Word count example Abdalrahman Alsaedi
|
|
|
- Conrad Jones
- 10 years ago
- Views:
Transcription
1 Word count example Abdalrahman Alsaedi To run word count in AWS you have two different ways; either use the already exist WordCount program, or to write your own file. First: Using AWS word count program Prerequisites Steps a. S3 bucket b. EC2 key pair 1. Login to your account in AWS 2. From Amazon Web Services, go to EMR 3. Click on Create Cluster 4. From Create Cluster page choose Go to advance option 5. Now click on Configure sample application 6. From Select sample application, click the drop-down menu and select Word Count. In Output location just change the <bucket-name> with one of your buckets that found in S3. Click Ok 7. In Security and Access part choose your key pair from the drop-down menu 8. As a notification you will see in Steps part that you have one step called Word count. 9. Click Create Cluster. The page of creating cluster will appear and the state of your cluster is Starting. The cluster now in creating process and after the creation finished the state of your cluster will be changed to Running. 10. Go to S3 console and choose the bucket that you choose in step 6. you will find the output folder that contains the output, its some thing like in figure below.
2 Second: Create your own word count program using Eclipse As a another way that we can create our own file of word count, we can use Eclipse to write the word count program, as following. Prerequisites: a. install Eclipse in your machine. b. install Hadoop in your machine. Note: you will find links to install above packages in Topic Covered of Dr Gupta web page Steps 1. Start Eclipse 2. from file go to New project, then select Java project. 3. enter the name for your project, let say wordcount, and press finish. 4. Now we need to include some Hadoop dependenies to our project. To do so right click on the project name in project browser, and choose build bath and then Configure Build Path...
3 5. click on libraries, then Add external JARs then go to the location where you installed hadoop in your machine, select all JARs. Click Apply, and then OK. 6. We need to add more JARs. Do same thing that we did in step 5 but this time we will choose Client subfolder that found in Haddop folder. Select all JARs. Click Apply, and then OK. 7. Now our project redy to write some code in it. Right click on the project name and select new then package, name the package as wordcount, click finsh. Now right click on scr folder and select new and then class, name the class wordcount and click finish. 8. copy the code the following code and paste it in the class. package wordcount; import java.io.ioexception; import java.util.*; import org.apache.hadoop.fs.path; import org.apache.hadoop.conf.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*; public class WordCount { public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(longwritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.tostring(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasmoretokens()) { word.set(tokenizer.nexttoken()); output.collect(word, one); public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasnext()) { sum += values.next().get(); output.collect(key, new IntWritable(sum)); public static void main(string[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setjobname("wordcount"); conf.setoutputkeyclass(text.class); conf.setoutputvalueclass(intwritable.class); conf.setmapperclass(map.class); conf.setcombinerclass(reduce.class); conf.setreducerclass(reduce.class); conf.setinputformat(textinputformat.class); conf.setoutputformat(textoutputformat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); 9. Note here that in some cases you find tow errors that indicated in step public class WordCount { and in step JobConf conf = new JobConf(WordCount.class); this because your class note exactly has the same name, so change your class ofr change this name as your class.
4 10. Now we need to compile the class before export it. First click on the pakege name and go to Run As, then Run Configuration, in Main class type the name of your class, and click Apply, and then Run. 11. As a last step. Go to file>export>java>jar file, then select your file and give it a name, and specific location. You need this location, because you will upload this JAR to S3 later. 12. To Run this file in AWS we follow steps from 1 to 4 that we mentioned in First: Using AWS word count program. Also we need to upload our JAR to one of the S3 buckets that we have, and we need to upload the file that we want to count the word on it. Note Some times you will find that there is some other applications that will be installed in your cluster this will be mentioned in section Software Application/ Application to be installed, you do not need any application other than Hadoop, so delete all other application by pressing X. 13. In Security and Access part choose your key pair from the drop-down menu. 14. In step section select Custom JAR from the drop-down menu and press Configure and add. Give a name for your step, let say WordCountCS6030. In JAR location browse the location that you saved you JAR in it. In Argument we need to specify the location of the file that the word count will work on it and the location of the folder that will contains the output file(s), write the following: s3n://<location_of_text_file>/your_text_file s3n://<output_bucket>/ 15. in Action on failure you can specify what AWS will do if your cluster fail to run your JAR. Specify the action that you want, let say Terminate cluste. Finally click Add. 16. Click Create Cluster. The page of creating cluster will appear and the state of your cluster is Starting. The cluster now in creating process and after the creation finished the state of your cluster will be changed to Running. 17. Go to S3 console and choose the bucket that you choose as an output bucket. you will find the output folder that contains the output.
5 Third: Using Hue to run word count program To run the word count example in Hue follow the following steps: 1. Run your Cloudera VM 2. go to Hue in task bar. 3. Go to File Browser 4. from the folders that displayed click on: 5.You will reach Oozie folder, click on this folder, and then click on New and then on Directory. Give a name for your directory, let say WordCount 6. click on your new folder and click on Upload next to New in previous figure. Now upload the file that you want to count the word on it. Let say we will work on the same file that we have from our CS6030 class.
6 7. Now, go to Query Editor, in the above task bar and select Pig from the drop down meny. 8. in the editor that you will see copy and paste the following Pig Latin code: A = LOAD '/oozie/wordcount' USING TextLoader() AS (words:chararray); B = FOREACH A GENERATE FLATTEN(TOKENIZE(*)); C = GROUP B BY $0; D = FOREACH C GENERATE group, COUNT(B); STORE D INTO '/oozie/wcresults'; 9. click on Submit in the Editor in left side. 10. Click on Save to save the script. 11. to see the result click on File Browser and then go to Oozie folder you will see their a folder called named wcresult. Click on this folder to see the result, it will be some thing like figure below.
How To Write A Mapreduce Program In Java.Io 4.4.4 (Orchestra)
MapReduce framework - Operates exclusively on pairs, - that is, the framework views the input to the job as a set of pairs and produces a set of pairs as the output
Istanbul Şehir University Big Data Camp 14. Hadoop Map Reduce. Aslan Bakirov Kevser Nur Çoğalmış
Istanbul Şehir University Big Data Camp 14 Hadoop Map Reduce Aslan Bakirov Kevser Nur Çoğalmış Agenda Map Reduce Concepts System Overview Hadoop MR Hadoop MR Internal Job Execution Workflow Map Side Details
Hadoop WordCount Explained! IT332 Distributed Systems
Hadoop WordCount Explained! IT332 Distributed Systems Typical problem solved by MapReduce Read a lot of data Map: extract something you care about from each record Shuffle and Sort Reduce: aggregate, summarize,
Hadoop Framework. technology basics for data scientists. Spring - 2014. Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN
Hadoop Framework technology basics for data scientists Spring - 2014 Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN Warning! Slides are only for presenta8on guide We will discuss+debate addi8onal
Introduc)on to the MapReduce Paradigm and Apache Hadoop. Sriram Krishnan [email protected]
Introduc)on to the MapReduce Paradigm and Apache Hadoop Sriram Krishnan [email protected] Programming Model The computa)on takes a set of input key/ value pairs, and Produces a set of output key/value pairs.
Word Count Code using MR2 Classes and API
EDUREKA Word Count Code using MR2 Classes and API A Guide to Understand the Execution of Word Count edureka! A guide to understand the execution and flow of word count WRITE YOU FIRST MRV2 PROGRAM AND
Data Science in the Wild
Data Science in the Wild Lecture 3 Some slides are taken from J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 Data Science and Big Data Big Data: the data cannot
Hadoop: Understanding the Big Data Processing Method
Hadoop: Understanding the Big Data Processing Method Deepak Chandra Upreti 1, Pawan Sharma 2, Dr. Yaduvir Singh 3 1 PG Student, Department of Computer Science & Engineering, Ideal Institute of Technology
map/reduce connected components
1, map/reduce connected components find connected components with analogous algorithm: map edges randomly to partitions (k subgraphs of n nodes) for each partition remove edges, so that only tree remains
CS54100: Database Systems
CS54100: Database Systems Cloud Databases: The Next Post- Relational World 18 April 2012 Prof. Chris Clifton Beyond RDBMS The Relational Model is too limiting! Simple data model doesn t capture semantics
Step 4: Configure a new Hadoop server This perspective will add a new snap-in to your bottom pane (along with Problems and Tasks), like so:
Codelab 1 Introduction to the Hadoop Environment (version 0.17.0) Goals: 1. Set up and familiarize yourself with the Eclipse plugin 2. Run and understand a word counting program Setting up Eclipse: Step
Introduction to MapReduce and Hadoop
Introduction to MapReduce and Hadoop Jie Tao Karlsruhe Institute of Technology [email protected] Die Kooperation von Why Map/Reduce? Massive data Can not be stored on a single machine Takes too long to process
MR-(Mapreduce Programming Language)
MR-(Mapreduce Programming Language) Siyang Dai Zhi Zhang Shuai Yuan Zeyang Yu Jinxiong Tan sd2694 zz2219 sy2420 zy2156 jt2649 Objective of MR MapReduce is a software framework introduced by Google, aiming
Hadoop & Pig. Dr. Karina Hauser Senior Lecturer Management & Entrepreneurship
Hadoop & Pig Dr. Karina Hauser Senior Lecturer Management & Entrepreneurship Outline Introduction (Setup) Hadoop, HDFS and MapReduce Pig Introduction What is Hadoop and where did it come from? Big Data
Introduction To Hadoop
Introduction To Hadoop Kenneth Heafield Google Inc January 14, 2008 Example code from Hadoop 0.13.1 used under the Apache License Version 2.0 and modified for presentation. Except as otherwise noted, the
By Hrudaya nath K Cloud Computing
Processing Big Data with Map Reduce and HDFS By Hrudaya nath K Cloud Computing Some MapReduce Terminology Job A full program - an execution of a Mapper and Reducer across a data set Task An execution of
Hadoop and Eclipse. Eclipse Hawaii User s Group May 26th, 2009. Seth Ladd http://sethladd.com
Hadoop and Eclipse Eclipse Hawaii User s Group May 26th, 2009 Seth Ladd http://sethladd.com Goal YOU can use the same technologies as The Big Boys Google Yahoo (2000 nodes) Last.FM AOL Facebook (2.5 petabytes
Elastic Map Reduce. Shadi Khalifa Database Systems Laboratory (DSL) [email protected]
Elastic Map Reduce Shadi Khalifa Database Systems Laboratory (DSL) [email protected] The Amazon Web Services Universe Cross Service Features Management Interface Platform Services Infrastructure Services
Case-Based Reasoning Implementation on Hadoop and MapReduce Frameworks Done By: Soufiane Berouel Supervised By: Dr Lily Liang
Case-Based Reasoning Implementation on Hadoop and MapReduce Frameworks Done By: Soufiane Berouel Supervised By: Dr Lily Liang Independent Study Advanced Case-Based Reasoning Department of Computer Science
Download and install Download virtual machine Import virtual machine in Virtualbox
Hadoop/Pig Install Download and install Virtualbox www.virtualbox.org Virtualbox Extension Pack Download virtual machine link in schedule (https://rmacchpcsymposium2015.sched.org/? iframe=no) Import virtual
Hadoop Configuration and First Examples
Hadoop Configuration and First Examples Big Data 2015 Hadoop Configuration In the bash_profile export all needed environment variables Hadoop Configuration Allow remote login Hadoop Configuration Download
Copy the.jar file into the plugins/ subfolder of your Eclipse installation. (e.g., C:\Program Files\Eclipse\plugins)
Beijing Codelab 1 Introduction to the Hadoop Environment Spinnaker Labs, Inc. Contains materials Copyright 2007 University of Washington, licensed under the Creative Commons Attribution 3.0 License --
Creating.NET-based Mappers and Reducers for Hadoop with JNBridgePro
Creating.NET-based Mappers and Reducers for Hadoop with JNBridgePro CELEBRATING 10 YEARS OF JAVA.NET Apache Hadoop.NET-based MapReducers Creating.NET-based Mappers and Reducers for Hadoop with JNBridgePro
HPCHadoop: MapReduce on Cray X-series
HPCHadoop: MapReduce on Cray X-series Scott Michael Research Analytics Indiana University Cray User Group Meeting May 7, 2014 1 Outline Motivation & Design of HPCHadoop HPCHadoop demo Benchmarking Methodology
Hadoop. Dawid Weiss. Institute of Computing Science Poznań University of Technology
Hadoop Dawid Weiss Institute of Computing Science Poznań University of Technology 2008 Hadoop Programming Summary About Config 1 Open Source Map-Reduce: Hadoop About Cluster Configuration 2 Programming
How To Write A Mapreduce Program On An Ipad Or Ipad (For Free)
Course NDBI040: Big Data Management and NoSQL Databases Practice 01: MapReduce Martin Svoboda Faculty of Mathematics and Physics, Charles University in Prague MapReduce: Overview MapReduce Programming
Programming Hadoop Map-Reduce Programming, Tuning & Debugging. Arun C Murthy Yahoo! CCDI [email protected] ApacheCon US 2008
Programming Hadoop Map-Reduce Programming, Tuning & Debugging Arun C Murthy Yahoo! CCDI [email protected] ApacheCon US 2008 Existential angst: Who am I? Yahoo! Grid Team (CCDI) Apache Hadoop Developer
Programming in Hadoop Programming, Tuning & Debugging
Programming in Hadoop Programming, Tuning & Debugging Venkatesh. S. Cloud Computing and Data Infrastructure Yahoo! Bangalore (India) Agenda Hadoop MapReduce Programming Distributed File System HoD Provisioning
Hadoop Basics with InfoSphere BigInsights
An IBM Proof of Technology Hadoop Basics with InfoSphere BigInsights Unit 2: Using MapReduce An IBM Proof of Technology Catalog Number Copyright IBM Corporation, 2013 US Government Users Restricted Rights
Building a distributed search system with Apache Hadoop and Lucene. Mirko Calvaresi
Building a distributed search system with Apache Hadoop and Lucene Mirko Calvaresi a Barbara, Leonardo e Vittoria 2 Index Preface... 5 1 Introduction: the Big Data Problem... 6 1.1 Big data: handling the
Zebra and MapReduce. Table of contents. 1 Overview...2 2 Hadoop MapReduce APIs...2 3 Zebra MapReduce APIs...2 4 Zebra MapReduce Examples...
Table of contents 1 Overview...2 2 Hadoop MapReduce APIs...2 3 Zebra MapReduce APIs...2 4 Zebra MapReduce Examples... 2 1. Overview MapReduce allows you to take full advantage of Zebra's capabilities.
How To Write A Map Reduce In Hadoop Hadooper 2.5.2.2 (Ahemos)
Processing Data with Map Reduce Allahbaksh Mohammedali Asadullah Infosys Labs, Infosys Technologies 1 Content Map Function Reduce Function Why Hadoop HDFS Map Reduce Hadoop Some Questions 2 What is Map
LANGUAGES FOR HADOOP: PIG & HIVE
Friday, September 27, 13 1 LANGUAGES FOR HADOOP: PIG & HIVE Michail Michailidis & Patrick Maiden Friday, September 27, 13 2 Motivation Native MapReduce Gives fine-grained control over how program interacts
Hadoop Lab Notes. Nicola Tonellotto November 15, 2010
Hadoop Lab Notes Nicola Tonellotto November 15, 2010 2 Contents 1 Hadoop Setup 4 1.1 Prerequisites........................................... 4 1.2 Installation............................................
BIG DATA ANALYTICS HADOOP PERFORMANCE ANALYSIS. A Thesis. Presented to the. Faculty of. San Diego State University. In Partial Fulfillment
BIG DATA ANALYTICS HADOOP PERFORMANCE ANALYSIS A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science
Hadoop Streaming. 2012 coreservlets.com and Dima May. 2012 coreservlets.com and Dima May
2012 coreservlets.com and Dima May Hadoop Streaming Originals of slides and source code for examples: http://www.coreservlets.com/hadoop-tutorial/ Also see the customized Hadoop training courses (onsite
Hadoop Tutorial. General Instructions
CS246: Mining Massive Datasets Winter 2016 Hadoop Tutorial Due 11:59pm January 12, 2016 General Instructions The purpose of this tutorial is (1) to get you started with Hadoop and (2) to get you acquainted
Report Vertiefung, Spring 2013 Constant Interval Extraction using Hadoop
Report Vertiefung, Spring 2013 Constant Interval Extraction using Hadoop Thomas Brenner, 08-928-434 1 Introduction+and+Task+ Temporal databases are databases expanded with a time dimension in order to
Introduction to MapReduce and Hadoop
UC Berkeley Introduction to MapReduce and Hadoop Matei Zaharia UC Berkeley RAD Lab [email protected] What is MapReduce? Data-parallel programming model for clusters of commodity machines Pioneered
Big Data Management and NoSQL Databases
NDBI040 Big Data Management and NoSQL Databases Lecture 3. Apache Hadoop Doc. RNDr. Irena Holubova, Ph.D. [email protected] http://www.ksi.mff.cuni.cz/~holubova/ndbi040/ Apache Hadoop Open-source
How To Write A Map In Java (Java) On A Microsoft Powerbook 2.5 (Ahem) On An Ipa (Aeso) Or Ipa 2.4 (Aseo) On Your Computer Or Your Computer
Lab 0 - Introduction to Hadoop/Eclipse/Map/Reduce CSE 490h - Winter 2007 To Do 1. Eclipse plug in introduction Dennis Quan, IBM 2. Read this hand out. 3. Get Eclipse set up on your machine. 4. Load the
Hadoop, Hive & Spark Tutorial
Hadoop, Hive & Spark Tutorial 1 Introduction This tutorial will cover the basic principles of Hadoop MapReduce, Apache Hive and Apache Spark for the processing of structured datasets. For more information
Hadoop at Yahoo! Owen O Malley Yahoo!, Grid Team [email protected]
Hadoop at Yahoo! Owen O Malley Yahoo!, Grid Team [email protected] Who Am I? Yahoo! Architect on Hadoop Map/Reduce Design, review, and implement features in Hadoop Working on Hadoop full time since Feb
School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014. Hadoop for HPC. Instructor: Ekpe Okorafor
School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 Hadoop for HPC Instructor: Ekpe Okorafor Outline Hadoop Basics Hadoop Infrastructure HDFS MapReduce Hadoop & HPC Hadoop
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13 Astrid Rheinländer Wissensmanagement in der Bioinformatik What is Big Data? collection of data sets so large and complex
Tutorial- Counting Words in File(s) using MapReduce
Tutorial- Counting Words in File(s) using MapReduce 1 Overview This document serves as a tutorial to setup and run a simple application in Hadoop MapReduce framework. A job in Hadoop MapReduce usually
Big Data Management. Big Data Management. (BDM) Autumn 2013. Povl Koch November 11, 2013 10-11-2013 1
Big Data Management Big Data Management (BDM) Autumn 2013 Povl Koch November 11, 2013 10-11-2013 1 Overview Today s program 1. Little more practical details about this course 2. Recap from last time (Google
IDS 561 Big data analytics Assignment 1
IDS 561 Big data analytics Assignment 1 Due Midnight, October 4th, 2015 General Instructions The purpose of this tutorial is (1) to get you started with Hadoop and (2) to get you acquainted with the code
Lecture #1. An overview of Big Data
Additional Topics: Big Data Lecture #1 An overview of Big Data Joseph Bonneau [email protected] April 27, 2012 Course outline 0 Google on Building Large Systems (Mar. 14) David Singleton 1 Overview of Big
Working With Hadoop. Important Terminology. Important Terminology. Anatomy of MapReduce Job Run. Important Terminology
Working With Hadoop Now that we covered the basics of MapReduce, let s look at some Hadoop specifics. Mostly based on Tom White s book Hadoop: The Definitive Guide, 3 rd edition Note: We will use the new
MapReduce Tutorial. Table of contents
Table of contents 1 Purpose... 2 2 Prerequisites...2 3 Overview... 2 4 Inputs and Outputs... 3 5 Example: WordCount v1.0... 3 5.1 Source Code...3 5.2 Usage...6 5.3 Walk-through... 7 6 MapReduce - User
Implementations of iterative algorithms in Hadoop and Spark
Implementations of iterative algorithms in Hadoop and Spark by Junyu Lai A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics
Internals of Hadoop Application Framework and Distributed File System
International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Internals of Hadoop Application Framework and Distributed File System Saminath.V, Sangeetha.M.S Abstract- Hadoop
Creating a Java application using Perfect Developer and the Java Develo...
1 of 10 15/02/2010 17:41 Creating a Java application using Perfect Developer and the Java Development Kit Introduction Perfect Developer has the facility to execute pre- and post-build steps whenever the
Data management in the cloud using Hadoop
UT DALLAS Erik Jonsson School of Engineering & Computer Science Data management in the cloud using Hadoop Murat Kantarcioglu Outline Hadoop - Basics HDFS Goals Architecture Other functions MapReduce Basics
Running Hadoop on Windows CCNP Server
Running Hadoop at Stirling Kevin Swingler Summary The Hadoopserver in CS @ Stirling A quick intoduction to Unix commands Getting files in and out Compliing your Java Submit a HadoopJob Monitor your jobs
and HDFS for Big Data Applications Serge Blazhievsky Nice Systems
Introduction PRESENTATION to Hadoop, TITLE GOES MapReduce HERE and HDFS for Big Data Applications Serge Blazhievsky Nice Systems SNIA Legal Notice The material contained in this tutorial is copyrighted
Hands-on Exercises with Big Data
Hands-on Exercises with Big Data Lab Sheet 1: Getting Started with MapReduce and Hadoop The aim of this exercise is to learn how to begin creating MapReduce programs using the Hadoop Java framework. In
Connecting Hadoop with Oracle Database
Connecting Hadoop with Oracle Database Sharon Stephen Senior Curriculum Developer Server Technologies Curriculum The following is intended to outline our general product direction.
Hadoop Map-Reduce Tutorial
Table of contents 1 Purpose...2 2 Pre-requisites...2 3 Overview...2 4 Inputs and Outputs... 3 5 Example: WordCount v1.0... 3 5.1 Source Code...3 5.2 Usage... 6 5.3 Walk-through...7 6 Map-Reduce - User
Data Science Analytics & Research Centre
Data Science Analytics & Research Centre Data Science Analytics & Research Centre 1 Big Data Big Data Overview Characteristics Applications & Use Case HDFS Hadoop Distributed File System (HDFS) Overview
Cloud Computing Era. Trend Micro
Cloud Computing Era Trend Micro Three Major Trends to Chang the World Cloud Computing Big Data Mobile 什 麼 是 雲 端 運 算? 美 國 國 家 標 準 技 術 研 究 所 (NIST) 的 定 義 : Essential Characteristics Service Models Deployment
MapReduce Programming with Apache Hadoop Viraj Bhat [email protected]
MapReduce Programming with Apache Hadoop Viraj Bhat [email protected] - 1 - Agenda Session I and II (8-12pm) Introduction Hadoop Distributed File System (HDFS) Hadoop Map-Reduce Programming Hadoop Architecture
Discover Hadoop. MapReduce Flexible framework for data analysis. Bonus. Network & Security. Special. Step by Step: Configuring.
ADMIN Network & Security Special Bonus Mini-mag! Discover Hadoop MapReduce Flexible framework for data analysis Step by Step: Configuring Hadoop for data excavation Hunk for Hadoop Simplify Hadoop queries
Parallel Programming Map-Reduce. Needless to Say, We Need Machine Learning for Big Data
Case Study 2: Document Retrieval Parallel Programming Map-Reduce Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 31 st, 2013 Carlos Guestrin
BIG DATA APPLICATIONS
BIG DATA ANALYTICS USING HADOOP AND SPARK ON HATHI Boyu Zhang Research Computing ITaP BIG DATA APPLICATIONS Big data has become one of the most important aspects in scientific computing and business analytics
Introduction to MapReduce
Introduction to MapReduce Jerome Simeon IBM Watson Research Content obtained from many sources, notably: Jimmy Lin course on MapReduce. Our Plan Today 1. Background: Cloud and distributed computing 2.
Introduc8on to Apache Spark
Introduc8on to Apache Spark Jordan Volz, Systems Engineer @ Cloudera 1 Analyzing Data on Large Data Sets Python, R, etc. are popular tools among data scien8sts/analysts, sta8s8cians, etc. Why are these
Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart
Hadoop/MapReduce Object-oriented framework presentation CSCI 5448 Casey McTaggart What is Apache Hadoop? Large scale, open source software framework Yahoo! has been the largest contributor to date Dedicated
Xiaoming Gao Hui Li Thilina Gunarathne
Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal
Hadoop Installation MapReduce Examples Jake Karnes
Big Data Management Hadoop Installation MapReduce Examples Jake Karnes These slides are based on materials / slides from Cloudera.com Amazon.com Prof. P. Zadrozny's Slides Prerequistes You must have an
Getting to know Apache Hadoop
Getting to know Apache Hadoop Oana Denisa Balalau Télécom ParisTech October 13, 2015 1 / 32 Table of Contents 1 Apache Hadoop 2 The Hadoop Distributed File System(HDFS) 3 Application management in the
The Cloud Computing Era and Ecosystem. Phoenix Liau, Technical Manager
The Cloud Computing Era and Ecosystem Phoenix Liau, Technical Manager Three Major Trends to Chang the World Cloud Computing Big Data Mobile Mobility and Personal Cloud My World! My Way! What is Personal
Why Spark Is the Next Top (Compute) Model
Philly ETE 2014 April 22-23, 2014 @deanwampler polyglotprogramming.com/talks Why Spark Is the Next Top (Compute) Model Copyright (c) 2014, Dean Wampler, All Rights Reserved, unless otherwise noted. Image:
An Implementation of Sawzall on Hadoop
1 An Implementation of Sawzall on Hadoop Hidemoto Nakada, Tatsuhiko Inoue and Tomohiro Kudoh, 1-1-1 National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba, Ibaraki 35-8568,
BIG DATA STATE OF THE ART: SPARK AND THE SQL RESURGENCE
BIG DATA STATE OF THE ART: SPARK AND THE SQL RESURGENCE Dean Wampler, Ph.D. Typesafe Dean Wampler Programming Hive Functional Programming for Java Developers Dean Wampler Dean Wampler, Jason Rutherglen
Extreme Computing. Hadoop MapReduce in more detail. www.inf.ed.ac.uk
Extreme Computing Hadoop MapReduce in more detail How will I actually learn Hadoop? This class session Hadoop: The Definitive Guide RTFM There is a lot of material out there There is also a lot of useless
Hadoop MapReduce Tutorial - Reduce Comp variability in Data Stamps
Distributed Recommenders Fall 2010 Distributed Recommenders Distributed Approaches are needed when: Dataset does not fit into memory Need for processing exceeds what can be provided with a sequential algorithm
Assignment 1 Introduction to the Hadoop Environment
Assignment 1 Introduction to the Hadoop Environment Elements: 1. Get the tools you need to complete Hadoop activities 2. Run and understand a word counting program 3. Design, implement, and understand
Important Notice. (c) 2010-2013 Cloudera, Inc. All rights reserved.
Hue 2 User Guide Important Notice (c) 2010-2013 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, and any other product or service names or slogans contained in this document
Lambda Architecture. CSCI 5828: Foundations of Software Engineering Lecture 29 12/09/2014
Lambda Architecture CSCI 5828: Foundations of Software Engineering Lecture 29 12/09/2014 1 Goals Cover the material in Chapter 8 of the Concurrency Textbook The Lambda Architecture Batch Layer MapReduce
19 Putting into Practice: Large-Scale Data Management with HADOOP
19 Putting into Practice: Large-Scale Data Management with HADOOP The chapter proposes an introduction to HADOOP and suggests some exercises to initiate a practical experience of the system. The following
HowTo Hadoop. Devaraj Das
HowTo Hadoop Devaraj Das Hadoop http://hadoop.apache.org/core/ Hadoop Distributed File System Fault tolerant, scalable, distributed storage system Designed to reliably store very large files across machines
Introduction to Big Data Science. Wuhui Chen
Introduction to Big Data Science Wuhui Chen What is Big data? Volume Variety Velocity Outline What are people doing with Big data? Classic examples Two basic technologies for Big data management: Data
NOSQL DATABASE SYSTEMS
NOSQL DATABASE SYSTEMS Big Data Technologies: NoSQL DBMS - SoSe 2015 1 Categorization NoSQL Data Model Storage Layout Query Models Solution Architectures NoSQL Database Systems Data Modeling id ti Application
Data Deluge. Billions of users connected through the Internet. Storage getting cheaper
Hadoop 1 Data Deluge Billions of users connected through the Internet WWW, FB, twitter, cell phones, 80% of the data on FB was produced last year Storage getting cheaper Store more data! Why Hadoop Drivers:
Introduction to Cloud Computing
Introduction to Cloud Computing MapReduce and Hadoop 15 319, spring 2010 17 th Lecture, Mar 16 th Majd F. Sakr Lecture Goals Transition to MapReduce from Functional Programming Understand the origins of
Eclipse installation, configuration and operation
Eclipse installation, configuration and operation This document aims to walk through the procedures to setup eclipse on different platforms for java programming and to load in the course libraries for
PaperStream Connect. Setup Guide. Version 1.0.0.0. Copyright Fujitsu
PaperStream Connect Setup Guide Version 1.0.0.0 Copyright Fujitsu 2014 Contents Introduction to PaperStream Connect... 2 Setting up PaperStream Capture to Release to Cloud Services... 3 Selecting a Cloud
Mrs: MapReduce for Scientific Computing in Python
Mrs: for Scientific Computing in Python Andrew McNabb, Jeff Lund, and Kevin Seppi Brigham Young University November 16, 2012 Large scale problems require parallel processing Communication in parallel processing
Monitoring Oracle Enterprise Performance Management System Release 11.1.2.3 Deployments from Oracle Enterprise Manager 12c
Monitoring Oracle Enterprise Performance Management System Release 11.1.2.3 Deployments from Oracle Enterprise Manager 12c This document describes how to set up Oracle Enterprise Manager 12c to monitor
Amazon Glacier. Developer Guide API Version 2012-06-01
Amazon Glacier Developer Guide Amazon Glacier: Developer Guide Copyright 2016 Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in
