A Service Revenue-oriented Task Scheduling Model of Cloud Computing

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Service Revenue-oriented Task Scheduling Model of Cloud Computing"

Transcription

1 Journal of Information & Computational Science 10:10 (2013) July 1, 2013 Available at A Service Revenue-oriented Task Scheduling Model of Cloud Computing Jianguang Deng a,b,, Yuelong Zhao b, Huaqiang Yuan a a Engineering & Technology Institute, Dongguan University of Technology, Dongguan , China b School of Computer Science & Engineering, South China University of Technology Guangzhou , China Abstract Task scheduling strategy aims at finding an effective matching method between computing resources and submitted tasks, so as to achieve the reasonable allocation and effective execution of a large number of submitted tasks among computing resources. As a commercial service, cloud computing should gain as much service revenue as possible on condition that the QoS requirements of submitted tasks are satisfied. However, the majority of the existing cloud task scheduling methods aim at meeting the resource requests and QoS constraints of submitted tasks rather than earning more service revenue. Focusing on this point, a service revenue-oriented task scheduling model of cloud computing is proposed in this paper, which tries to improve the service revenue of cloud providers under the same condition. The final experimental results demonstrate that the service revenue-oriented cloud task scheduling strategy is superior to the classic Min-min algorithm and the improved Min-min algorithm based on QoS constraints in terms of the scheduling makespan of all submitted tasks and the service revenue per unit computing cost of the whole cloud system. Keywords: Cloud Computing; Task Scheduling; QoS Constraint; Service Revenue 1 Introduction Cloud computing is an inevitable technology trend with the rapid development of internet. In the cloud computing environment, it is not necessary for users to purchase and deploy any IT infrastructure, but simply to rent the essential hardware, software, computing devices, and storage resources in a low cost. By submitting task requests to the cloud computing platform, the users can complete all kinds of computing tasks and data storage businesses. Due to the different Quality of Service (QoS) requirements of different submitted tasks and the commercial property of cloud service, the cloud computing environment should try to maximize its service revenue under the condition of satisfying the QoS constraints of all submitted tasks while executing the users scheduling requests. Supported by National Natural Science Foundation of China (Grant Nos and ). Corresponding author. address: (Jianguang Deng) / Copyright 2013 Binary Information Press DOI: /jics

2 3154 J. Deng et al. / Journal of Information & Computational Science 10:10 (2013) Given a collection of submitted application tasks and a collection of computing resources, the task scheduling problem of cloud computing aims at finding a scheduling strategy, based on which the cloud computing platform assigns all the submitted tasks to the different computing nodes, so as to achieve the reasonable allocation and the effective execution of a large number of application tasks among cloud computing resources. It is obvious that the task scheduling is a NP -complete problem, and it is impossible to obtain its global optimal solution in the polynomial time complexity. There are a lot of achievements and publications about the task scheduling problem appeared in recent years, and a number of scheduling methods are put forward by researchers, such as ant colony optimization method [1], hill climbing-based algorithm [2], taboo searching approach [3], multiple QoS-constrainted scheduling strategy [4], fuzzy bee colony optimization technique [5], and so on. Among the existing methods, the classic Min-min heuristics [6] and the Max-min heuristics [7] are often used to be the criterion to evaluate a given scheduling method. The majority of the existing task scheduling methods of cloud computing focus on the allocation and management of cloud computing resources, and pay more attention to meeting the resource requirements and QoS constraints of application tasks further than the service revenue of cloud providers, which is disadvantageous to the continuable development of the cloud computing market due to its commercial property, and thus they are difficult to be applied in the practical cloud computing environment. Genetic algorithm is a heuristic stochastic searching algorithm based on simulating the biological evolution mechanism in nature, in which firstly, the possible solutions of optimization problem are encoded into chromosomes which form the initial population, and then the evolutionary operation are performed on the initial population by using genetic operators, after that, a new generation of population is reproduced, which is more adaptive to the environment than its parent generation. Finally, repeat the above evolutionary operation until the population converges at an acceptable solution. The genetic algorithm has efficient global searching ability, which can quickly handle a large searching space, and can avoid falling into a certain local optimal solution, and so it can be applied in the complex objective optimization problem. According to the above analysis, from the standpoint of cloud service providers, a service revenue-oriented task scheduling strategy of cloud computing is proposed based on the genetic algorithm in this paper. Taking the commercial property of cloud computing into consideration, the proposed method tries to maximize the service revenue of unit computing cost of the whole cloud computing environment under the condition of satisfying the QoS constraints of submitted tasks. 2 The Formulation of Scheduling Objective Let the sets C= {c 1, c 2,, c n } and T = {t 1, t 2,, t m } denote the collection of computing resources and the collection of submitted application tasks in the cloud environment, where the letters n and m denotes the number of computing nodes and that of submitted tasks, respectively. X is a m n-dimensional task allocation matrix, the elements of which represent the mapping relationship between computing nodes and submitted tasks. If the task t i is assigned to the computing node c j, the element of the matrix X, x i,j =1, else, x i,j =0. It is assumed that all tasks are non-preemptive and a submitted task can only be allocated and scheduled on an arbitrary computing node.

3 J. Deng et al. / Journal of Information & Computational Science 10:10 (2013) The symbol budget i represents the user s budget for executing the task t i, namely, the service revenue gained by cloud provider for complete the scheduling of task t i in the given time period. deadline i represents the acceptable completion time of task t i, before which the task t i is expected to be completed with no fine. instruction count i represents the estimated instruction number of task t i, which is determined by processor. time fini i denotes the expected completion time of task t i. instruction cost j denotes the computing cost of node c j for executing an instruction. delay cost i denotes the cost of task t i for delaying a time unit, which is paid by the cloud provider to user when the time fini i exceeds the corresponding deadline i. latest line i denotes the worst completion time of task t i. Without loss of generality, we assume that the maximal fine paid by cloud provider is equal to the corresponding task budget, namely, when the completion time for scheduling a task exceeds its latest line, the cloud provider will not get any service revenue. When scheduling a task, the user advances its QoS requirements based on the budget and its urgency measure, and submits the corresponding scheduling request to the cloud system. Then, the cloud provider estimates its service revenue for scheduling the task in terms of its budget and its QoS requirements, so as to decide whether to accept the corresponding scheduling request. If the scheduling request is accepted, but not completed in the given time period, the cloud provider will pay a certain number of fine to the user based on his delaying time. From the viewpoint of cloud users, the scheduling of a submitted task must be accomplished before its latest complete time latest line, otherwise, the cloud provider will not get any service revenue. On the other hand, the main cost of cloud provider is the computing cost under the condition of satisfying the QoS constraints of submitted tasks. It is assumed that the task t i is assigned to the computing node c j, i.e. x i,j =1, and the computing cost of the node c j for scheduling the task t i is: computing cost i j = instruction cost j instruction count i (1) At the cost of the above spending, the service revenue gained by cloud provider is budget i fine i j, where fine i j is the delaying fine of the node c j for scheduling the task t i, expressed as follows. fine i j = { 0 if time finii < deadline i, delay cost i (time fini i deadline i ) if time fini i deadline i. (2) Furthermore, the overall service revenue of the cloud computing system for scheduling the n m collection of submitted tasks T = { t 1, t 2,, t m } is (budget i fine i j) x i,j, and the corresponding computing cost is n m computing cost i j x i,j. On condition that the QoS requirements of submitted tasks are satisfied, the cloud computing system should gain as much service revenue as possible at as small cost as possible. Thus, the proposed service revenue-oriented task scheduling strategy of cloud computing should maximize its service revenue per unit computing cost, i.e. its scheduling objection is as follows. objective = max n m (budget i fine i j) x i,j n m computing cost i j x s.t. time fini i < latest line i (3) i,j

4 3156 J. Deng et al. / Journal of Information & Computational Science 10:10 (2013) It is obvious that the above scheduling objective is a NP -complete problem, and it is impossible to obtain its global optimal solution in the polynomial time complexity. 3 The Service Revenue-oriented Task Scheduling Model After formalizing the scheduling objective, we model the proposed service revenue-oriented cloud task scheduling strategy, which is shown in Fig. 1. Firstly, the user submits his or her scheduling requests of application tasks to the cloud computing platform. After receiving the scheduling requests, the scheduler sends the attribute information and the QoS constraints of submitted tasks as well as the computing resource information obtained from the cloud resource manager to the task scheduling module. Based on the knowledge of submitted tasks and computing resources received from the scheduler, the corresponding task scheduling objective is constructed in the task scheduling module, and then the genetic algorithm is adopted to optimize this scheduling objective. Finally, an acceptable optimized solution is returned to the scheduler. According to the optimized scheduling decision, the submitted tasks are scheduled on the cloud computing resource layer, and the final scheduling results are returned to the scheduler. Task scheduling module Cloudcomputingplatform Optimized solution Knowledge of submitted tasks and computingresources Submission request Scheduler Computing resource information Cloud resource manager Submitted tasks Scheduling results Resource query Cloud computing resource layer Computing resource information Fig. 1: The architecture of the service revenue-oriented cloud task scheduling model 4 The Solving of Scheduling Objective In this paragraph, the scheduling objective mentioned above is solved in the polynomial time complexity based on the genetic algorithm. The detailed objective solving steps are introduced in the following. 4.1 Population Initialization Let the symbols N and Count represent the population size and the iteration counter of the genetic algorithm, respectively. Initially, Count=0. In order to globally solve the proposed task scheduling strategy based on genetic algorithm, all possible scheduling schemes should be encoded into chromosomes. For instance, on assumption that m=5, n=4, and the corresponding task allocation matrix X is given as below, we can adopt the following approach to achieve the

5 J. Deng et al. / Journal of Information & Computational Science 10:10 (2013) chromosome encoding. X = ( ) (4) According to the binary transformation operation, list the task allocation matrix X in a row and we can encode an arbitrary task scheduling solution into a corresponding chromosome in the above method, in which the binary strings 00, 01, 10, 11 represent the corresponding tasks are scheduled on the computing nodes c 1, c 2, c 3 and c 4, respectively. In this way, encode all possible scheduling solutions based on the given population size N, and we can obtain the initial population P (0). 4.2 Fitness Function Fitness function is used to evaluate the chromosome s adaptability to the surroundings. The greater its value is, the more opportunity to be maintained the corresponding chromosome has in the evolutionary operation of the genetic algorithm, and the better its corresponding task scheduling solution is. Taking the commercial property of cloud service into consideration, we take the service revenue per unit computing cost of the whole cloud system as the fitness function of the genetic algorithm in this paper, expressed as follows. fitness = 4.3 Iterative Evolution n n m (budget i fine i j) x i,j m computing cost i j x i,j After obtaining the initial population, evolutionary operation is performed on the initial population using the genetic operators, including crossover, mutation and selection. Repeat the above evolutionary operation iteratively, until we get a satisfactory solution. Crossover operation is achieved by exchanging some specific loci of two chromosomes chosen randomly from the current population P (g) in the crossover probability p c in a certain way, where the symbol g denotes the generation number of the current population, and initially, g=0. The collection of new chromosomes reproduced according to the crossover operation is recorded as S crossover. Mutation operation is achieved by changing some specific loci of a certain number of chromosomes, which are chosen randomly from the current population P (g) in the mutation probability p m. The collection of new chromosomes reproduced according to the mutation operation is recorded as S mutation. Combining the collections S crossover, S mutation, and the current population P (g), we get the collection S crossover S mutation P (g), from which, the top N chromosomes are selected based on the values of their fitness functions as the next population P (g+1), and let Count=Count+1. (5)

6 3158 J. Deng et al. / Journal of Information & Computational Science 10:10 (2013) A new generation of population is obtained according to the above evolutionary operation, and then the corresponding evaluation is performed to them in terms of the task scheduling objective, i.e. the formula (3). On condition that the iteration number of the genetic algorithm exceeds its preset maximum iteration number, or the best chromosome is not improved based on the value of its fitness function in several consecutive generations of populations, the genetic algorithm terminates. Otherwise, repeat the above evolutionary operation iteratively, until the termination condition of the genetic algorithm is satisfied. 5 Experiments and Analysis Some simulation experiments are designed to evaluate the proposed service revenue-oriented cloud task scheduling strategy in this paragraph, and besides, the classic Min-min algorithm [8] and the improved QoS-constrained Min-min algorithm [9] are selected for the comparative study under the same condition. 5.1 Parameter Settings The simulation experiments are conducted on the Cloudsim simulator [10], which simulates a cloud computing environment with ten computing nodes. The number of PEs (processing elements) included in each computing node, the computing capability of each PE, expressed as MIPS (millions of instruction per second), as well as the computing cost per unit time of each PE are shown in Table 1. Table 1: The parameter settings of cloud computing environment ID of computing nodes N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 Number of PEs MIPS of PE Cost per unit time of PE The attribute parameters of submitted tasks, including instruction count, budget, deadline, latest line and delay cost are set randomly based on the given constraints, and there are a total of 100 submitted tasks involved in our experiments. When solving the proposed scheduling strategy using genetic algorithm, we set the initial population size as 120, the crossover probability is set as 0.75, the mutation probability is set as 0.20, the minimal evolution rate in three consecutive generations of populations is set as 0.25%, and the maximal iteration number is set as 300. It is noticed that the parameters set in the genetic algorithm depend on the empirical values obtained from several conducted simulation tests. 5.2 Experimental Results and Analyses In the above cloud computing environment, the proposed service revenue-oriented task scheduling strategy, the conventional Min-min algorithm, and the improved QoS-constrained Min-min algorithm are tested respectively, and the corresponding experimental results are compared and

7 J. Deng et al. / Journal of Information & Computational Science 10:10 (2013) analyzed. The quantity of the submitted tasks involved in every group of experiment is 10, 20,, 100 respectively, which are selected randomly from the submitted task list. The relationship between the scheduling makespan of all submitted tasks and the size of them is shown in Fig. 2, from which it is can be seen that, along with the increase of the submitted tasks, the scheduling makespans of the three algorithms are all increased. It is because that with the increase of the submitted tasks, the problem of rising resource competition will prolong the latency time of some tasks. In comparison, the QoS-constrained Min-min algorithm is always superior to the conventional Min-min algorithm due to the former taking the deadline constraint into account. Furthermore, the service revenue-oriented task scheduling strategy has the best makespan in the three algorithms owing to that it takes the computing cost into consideration and takes maximizing the service revenue per unit computing cost as its scheduling objective, which makes that the service revenue-oriented task scheduling strategy always try its best to globally schedule all the submitted tasks on the best proper computing resources. On the other hand, the submitted tasks are always expected to be assigned to the computing resources with the minimum earliest completing time in the conventional Min-min algorithm and the QoSconstrained Min-min algorithm, which will cause the load imbalance of the cloud environment and prolong the latency time of some scheduled tasks, as well as the scheduling makespan of all submitted tasks. The scheduling makespan The scheduling makespan in the three algorithms Conventional min-min QoS-constrained min-min Service revenue-oriented method The size of the submitted tasks Fig. 2: The relationship between scheduling makespan and the size of tasks Fig. 3 shows the service revenue per unit computing cost of the three algorithms with respect to the size of submitted tasks. As can be seen that, the service revenue-oriented algorithm outperforms the other two algorithms obviously, which is because that its system load is more balanced and it schedules more reasonably than the other two algorithms. As mentioned above, the load imbalance of the Min-min algorithm prolongs the latency time of some submitted tasks, which eventually decreases the service revenue per unit computing cost of this algorithm. In comparison, due to taking the deadline requirement into account, the QoS-constrained Min-min algorithm is better than the Min-min algorithm in the service revenue per unit computing cost. Along with the increase of the size of submitted tasks, the service revenue per unit computing cost of the three algorithms decreased due to the rising resource competition prolonging the total latency time of submitted tasks.

8 3160 J. Deng et al. / Journal of Information & Computational Science 10:10 (2013) The service revenue per unit computing cost The service revenue per unit computing cost in the three algorithms Conventional min-min QoS-constrained min-min Service revenue-oriented method The size of the submitted tasks Fig. 3: The relationship between service revenue per unit computing cost and the size of tasks 6 Conclusions Task scheduling strategy is a research hotspot of cloud computing technology, which aims at finding an effective matching method between computing resources and submitted tasks, so as to achieve the reasonable allocation and effective execution of a large number of submitted tasks among cloud computing resources. As a kind of commercial service, the cloud computing should gain as much service revenue as possible under the condition of satisfying the QoS requirements of submitted tasks. Focusing on this point, a service revenue-oriented task scheduling model of cloud computing is proposed in this paper from the standpoint of cloud provider, which takes maximizing the service revenue per unit computing cost of cloud system as its scheduling objective. The final experimental results conducted on the Cloudsim simulator demonstrates that the proposed method outperforms the conventional Min-min algorithm and the improved QoSconstrained Min-min algorithm in the scheduling makespan of all submitted tasks and the service revenue per unit computing cost of the whole cloud computing system. However, due to the assumption that all tasks are non-preemptive and a submitted task can only be allocated and scheduled on a computing node in this paper, the proposed service revenue-oriented cloud task scheduling model is not flexible to the practical application scenario of cloud computing, and we will focus on this point in the future. References [1] S. Lorpunmanee, M. N. Sap, A. H. Abdullah et al., An ant colony optimization for dynamic job scheduling in grid environment, International Journal of Computer and Information Science and Engineering, 1(4), 2007, [2] Q. Wang, Y. Gao, P. Liu, Hill climbing-based decentralized job scheduling on computational grids, The First International Multi-Symposiums on Computer and Computational Sciences, Hangzhou, China, 2006, [3] Hoang Pham, Springer Handbook of Engineering Statistics, London, USA, Spring-Verlag. 2006,

9 J. Deng et al. / Journal of Information & Computational Science 10:10 (2013) [4] M. Xu, L. Cui, H. Wang et al., A multiple QoS constrained scheduling strategy of multiple workflows for cloud computing, IEEE International Symposium on Parallel and Distributed Processing with Applications, Chengdu, China, 2009, [5] K. Mukherjee, G. Sahoo, Mathematical model of cloud computing framework using fuzzy bee colony optimization technique, International Conference on Advances in Computing, Control, & Telecommunication Technologies, Trivandrum, Kerala, 2009, [6] X. He, X. Sun, G. Laszewski, QoS guided min-min heuristic for grid task scheduling, Journal of Computer Science and Technology, 18(4), 2003, [7] O. M. Elzeki, M. Z. Reshad, M. A. Elsoud, Improved max-min algorithm in cloud computing, International Journal of Computer Applications, 50(12), 2012, [8] T. D. Braun, H. J. Siegel, N. Beck et al., A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems, Journal of Parallel and Distributed Computing, 61(6), 2001, [9] J. Liu, G. Li, An improved min-min grid tasks scheduling algorithm based on Qos constraints, Proc. of the International Conference on Optics Photonics and Energy Engineering, 2010, [10] R. N. Calheiros, R. Ranjan, A. Beloglazow et al., CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Software: Practice and Experience, 41(1), 2011, 23-50

Enhanced Max-min Task Scheduling Algorithm in Cloud Computing

Enhanced Max-min Task Scheduling Algorithm in Cloud Computing Enhanced Max-min Task Scheduling Algorithm in Cloud Computing Upendra Bhoi 1, Purvi N. Ramanuj 2 1 P.G.Student, Department of Computer Science & Technology, L.D.College of Engineering, Gujarat Technological

More information

Tasks Scheduling Game Algorithm Based on Cost Optimization in Cloud Computing

Tasks Scheduling Game Algorithm Based on Cost Optimization in Cloud Computing Journal of Computational Information Systems 11: 16 (2015) 6037 6045 Available at http://www.jofcis.com Tasks Scheduling Game Algorithm Based on Cost Optimization in Cloud Computing Renfeng LIU 1, Lijun

More information

Population-based Metaheuristics for Tasks Scheduling in Heterogeneous Distributed Systems

Population-based Metaheuristics for Tasks Scheduling in Heterogeneous Distributed Systems Population-based Metaheuristics for Tasks Scheduling in Heterogeneous Distributed Systems Flavia Zamfirache, Marc Frîncu, Daniela Zaharie Department of Computer Science, West University of Timişoara, Romania

More information

Enhanced Load Balanced Min-Min Algorithm in Cloud Computing

Enhanced Load Balanced Min-Min Algorithm in Cloud Computing International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Issue-4 E-ISSN: 2347-2693 Enhanced Load Balanced Min-Min Algorithm in Cloud Computing RiddhiVarude 1, Ishita

More information

An Efficient Approach for Task Scheduling Based on Multi-Objective Genetic Algorithm in Cloud Computing Environment

An Efficient Approach for Task Scheduling Based on Multi-Objective Genetic Algorithm in Cloud Computing Environment IJCSC VOLUME 5 NUMBER 2 JULY-SEPT 2014 PP. 110-115 ISSN-0973-7391 An Efficient Approach for Task Scheduling Based on Multi-Objective Genetic Algorithm in Cloud Computing Environment 1 Sourabh Budhiraja,

More information

A NEW APPROACH FOR LOAD BALANCING IN CLOUD COMPUTING

A NEW APPROACH FOR LOAD BALANCING IN CLOUD COMPUTING www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 2 Issue 5 May, 2013 Page No. 1636-1640 A NEW APPROACH FOR LOAD BALANCING IN CLOUD COMPUTING S. Mohana Priya,

More information

Application of Selective Algorithm for Effective Resource Provisioning In Cloud Computing Environment

Application of Selective Algorithm for Effective Resource Provisioning In Cloud Computing Environment Application of Selective Algorithm for Effective Resource Provisioning In Cloud Computing Environment Mayanka Katyal 1 and Atul Mishra 2 1 Deptt. of Computer Engineering, YMCA University of Science and

More information

LOAD BALANCING IN CLOUD COMPUTING

LOAD BALANCING IN CLOUD COMPUTING LOAD BALANCING IN CLOUD COMPUTING Neethu M.S 1 PG Student, Dept. of Computer Science and Engineering, LBSITW (India) ABSTRACT Cloud computing is emerging as a new paradigm for manipulating, configuring,

More information

A Survey on Load Balancing and Scheduling in Cloud Computing

A Survey on Load Balancing and Scheduling in Cloud Computing IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 7 December 2014 ISSN (online): 2349-6010 A Survey on Load Balancing and Scheduling in Cloud Computing Niraj Patel

More information

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS R. Angel Preethima 1, Margret Johnson 2 1 Student, Computer Science and Engineering, Karunya

More information

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware

Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Evaluation of Different Task Scheduling Policies in Multi-Core Systems with Reconfigurable Hardware Mahyar Shahsavari, Zaid Al-Ars, Koen Bertels,1, Computer Engineering Group, Software & Computer Technology

More information

Task Scheduling Techniques for Minimizing Energy Consumption and Response Time in Cloud Computing

Task Scheduling Techniques for Minimizing Energy Consumption and Response Time in Cloud Computing Task Scheduling Techniques for Minimizing Energy Consumption and Response Time in Cloud Computing M Dhanalakshmi Dept of CSE East Point College of Engineering & Technology Bangalore, India Anirban Basu

More information

Australian Journal of Basic and Applied Sciences. Coherent Genetic Algorithm for Task Scheduling in Cloud Computing Environment

Australian Journal of Basic and Applied Sciences. Coherent Genetic Algorithm for Task Scheduling in Cloud Computing Environment AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Coherent Genetic Algorithm for Task Scheduling in Cloud Computing Environment 1 M. Krishna

More information

Performance Evaluation of Task Scheduling in Cloud Environment Using Soft Computing Algorithms

Performance Evaluation of Task Scheduling in Cloud Environment Using Soft Computing Algorithms 387 Performance Evaluation of Task Scheduling in Cloud Environment Using Soft Computing Algorithms 1 R. Jemina Priyadarsini, 2 Dr. L. Arockiam 1 Department of Computer science, St. Joseph s College, Trichirapalli,

More information

An Optimized Load-balancing Scheduling Method Based on the WLC Algorithm for Cloud Data Centers

An Optimized Load-balancing Scheduling Method Based on the WLC Algorithm for Cloud Data Centers Journal of Computational Information Systems 9: 7 (23) 689 6829 Available at http://www.jofcis.com An Optimized Load-balancing Scheduling Method Based on the WLC Algorithm for Cloud Data Centers Lianying

More information

A Method of Cloud Resource Load Balancing Scheduling Based on Improved Adaptive Genetic Algorithm

A Method of Cloud Resource Load Balancing Scheduling Based on Improved Adaptive Genetic Algorithm Journal of Information & Computational Science 9: 16 (2012) 4801 4809 Available at http://www.joics.com A Method of Cloud Resource Load Balancing Scheduling Based on Improved Adaptive Genetic Algorithm

More information

A TunableWorkflow Scheduling AlgorithmBased on Particle Swarm Optimization for Cloud Computing

A TunableWorkflow Scheduling AlgorithmBased on Particle Swarm Optimization for Cloud Computing A TunableWorkflow Scheduling AlgorithmBased on Particle Swarm Optimization for Cloud Computing Jing Huang, Kai Wu, Lok Kei Leong, Seungbeom Ma, and Melody Moh Department of Computer Science San Jose State

More information

Genetic Algorithm Based Bi-Objective Task Scheduling in Hybrid Cloud Platform

Genetic Algorithm Based Bi-Objective Task Scheduling in Hybrid Cloud Platform Genetic Algorithm Based Bi-Objective Task Scheduling in Hybrid Cloud Platform Leena V. A., Ajeena Beegom A. S., and Rajasree M. S., Member, IACSIT Abstract Hybrid cloud is a type of the general cloud computing

More information

Cloud Computing Simulation Using CloudSim

Cloud Computing Simulation Using CloudSim Cloud Computing Simulation Using CloudSim Ranjan Kumar #1, G.Sahoo *2 # Assistant Professor, Computer Science & Engineering, Ranchi University, India Professor & Head, Information Technology, Birla Institute

More information

An Evolutionary Algorithm in Grid Scheduling by multiobjective Optimization using variants of NSGA

An Evolutionary Algorithm in Grid Scheduling by multiobjective Optimization using variants of NSGA International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 1 An Evolutionary Algorithm in Grid Scheduling by multiobjective Optimization using variants of NSGA Shahista

More information

MULTI-PHASE FUZZY CONTROL OF SINGLE INTERSECTION IN TRAFFIC SYSTEM BASED ON GENETIC ALGORITHM. Received February 2011; revised June 2011

MULTI-PHASE FUZZY CONTROL OF SINGLE INTERSECTION IN TRAFFIC SYSTEM BASED ON GENETIC ALGORITHM. Received February 2011; revised June 2011 International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 5(A), May 2012 pp. 3387 3397 MULTI-PHASE FUZZY CONTROL OF SINGLE INTERSECTION

More information

SCORE BASED DEADLINE CONSTRAINED WORKFLOW SCHEDULING ALGORITHM FOR CLOUD SYSTEMS

SCORE BASED DEADLINE CONSTRAINED WORKFLOW SCHEDULING ALGORITHM FOR CLOUD SYSTEMS SCORE BASED DEADLINE CONSTRAINED WORKFLOW SCHEDULING ALGORITHM FOR CLOUD SYSTEMS Ranjit Singh and Sarbjeet Singh Computer Science and Engineering, Panjab University, Chandigarh, India ABSTRACT Cloud Computing

More information

HOST SCHEDULING ALGORITHM USING GENETIC ALGORITHM IN CLOUD COMPUTING ENVIRONMENT

HOST SCHEDULING ALGORITHM USING GENETIC ALGORITHM IN CLOUD COMPUTING ENVIRONMENT International Journal of Research in Engineering & Technology (IJRET) Vol. 1, Issue 1, June 2013, 7-12 Impact Journals HOST SCHEDULING ALGORITHM USING GENETIC ALGORITHM IN CLOUD COMPUTING ENVIRONMENT TARUN

More information

Optimizing Resource Consumption in Computational Cloud Using Enhanced ACO Algorithm

Optimizing Resource Consumption in Computational Cloud Using Enhanced ACO Algorithm Optimizing Resource Consumption in Computational Cloud Using Enhanced ACO Algorithm Preeti Kushwah, Dr. Abhay Kothari Department of Computer Science & Engineering, Acropolis Institute of Technology and

More information

Cost Minimized PSO based Workflow Scheduling Plan for Cloud Computing

Cost Minimized PSO based Workflow Scheduling Plan for Cloud Computing I.J. Information Technology and Computer Science, 5, 8, 7-4 Published Online July 5 in MECS (http://www.mecs-press.org/) DOI: 85/ijitcs.5.8.6 Cost Minimized PSO based Workflow Scheduling Plan for Cloud

More information

Fig. 1 WfMC Workflow reference Model

Fig. 1 WfMC Workflow reference Model International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 10 (2014), pp. 997-1002 International Research Publications House http://www. irphouse.com Survey Paper on

More information

GENETIC-BASED SOLUTIONS FOR INDEPENDENT BATCH SCHEDULING IN DATA GRIDS

GENETIC-BASED SOLUTIONS FOR INDEPENDENT BATCH SCHEDULING IN DATA GRIDS GENETIC-BASED SOLUTIONS FOR INDEPENDENT BATCH SCHEDULING IN DATA GRIDS Joanna Ko lodziej Cracow University of Technology, Poland Email: jokolodziej@pk.edu.pl Samee U. Khan North Dakota State University

More information

A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION

A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,

More information

MULTIDIMENSIONAL QOS ORIENTED TASK SCHEDULING IN GRID ENVIRONMENTS

MULTIDIMENSIONAL QOS ORIENTED TASK SCHEDULING IN GRID ENVIRONMENTS MULTIDIMENSIONAL QOS ORIENTED TASK SCHEDULING IN GRID ENVIRONMENTS Amit Agarwal and Padam Kumar Department of Electronics & Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, India

More information

Swinburne Research Bank http://researchbank.swinburne.edu.au

Swinburne Research Bank http://researchbank.swinburne.edu.au Swinburne Research Bank http://researchbank.swinburne.edu.au Wu, Z., Liu, X., Ni, Z., Yuan, D., & Yang, Y. (2013). A market-oriented hierarchical scheduling strategy in cloud workflow systems. Originally

More information

CDBMS Physical Layer issue: Load Balancing

CDBMS Physical Layer issue: Load Balancing CDBMS Physical Layer issue: Load Balancing Shweta Mongia CSE, School of Engineering G D Goenka University, Sohna Shweta.mongia@gdgoenka.ac.in Shipra Kataria CSE, School of Engineering G D Goenka University,

More information

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM *Shabnam Ghasemi 1 and Mohammad Kalantari 2 1 Deparment of Computer Engineering, Islamic Azad University,

More information

A* Algorithm Based Optimization for Cloud Storage

A* Algorithm Based Optimization for Cloud Storage International Journal of Digital Content Technology and its Applications Volume 4, Number 8, November 21 A* Algorithm Based Optimization for Cloud Storage 1 Ren Xun-Yi, 2 Ma Xiao-Dong 1* College of Computer

More information

A Heuristic Location Selection Strategy of Virtual Machine Based on the Residual Load Factor

A Heuristic Location Selection Strategy of Virtual Machine Based on the Residual Load Factor Journal of Computational Information Systems 9: 18 (2013) 7389 7396 Available at http://www.jofcis.com A Heuristic Location Selection Strategy of Virtual Machine Based on the Residual Load Factor Gaochao

More information

A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms

A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms MIGUEL CAMELO, YEZID DONOSO, HAROLD CASTRO Systems and Computer Engineering Department Universidad de los

More information

Load Balancing using DWARR Algorithm in Cloud Computing

Load Balancing using DWARR Algorithm in Cloud Computing IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online): 2349-6010 Load Balancing using DWARR Algorithm in Cloud Computing Niraj Patel PG Student

More information

LOAD BALANCING IN CLOUD USING ACO AND GENETIC ALGORITHM

LOAD BALANCING IN CLOUD USING ACO AND GENETIC ALGORITHM 724 LOAD BALANCING IN CLOUD USING ACO AND GENETIC ALGORITHM *Parveen Kumar Research Scholar Guru Kashi University, Talwandi Sabo ** Er.Mandeep Kaur Assistant Professor Guru Kashi University, Talwandi Sabo

More information

A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN PSO ALGORITHM

A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN PSO ALGORITHM International Journal of Research in Computer Science eissn 2249-8265 Volume 2 Issue 3 (212) pp. 17-23 White Globe Publications A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN ALGORITHM C.Kalpana

More information

ACO Based Dynamic Resource Scheduling for Improving Cloud Performance

ACO Based Dynamic Resource Scheduling for Improving Cloud Performance ACO Based Dynamic Resource Scheduling for Improving Cloud Performance Priyanka Mod 1, Prof. Mayank Bhatt 2 Computer Science Engineering Rishiraj Institute of Technology 1 Computer Science Engineering Rishiraj

More information

Efficient Qos Based Resource Scheduling Using PAPRIKA Method for Cloud Computing

Efficient Qos Based Resource Scheduling Using PAPRIKA Method for Cloud Computing Efficient Qos Based Resource Scheduling Using PAPRIKA Method for Cloud Computing Hilda Lawrance* Post Graduate Scholar Department of Information Technology, Karunya University Coimbatore, Tamilnadu, India

More information

An ACO-LB Algorithm for Task Scheduling in the Cloud Environment

An ACO-LB Algorithm for Task Scheduling in the Cloud Environment 466 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 An ACO-LB Algorithm for Task Scheduling in the Cloud Environment Shengjun Xue, Mengying Li, Xiaolong Xu, and Jingyi Chen Nanjing University of Information

More information

Management Resources Allocation and Scheduling based on Particle Swarm Optimization (PSO)

Management Resources Allocation and Scheduling based on Particle Swarm Optimization (PSO) Management Resources Allocation and Scheduling based on Particle Swarm Optimization (PSO) Yangmin BAI 1, a 1 School of Economics and Management Civil Aviation University of China, Tianjin 300300, China

More information

Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm

Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm 1 N. Sasikala and 2 Dr. D. Ramesh PG Scholar, Department of CSE, University College of Engineering (BIT Campus), Tiruchirappalli,

More information

A resource schedule method for cloud computing based on chaos particle swarm optimization algorithm

A resource schedule method for cloud computing based on chaos particle swarm optimization algorithm Abstract A resource schedule method for cloud computing based on chaos particle swarm optimization algorithm Lei Zheng 1, 2*, Defa Hu 3 1 School of Information Engineering, Shandong Youth University of

More information

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and Chia-Ying Tseng Department of Computer Science and Engineering,

More information

Research on Trust Management Strategies in Cloud Computing Environment

Research on Trust Management Strategies in Cloud Computing Environment Journal of Computational Information Systems 8: 4 (2012) 1757 1763 Available at http://www.jofcis.com Research on Trust Management Strategies in Cloud Computing Environment Wenjuan LI 1,2,, Lingdi PING

More information

Self-Learning Genetic Algorithm for a Timetabling Problem with Fuzzy Constraints

Self-Learning Genetic Algorithm for a Timetabling Problem with Fuzzy Constraints Self-Learning Genetic Algorithm for a Timetabling Problem with Fuzzy Constraints Radomír Perzina, Jaroslav Ramík perzina(ramik)@opf.slu.cz Centre of excellence IT4Innovations Division of the University

More information

Dynamic resource management for energy saving in the cloud computing environment

Dynamic resource management for energy saving in the cloud computing environment Dynamic resource management for energy saving in the cloud computing environment Liang-Teh Lee, Kang-Yuan Liu, and Hui-Yang Huang Department of Computer Science and Engineering, Tatung University, Taiwan

More information

A Task Allocation Schema Based on Response Time Optimization in Cloud Computing

A Task Allocation Schema Based on Response Time Optimization in Cloud Computing An English Draft of Dr. Yong Wang arxiv:1404.1124v2 [cs.dc] 18 Apr 2014 A Task Allocation Schema Based on Response Time Optimization in Cloud Computing Kai Li Yong Wang Meilin Liu School of Computer Science

More information

A SURVEY ON LOAD BALANCING ALGORITHMS IN CLOUD COMPUTING

A SURVEY ON LOAD BALANCING ALGORITHMS IN CLOUD COMPUTING A SURVEY ON LOAD BALANCING ALGORITHMS IN CLOUD COMPUTING Harshada Raut 1, Kumud Wasnik 2 1 M.Tech. Student, Dept. of Computer Science and Tech., UMIT, S.N.D.T. Women s University, (India) 2 Professor,

More information

Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm

Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm www.ijcsi.org 54 Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm Linan Zhu 1, Qingshui Li 2, and Lingna He 3 1 College of Mechanical Engineering, Zhejiang

More information

Resource Allocation in a Client/Server System for Massive Multi-Player Online Games

Resource Allocation in a Client/Server System for Massive Multi-Player Online Games IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 12, DECEMBER 2014 3127 Resource Allocation in a Client/Server System for Massive Multi-Player Online Games Luis Diego Briceño, Howard Jay Siegel, Fellow, IEEE,

More information

Load Balanced Min-Min Algorithm for Static Meta-Task Scheduling in Grid Computing

Load Balanced Min-Min Algorithm for Static Meta-Task Scheduling in Grid Computing Load Balanced Min-Min Algorithm for Static Meta-Task Scheduling in Grid Computing T. Kokilavani J.J. College of Engineering & Technology and Research Scholar, Bharathiar University, Tamil Nadu, India Dr.

More information

A Survey on Load Balancing Techniques Using ACO Algorithm

A Survey on Load Balancing Techniques Using ACO Algorithm A Survey on Load Balancing Techniques Using ACO Algorithm Preeti Kushwah Department of Computer Science & Engineering, Acropolis Institute of Technology and Research Indore bypass road Mangliya square

More information

A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0

A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0 212 International Conference on System Engineering and Modeling (ICSEM 212) IPCSIT vol. 34 (212) (212) IACSIT Press, Singapore A Binary Model on the Basis of Imperialist Competitive Algorithm in Order

More information

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS 133 CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS The proposed scheduling algorithms along with the heuristic intensive weightage factors, parameters and ß and their impact on the performance of the algorithms

More information

Keywords: Travelling Salesman Problem, Map Reduce, Genetic Algorithm. I. INTRODUCTION

Keywords: Travelling Salesman Problem, Map Reduce, Genetic Algorithm. I. INTRODUCTION ISSN: 2321-7782 (Online) Impact Factor: 6.047 Volume 4, Issue 6, June 2016 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study

More information

Genetic Algorithm Based Interconnection Network Topology Optimization Analysis

Genetic Algorithm Based Interconnection Network Topology Optimization Analysis Genetic Algorithm Based Interconnection Network Topology Optimization Analysis 1 WANG Peng, 2 Wang XueFei, 3 Wu YaMing 1,3 College of Information Engineering, Suihua University, Suihua Heilongjiang, 152061

More information

Multiobjective Multicast Routing Algorithm

Multiobjective Multicast Routing Algorithm Multiobjective Multicast Routing Algorithm Jorge Crichigno, Benjamín Barán P. O. Box 9 - National University of Asunción Asunción Paraguay. Tel/Fax: (+9-) 89 {jcrichigno, bbaran}@cnc.una.py http://www.una.py

More information

Load Balancing Algorithm Based on Estimating Finish Time of Services in Cloud Computing

Load Balancing Algorithm Based on Estimating Finish Time of Services in Cloud Computing Load Balancing Algorithm Based on Estimating Finish Time of Services in Cloud Computing Nguyen Khac Chien*, Nguyen Hong Son**, Ho Dac Loc*** * University of the People's Police, Ho Chi Minh city, Viet

More information

Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm

Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 7(July 2012), PP 141-147 Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm 1 Sourav Banerjee, 2 Mainak Adhikari,

More information

Resource Scheduling in Cloud using Bacterial Foraging Optimization Algorithm

Resource Scheduling in Cloud using Bacterial Foraging Optimization Algorithm Resource Scheduling in Cloud using Bacterial Foraging Optimization Algorithm Liji Jacob Department of computer science Karunya University Coimbatore V.Jeyakrishanan Department of computer science Karunya

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014 RESEARCH ARTICLE OPEN ACCESS Survey of Optimization of Scheduling in Cloud Computing Environment Er.Mandeep kaur 1, Er.Rajinder kaur 2, Er.Sughandha Sharma 3 Research Scholar 1 & 2 Department of Computer

More information

Multi-Objective Optimization to Workflow Grid Scheduling using Reference Point based Evolutionary Algorithm

Multi-Objective Optimization to Workflow Grid Scheduling using Reference Point based Evolutionary Algorithm Multi-Objective Optimization to Workflow Grid Scheduling using Reference Point based Evolutionary Algorithm Ritu Garg Assistant Professor Computer Engineering Department National Institute of Technology,

More information

A SURVEY ON LOAD BALANCING ALGORITHMS FOR CLOUD COMPUTING

A SURVEY ON LOAD BALANCING ALGORITHMS FOR CLOUD COMPUTING A SURVEY ON LOAD BALANCING ALGORITHMS FOR CLOUD COMPUTING Avtar Singh #1,Kamlesh Dutta #2, Himanshu Gupta #3 #1 Department of Computer Science and Engineering, Shoolini University, avtarz@gmail.com #2

More information

Ant Algorithm for Grid Scheduling Powered by Local Search

Ant Algorithm for Grid Scheduling Powered by Local Search Int. J. Open Problems Compt. Math., Vol. 1, No. 3, December 2008 Ant Algorithm for Grid Scheduling Powered by Local Search Kousalya.K and Balasubramanie.P Department of Computer Science and Engineering,

More information

Multilevel Communication Aware Approach for Load Balancing

Multilevel Communication Aware Approach for Load Balancing Multilevel Communication Aware Approach for Load Balancing 1 Dipti Patel, 2 Ashil Patel Department of Information Technology, L.D. College of Engineering, Gujarat Technological University, Ahmedabad 1

More information

ESQUIVEL S.C., GATICA C. R., GALLARD R.H.

ESQUIVEL S.C., GATICA C. R., GALLARD R.H. 62/9,1*7+(3$5$//(/7$6.6&+('8/,1*352%/(0%

More information

Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/ Vol. 3. No. 3 : pp.

Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/ Vol. 3. No. 3 : pp. Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/ Vol. 3. No. 3 : pp.49-54 : isrp13-005 Optimized Communications on Cloud Computer Processor by Using

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015 RESEARCH ARTICLE OPEN ACCESS Ensuring Reliability and High Availability in Cloud by Employing a Fault Tolerance Enabled Load Balancing Algorithm G.Gayathri [1], N.Prabakaran [2] Department of Computer

More information

WORKFLOW ENGINE FOR CLOUDS

WORKFLOW ENGINE FOR CLOUDS WORKFLOW ENGINE FOR CLOUDS By SURAJ PANDEY, DILEBAN KARUNAMOORTHY, and RAJKUMAR BUYYA Prepared by: Dr. Faramarz Safi Islamic Azad University, Najafabad Branch, Esfahan, Iran. Workflow Engine for clouds

More information

A Comparative Study of Load Balancing Algorithms in Cloud Computing Environment

A Comparative Study of Load Balancing Algorithms in Cloud Computing Environment Article can be accessed online at http://www.publishingindia.com A Comparative Study of Load Balancing Algorithms in Cloud Computing Environment Mayanka Katyal*, Atul Mishra** Abstract Cloud Computing

More information

Optimizing the Cost for Resource Subscription Policy in IaaS Cloud

Optimizing the Cost for Resource Subscription Policy in IaaS Cloud Optimizing the Cost for Resource Subscription Policy in IaaS Cloud Ms.M.Uthaya Banu #1, Mr.K.Saravanan *2 # Student, * Assistant Professor Department of Computer Science and Engineering Regional Centre

More information

Research on the Performance Optimization of Hadoop in Big Data Environment

Research on the Performance Optimization of Hadoop in Big Data Environment Vol.8, No.5 (015), pp.93-304 http://dx.doi.org/10.1457/idta.015.8.5.6 Research on the Performance Optimization of Hadoop in Big Data Environment Jia Min-Zheng Department of Information Engineering, Beiing

More information

An Efficient Study of Job Scheduling Algorithms with ACO in Cloud Computing Environment

An Efficient Study of Job Scheduling Algorithms with ACO in Cloud Computing Environment ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Manal F. Younis Computer Department, College

More information

Modeling on Energy Consumption of Cloud Computing Based on Data Center Yu Yang 1, a Jiang Wei 2, a Guan Wei 1, a Li Ping 1, a Zhou Yongmin 1, a

Modeling on Energy Consumption of Cloud Computing Based on Data Center Yu Yang 1, a Jiang Wei 2, a Guan Wei 1, a Li Ping 1, a Zhou Yongmin 1, a International Conference on Applied Science and Engineering Innovation (ASEI 2015) Modeling on Energy Consumption of Cloud Computing Based on Data Center Yu Yang 1, a Jiang Wei 2, a Guan Wei 1, a Li Ping

More information

A Survey on Load Balancing Algorithms in Cloud Environment

A Survey on Load Balancing Algorithms in Cloud Environment A Survey on Load s in Cloud Environment M.Aruna Assistant Professor (Sr.G)/CSE Erode Sengunthar Engineering College, Thudupathi, Erode, India D.Bhanu, Ph.D Associate Professor Sri Krishna College of Engineering

More information

OPTIMIZATION STRATEGY OF CLOUD COMPUTING SERVICE COMPOSITION RESEARCH BASED ON ANP

OPTIMIZATION STRATEGY OF CLOUD COMPUTING SERVICE COMPOSITION RESEARCH BASED ON ANP OPTIMIZATION STRATEGY OF CLOUD COMPUTING SERVICE COMPOSITION RESEARCH BASED ON ANP Xing Xu School of Automation Huazhong University of Science and Technology Wuhan 430074, P.R.China E-mail: xuxin19901201@126.com

More information

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Deep Mann ME (Software Engineering) Computer Science and Engineering Department Thapar University Patiala-147004

More information

Hybrid Performance-oriented Scheduling of Moldable Jobs with QoS Demands in Multiclusters and Grids

Hybrid Performance-oriented Scheduling of Moldable Jobs with QoS Demands in Multiclusters and Grids Hybrid Performance-oriented Scheduling of Moldable Jobs with QoS Demands in Multiclusters and Grids Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen and Graham R. Nudd Department of Computer

More information

An ACO Algorithm for Scheduling Data Intensive Application with Various QOS Requirements

An ACO Algorithm for Scheduling Data Intensive Application with Various QOS Requirements An ACO Algorithm for Scheduling Data Intensive Application with Various QOS Requirements S.Aranganathan and K.M.Mehata Department of CSE B.S. Abdur Rahman University Chennai 600048, Tamilnadu, India ABSTRACT

More information

Research Article Service Composition Optimization Using Differential Evolution and Opposition-based Learning

Research Article Service Composition Optimization Using Differential Evolution and Opposition-based Learning Research Journal of Applied Sciences, Engineering and Technology 11(2): 229-234, 2015 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted: May 20, 2015 Accepted: June

More information

Sensors & Transducers 2015 by IFSA Publishing, S. L. http://www.sensorsportal.com

Sensors & Transducers 2015 by IFSA Publishing, S. L. http://www.sensorsportal.com Sensors & Transducers 2015 by IFSA Publishing, S. L. http://www.sensorsportal.com A Dynamic Deployment Policy of Slave Controllers for Software Defined Network Yongqiang Yang and Gang Xu College of Computer

More information

SIMULATED ANNEALING APPROACH TO COST-BASED MULTI- QUALITY OF SERVICE JOB SCHEDULING IN CLOUD COMPUTING ENVIROMENT

SIMULATED ANNEALING APPROACH TO COST-BASED MULTI- QUALITY OF SERVICE JOB SCHEDULING IN CLOUD COMPUTING ENVIROMENT American Journal of Applied Sciences 11 (6): 872-877, 2014 ISSN: 1546-9239 2014 Abdullah and Othman, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajassp.2014.872.877

More information

Dynamic Approach for Load Balancing in CMS

Dynamic Approach for Load Balancing in CMS Dynamic Approach for Load Balancing in CMS Karishma Bhagwan Badgujar 1, Prof. P. R. Patil 2 Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India. karishmabadgujar13@gmail.com

More information

Scheduling. from CPUs to Clusters to Grids. MCSN N. Tonellotto Complements of Distributed Enabling Platforms

Scheduling. from CPUs to Clusters to Grids. MCSN N. Tonellotto Complements of Distributed Enabling Platforms Scheduling from CPUs to Clusters to Grids 1 Outline Terminology CPU Scheduling Real-time Scheduling Cluster Scheduling Grid Scheduling Cloud Scheduling 2 General Scheduling refers to allocate limited resources

More information

An Efficient Cloud Service Broker Algorithm

An Efficient Cloud Service Broker Algorithm An Efficient Cloud Service Broker Algorithm 1 Gamal I. Selim, 2 Rowayda A. Sadek, 3 Hend Taha 1 College of Engineering and Technology, AAST, dgamal55@yahoo.com 2 Faculty of Computers and Information, Helwan

More information

SCHEDULING IN CLOUD COMPUTING

SCHEDULING IN CLOUD COMPUTING SCHEDULING IN CLOUD COMPUTING Lipsa Tripathy, Rasmi Ranjan Patra CSA,CPGS,OUAT,Bhubaneswar,Odisha Abstract Cloud computing is an emerging technology. It process huge amount of data so scheduling mechanism

More information

Cloud Computing Online Scheduling

Cloud Computing Online Scheduling IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V6 PP 07-17 www.iosrjen.org Cloud Computing Online Scheduling Arabi E. Keshk Department of

More information

A new Method on Resource Scheduling in grid systems based on Hierarchical Stochastic Petri net

A new Method on Resource Scheduling in grid systems based on Hierarchical Stochastic Petri net A new Method on Resource Scheduling in grid systems based on Hierarchical Stochastic Petri net Mohammad Shojafar Msc. Computer Eng. Computer & Elec. Department Islamic Azad Universty of Qazvin Qazvin,Iran

More information

Study of Various Load Balancing Techniques in Cloud Environment- A Review

Study of Various Load Balancing Techniques in Cloud Environment- A Review International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Issue-04 E-ISSN: 2347-2693 Study of Various Load Balancing Techniques in Cloud Environment- A Review Rajdeep

More information

SCHEDULING MULTIPROCESSOR TASKS WITH GENETIC ALGORITHMS

SCHEDULING MULTIPROCESSOR TASKS WITH GENETIC ALGORITHMS SCHEDULING MULTIPROCESSOR TASKS WITH GENETIC ALGORITHMS MARIN GOLUB Department of Electronics, Microelectronics, Computer and Intelligent Systems Faculty of Electrical Engineering and Computing University

More information

Fuzzy Real Time Scheduling on Distributed Systems to Meet the Deadline of Applications

Fuzzy Real Time Scheduling on Distributed Systems to Meet the Deadline of Applications International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-2, Issue-4, April 2016 Pages 56-58 Fuzzy Real Time Scheduling on Distributed Systems to Meet the Deadline of Applications

More information

Load Balancing with Task Subtraction of Same Nodes

Load Balancing with Task Subtraction of Same Nodes Load Balancing with Task Subtraction of Same Nodes Ranjan Kumar Mondal 1, Debabrata Sarddar 2 1 Research Scholar, 2 Assistant Professor 1,2 Department of Computer Science and Engineering, University of

More information

ENERGY-EFFICIENT TASK SCHEDULING ALGORITHMS FOR CLOUD DATA CENTERS

ENERGY-EFFICIENT TASK SCHEDULING ALGORITHMS FOR CLOUD DATA CENTERS ENERGY-EFFICIENT TASK SCHEDULING ALGORITHMS FOR CLOUD DATA CENTERS T. Jenifer Nirubah 1, Rose Rani John 2 1 Post-Graduate Student, Department of Computer Science and Engineering, Karunya University, Tamil

More information

Figure 1. The cloud scales: Amazon EC2 growth [2].

Figure 1. The cloud scales: Amazon EC2 growth [2]. - Chung-Cheng Li and Kuochen Wang Department of Computer Science National Chiao Tung University Hsinchu, Taiwan 300 shinji10343@hotmail.com, kwang@cs.nctu.edu.tw Abstract One of the most important issues

More information

PGGA: A Predictable and Grouped Genetic Algorithm for Job Scheduling. Abstract

PGGA: A Predictable and Grouped Genetic Algorithm for Job Scheduling. Abstract PGGA: A Predictable and Grouped Genetic Algorithm for Job Scheduling Maozhen Li and Bin Yu School of Engineering and Design, Brunel University, Uxbridge, UB8 3PH, UK {Maozhen.Li, Bin.Yu}@brunel.ac.uk Man

More information

Research on SQLite Database Query Optimization Based on Improved PSO Algorithm

Research on SQLite Database Query Optimization Based on Improved PSO Algorithm , pp.239-246 http://dx.doi.org/10.14257/ijdta.2016.9.4.22 Research on SQLite Database Query Optimization Based on Improved PSO Algorithm Aite Zhao 1, Zhiqiang Wei 1 and Yongquan Yang 1,* 1 Ocean University

More information

Increasing QoS in SaaS for low Internet speed connections in cloud

Increasing QoS in SaaS for low Internet speed connections in cloud Proceedings of the 9 th International Conference on Applied Informatics Eger, Hungary, January 29 February 1, 2014. Vol. 1. pp. 195 200 doi: 10.14794/ICAI.9.2014.1.195 Increasing QoS in SaaS for low Internet

More information