITHM IN NETWORK SECURITY Ehab Talal Abdel-Ra'of Bader 1 & Hebah H. O. Nasereddin 2 1 Amman Arab University. 2 Middle East University, P.O. Box: 144378, Code 11814, Amman-Jordan Email:

More information

COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different

More information

HARDWARE IMPLEMENTATION OF TASK MANAGEMENT IN EMBEDDED REAL-TIME OPERATING SYSTEMS

HARDWARE IMPLEMENTATION OF TASK MANAGEMENT IN EMBEDDED REAL-TIME OPERATING SYSTEMS HARDWARE IMPLEMENTATION OF TASK MANAGEMENT IN EMBEDDED REAL-TIME OPERATING SYSTEMS 1 SHI-HAI ZHU 1Department of Computer and Information Engineering, Zhejiang Water Conservancy and Hydropower College Hangzhou,

More information

Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm

Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm 24 Genetic Algorithm Based on Darwinian Paradigm Reproduction Competition Survive Selection Intrinsically a robust search and optimization mechanism Slide -47 - Conceptual Algorithm Slide -48 - 25 Genetic

More information

Lecture N -1- PHYS 3330. Microcontrollers

Lecture N -1- PHYS 3330. Microcontrollers Lecture N -1- PHYS 3330 Microcontrollers If you need more than a handful of logic gates to accomplish the task at hand, you likely should use a microcontroller instead of discrete logic gates 1. Microcontrollers

More information

Holland s GA Schema Theorem

Holland s GA Schema Theorem Holland s GA Schema Theorem v Objective provide a formal model for the effectiveness of the GA search process. v In the following we will first approach the problem through the framework formalized by

More information

Investigating Parallel Genetic Algorithms on Job Shop Scheduling Problems

Investigating Parallel Genetic Algorithms on Job Shop Scheduling Problems Investigating Parallel Genetic Algorithms on Job Shop Scheduling Problems Shyh-Chang Lin Erik D. Goodman William F. Punch, III Genetic Algorithms Research and Applications Group Michigan State University

More information

Implementation and Design of AES S-Box on FPGA

Implementation and Design of AES S-Box on FPGA International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 232-9364, ISSN (Print): 232-9356 Volume 3 Issue ǁ Jan. 25 ǁ PP.9-4 Implementation and Design of AES S-Box on FPGA Chandrasekhar

More information

Digital Systems. Syllabus 8/18/2010 1

Digital Systems. Syllabus 8/18/2010 1 Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,

More information

Lab 4: 26 th March 2012. Exercise 1: Evolutionary algorithms

Lab 4: 26 th March 2012. Exercise 1: Evolutionary algorithms Lab 4: 26 th March 2012 Exercise 1: Evolutionary algorithms 1. Found a problem where EAs would certainly perform very poorly compared to alternative approaches. Explain why. Suppose that we want to find

More information

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Outline Selection methods Replacement methods Variation operators Selection Methods

More information

Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies

Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com

More information

Intelligent Agents Serving Based On The Society Information

Intelligent Agents Serving Based On The Society Information Intelligent Agents Serving Based On The Society Information Sanem SARIEL Istanbul Technical University, Computer Engineering Department, Istanbul, TURKEY sariel@cs.itu.edu.tr B. Tevfik AKGUN Yildiz Technical

More information

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Mahyar Shahsavari, Zaid Al-Ars, Koen Bertels,1, Computer Engineering Group, Software & Computer Technology

More information

An Ant Colony Optimization Approach to the Software Release Planning Problem

An Ant Colony Optimization Approach to the Software Release Planning Problem SBSE for Early Lifecyle Software Engineering 23 rd February 2011 London, UK An Ant Colony Optimization Approach to the Software Release Planning Problem with Dependent Requirements Jerffeson Teixeira de

More information

Floating Point Fused Add-Subtract and Fused Dot-Product Units

Floating Point Fused Add-Subtract and Fused Dot-Product Units Floating Point Fused Add-Subtract and Fused Dot-Product Units S. Kishor [1], S. P. Prakash [2] PG Scholar (VLSI DESIGN), Department of ECE Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu,

More information

Neural Network and Genetic Algorithm Based Trading Systems. Donn S. Fishbein, MD, PhD Neuroquant.com

Neural Network and Genetic Algorithm Based Trading Systems. Donn S. Fishbein, MD, PhD Neuroquant.com Neural Network and Genetic Algorithm Based Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com Consider the challenge of constructing a financial market trading system using commonly available technical

More information

Evolutionary Prefetching and Caching in an Independent Storage Units Model

Evolutionary Prefetching and Caching in an Independent Storage Units Model Evolutionary Prefetching and Caching in an Independent Units Model Athena Vakali Department of Informatics Aristotle University of Thessaloniki, Greece E-mail: avakali@csdauthgr Abstract Modern applications

More information

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System? Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers

More information

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation Empirically Identifying the Best Genetic Algorithm for Covering Array Generation Liang Yalan 1, Changhai Nie 1, Jonathan M. Kauffman 2, Gregory M. Kapfhammer 2, Hareton Leung 3 1 Department of Computer

More information

Design of Web Ranking Module using Genetic Algorithm

Design of Web Ranking Module using Genetic Algorithm Design of Web Ranking Module using Genetic Algorithm Vikas Thada Research Scholar Dr.K.N.M. University Newai, India Vivek Jaglan, Ph.D Asst.Prof(CSE),ASET Amity University Gurgaon, India ABSTRACT Crawling

More information

Effective Estimation Software cost using Test Generations

Effective Estimation Software cost using Test Generations Asia-pacific Journal of Multimedia Services Convergence with Art, Humanities and Sociology Vol.1, No.1 (2011), pp. 1-10 http://dx.doi.org/10.14257/ajmscahs.2011.06.01 Effective Estimation Software cost

More information

APPLICATION OF ADVANCED SEARCH- METHODS FOR AUTOMOTIVE DATA-BUS SYSTEM SIGNAL INTEGRITY OPTIMIZATION

APPLICATION OF ADVANCED SEARCH- METHODS FOR AUTOMOTIVE DATA-BUS SYSTEM SIGNAL INTEGRITY OPTIMIZATION APPLICATION OF ADVANCED SEARCH- METHODS FOR AUTOMOTIVE DATA-BUS SYSTEM SIGNAL INTEGRITY OPTIMIZATION Harald Günther 1, Stephan Frei 1, Thomas Wenzel, Wolfgang Mickisch 1 Technische Universität Dortmund,

More information

Performance of Hybrid Genetic Algorithms Incorporating Local Search

Performance of Hybrid Genetic Algorithms Incorporating Local Search Performance of Hybrid Genetic Algorithms Incorporating Local Search T. Elmihoub, A. A. Hopgood, L. Nolle and A. Battersby The Nottingham Trent University, School of Computing and Technology, Burton Street,

More information

Genetic Algorithms and Sudoku

Genetic Algorithms and Sudoku Genetic Algorithms and Sudoku Dr. John M. Weiss Department of Mathematics and Computer Science South Dakota School of Mines and Technology (SDSM&T) Rapid City, SD 57701-3995 john.weiss@sdsmt.edu MICS 2009

More information

A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem

A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem Sayedmohammadreza Vaghefinezhad 1, Kuan Yew Wong 2 1 Department of Manufacturing & Industrial Engineering, Faculty of Mechanical

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

Sum of Products (SOP) Expressions

Sum of Products (SOP) Expressions Sum of Products (SOP) Expressions The Sum of Products (SOP) form of Boolean expressions and equations contains a list of terms (called minterms) in which all variables are ANDed (products). These minterms

More information

Acoustic Design of Theatres Applying Genetic Algorithms

Acoustic Design of Theatres Applying Genetic Algorithms Acoustic Design of Theatres Applying Genetic Algorithms Shin-ichi Sato a), Tatsuro Hayashi, Atsushi Takizawa, Akinori Tani, Hiroshi Kawamura, Yoichi Ando Graduate School of Science and Technology, Kobe

More information

Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes

Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes International Archive of Applied Sciences and Technology Volume 3 [2] June 2012: 47-57 ISSN: 0976-4828 Society of Education, India Website: www.soeagra.com/iaast/iaast.htm Original Article Efficient Genetic

More information

Predictive Analytics using Genetic Algorithm for Efficient Supply Chain Inventory Optimization

Predictive Analytics using Genetic Algorithm for Efficient Supply Chain Inventory Optimization 182 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.3, March 2010 Predictive Analytics using Genetic Algorithm for Efficient Supply Chain Inventory Optimization P.Radhakrishnan

More information

Optimal Tuning of PID Controller Using Meta Heuristic Approach

Optimal Tuning of PID Controller Using Meta Heuristic Approach International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 2 (2014), pp. 171-176 International Research Publication House http://www.irphouse.com Optimal Tuning of

More information