Recent Advances in Periscope for Performance Analysis and Tuning
|
|
|
- Arron Shawn Short
- 10 years ago
- Views:
Transcription
1 Recent Advances in Periscope for Performance Analysis and Tuning Isaias Compres, Michael Firbach, Michael Gerndt Robert Mijakovic, Yury Oleynik, Ventsislav Petkov Technische Universität München Yury Oleynik,
2 Outline Periscope overview Advances in Periscope Development I. PAThWay II. Performance Dynamics Analysis with Periscope III. Periscope Tuning Framework Yury Oleynik, 2
3 Projects LMAC Leistungsdynamik massiv-paralleler Codes Performance Dynamics of Massively Parallel Codes BMBF project AutoTune Automatic Online Tuning European Union FP7 project Yury Oleynik, 3
4 Periscope overview Distributed Architecture Analysis performed by multiple distributed hierarchical agents Iterative Online Analysis Measurements are configured, obtained and evaluated on the fly Automatic Analysis Based on formalized knowledge of performance optimization experts Eclipse Integration Eclipse based integrated development and performance analysis environment Measurement and Instrumentation Score-P or MRIMonitor Yury Oleynik, 4
5 Advances in Periscope Development Performance Dynamics Cross-experiment performance dynamics: Provide a tool for automating and organization of performance experiments during the optimization process Runtime performance dynamics: Automatically search for runtime performance dynamics properties Performance Tuning Perform automatic search for application configuration delivering best performance according to given objective Yury Oleynik, [email protected] 5
6 I. Cross-experiment performance dynamics PATHWAY Yury Oleynik, 6
7 Problem statement Performance Engineering Performance engineering is an iterative cycle Requires in-depth knowledge of hw and sw Each step may involve many tools & different configurations Repetitive and manual Optimization spans over months Hard to organize data & results No clear track of process evolution Examples Scalability analysis Cross-platform analysis Verify Optimize problematic code sections Baseline Establish/Update Execute Parallel application Monitor Performance Analyze Bottlenecks Yury Oleynik, 7
8 PAThWay Eclipse plug-in for structured and methodical performance engineering using workflows Goals: Manage individual tasks as part of one workflow Automate performance engineering tasks, where possible Keep track and organize the process Abstract complexity of the underlying software and hardware Yury Oleynik, 8
9 Yury Oleynik, 9
10 Workflow Editor Workflow editor Available workflow components Yury Oleynik, 10
11 Experiment Browser Database stores also properties of the tools Experiments view Standard output and environment configuration Experiments Meta-data Yury Oleynik, 11
12 Project Documentation Accessible documentation is important Requirements Work progress Optimization ideas Commonly spread around multiple documents Wiki-based editor Completed experiments Links to other external resources Other wiki pages Yury Oleynik, 12
13 Supportive Modules Parallel Tools Platform Module Starting interactive/batch jobs Monitoring execution & accessing data Code Managements Keeps snapshots of the sources Based on Git Environment Detection Detects loaded modules Copies defined environment variables Yury Oleynik, 13
14 PAThWay Available as an Eclipse plugin from the update site: Installation guide: Yury Oleynik, 14
15 II. Performance Dynamics: at runtime AUTOMATIC PERFORMANCE DYNAMICS ANALYSIS WITH PERISCOPE Yury Oleynik, 15
16 Automatic Performance Dynamics Analysis with Periscope Motivation for Performance Dynamics Analysis Location and severity of performance bottlenecks is time-dependent Performance changes manifest themselves at various time scales Dimensionality of performance measurements makes manual investigation by the user tedious Analysis goals: Automatically detect changes in temporal performance behavior Quantify the negative impact of performance changes Reduce complexity and size of time-dependent measurements Simplify comprehension (no graphical visualization) Group entities with similar temporal performance behavior Yury Oleynik, 16
17 Automatic Performance Dynamics Analysis with Periscope Helps to answer following typical questions: Does the performance degrade over time? When is the degradation observed? What is the impact of the particular change? Which process/location is impacted by the performance degradation? Are there similar degradations found in other processes or functions? Approach Multi-scale analysis Qualitative abstraction of time series with quantitative information sufficient to characterize impact Representation mimics human mental model of temporal behavior Automatic search for performance dynamics properties Yury Oleynik, 17
18 Automatic Performance Dynamics Analysis with Periscope: Analysis Steps 1. Measurement a) Collect dynamic profile time-series using Score-P 2. Preprocessing a) Perform Scale-Space Filtering by filtering with Gaussian b) Extract extremas and inflexion points 3. Qualitative Abstraction a) Track extremas and inflexion points from coarse to fine scales b) Label intervals between extremas and inflexion points c) Extract maximum lifetime level of the resulting tree of intervals 4. Search for performance dynamics properties a) Search maximum lifetime level for predefined patterns both qualitatively and quantitatively Yury Oleynik, 18
19 Automatic Performance Dynamics Analysis with Periscope: Analysis Steps DABCBCDABCDABCDABCDABC D A D A B A C C C B CD B C CD B CD C B CD AB C B C B C C B C A - concave increase B - concave decrease C - convex decrease D - convex increase E - linear increase F - linear decrease G - constant Yury Oleynik, [email protected] 19
20 Automatic Performance Dynamics Analysis with Periscope: Search for dynamics properties Search for dynamic properties: Find all picks (AB): DABCBCDABCDABCDABCDABC Find the most prominent valley (CD): DABCBCDABCDABCDABCDABC Find the highest increase (DA): DABCBCDABCDABCDABCDABC Yury Oleynik, 20
21 III. Performance tuning PERISCOPE TUNING FRAMEWORK Yury Oleynik, 21
22 Periscope Tuning Framework Goals: Tune codes to improve performance and energy efficiency Combine analysis and tuning to speedup the tuning process Support multicore and GPU accelerated parallel systems Idea: Automatically evaluate optimization space Produce tuning recommendation Use it to improve production runs Yury Oleynik, 22
23 PTF: Approach Define tuning strategies combining performance analysis infrastructure and tuning plugins Measured performance and energy properties are used in plugins to navigate the search for optimal configuration Available tuning plugins focus on: Tuning of High-Level Patterns for GPGPU Tuning of HMPP Codelets Tuning of Energy Consumption via CPU frequency Tuning of Master-Worker Pattern in MPI Tuning of MPI Runtime Tuning of Compiler Flag Selection Yury Oleynik, 23
24 Yury Oleynik, 24
25 Tuning of High-Level Patterns for GPGPU Target applications Applications implemented in the pipeline patterns framework (developed in PEPPHER project) Tuning objective Optimize throughput of the pipeline Tuning points and tuning actions Replication factors of individual stages Buffer sizes of input and output ports of individual stages Splitting and merging of the stages Yury Oleynik, 25
26 Tuning of HMPP Codelets Target applications OpenHMPP annotated applications To be run on heterogeneous many-core architecture Tuning Objective Optimize HMPP codelets performance Tuning points and tuning actions Static codelet tuning points: operations, transformations and algorithms used to implement a codelet, e.g. unrolling factor, the HMPP grid size Dynamic codelet tuning points: variables or callbacks available at runtime Yury Oleynik, [email protected] 26
27 Tuning of Energy Consumption via CPU Frequency Target applications Any application running on the thin-node islands of SuperMUC Tuning objective Minimize energy consumption of an application Tuning points and tuning actions Available governors or direct frequency settings Yury Oleynik, 27
28 Tuning of the Master-Worker Pattern in MPI Target applications Applications implemented with Master Worker Pattern Tuning objective Improve load balancing Tuning points and tuning actions Partition factor Number of workers Yury Oleynik, 28
29 Tuning of MPI Runtime Target application Currently parallel applications build with ibm MPI Tuning objective Optimize performance Tuning points and tuning actions MPI environment parameters MPI application mapping adapting tasks per node/core, adapting the affinity of the processes MPI communication buffer/protocol adapting the sending/receiving buffer analyzing the size pattern of the messages adapting the communication protocol (eager/rendezvous) code variants for MPI communication Yury Oleynik, 29
30 Tuning of Compiler Flag Selection Target applications Any application Tuning objective Reduce the execution time of the application s phase region Tuning points and tuning actions Individual compiler flags of the compiler Switching ON or OFF of compiler switches during recompilation Yury Oleynik, [email protected] 30
31 Thank you! Questions? Yury Oleynik, 31
Tools for Analysis of Performance Dynamics of Parallel Applications
Tools for Analysis of Performance Dynamics of Parallel Applications Yury Oleynik Fourth International Workshop on Parallel Software Tools and Tool Infrastructures Technische Universität München Yury Oleynik,
Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner
Recent and Future Activities in HPC and Scientific Data Management Siegfried Benkner Research Group Scientific Computing Faculty of Computer Science University of Vienna AUSTRIA http://www.par.univie.ac.at
for High Performance Computing
Technische Universität München Institut für Informatik Lehrstuhl für Rechnertechnik und Rechnerorganisation Automatic Performance Engineering Workflows for High Performance Computing Ventsislav Petkov
FAKULTÄT FÜR INFORMATIK. Automatic Characterization of Performance Dynamics with Periscope
FAKULTÄT FÜR INFORMATIK DER TECHNISCHEN UNIVERSITÄT MÜNCHEN Dissertation Automatic Characterization of Performance Dynamics with Periscope Yury Oleynik Technische Universität München FAKULTÄT FÜR INFORMATIK
Performance Analysis and Optimization Tool
Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Analysis Team, University of Versailles http://www.maqao.org Introduction Performance Analysis Develop
Unprecedented Performance and Scalability Demonstrated For Meter Data Management:
Unprecedented Performance and Scalability Demonstrated For Meter Data Management: Ten Million Meters Scalable to One Hundred Million Meters For Five Billion Daily Meter Readings Performance testing results
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
Multi-GPU Load Balancing for Simulation and Rendering
Multi- Load Balancing for Simulation and Rendering Yong Cao Computer Science Department, Virginia Tech, USA In-situ ualization and ual Analytics Instant visualization and interaction of computing tasks
The Complete Performance Solution for Microsoft SQL Server
The Complete Performance Solution for Microsoft SQL Server Powerful SSAS Performance Dashboard Innovative Workload and Bottleneck Profiling Capture of all Heavy MDX, XMLA and DMX Aggregation, Partition,
A QUICK OVERVIEW OF THE OMNeT++ IDE
Introduction A QUICK OVERVIEW OF THE OMNeT++ IDE The OMNeT++ 4.x Integrated Development Environment is based on the Eclipse platform, and extends it with new editors, views, wizards, and additional functionality.
Data Center and Cloud Computing Market Landscape and Challenges
Data Center and Cloud Computing Market Landscape and Challenges Manoj Roge, Director Wired & Data Center Solutions Xilinx Inc. #OpenPOWERSummit 1 Outline Data Center Trends Technology Challenges Solution
Fast and Easy Delivery of Data Mining Insights to Reporting Systems
Fast and Easy Delivery of Data Mining Insights to Reporting Systems Ruben Pulido, Christoph Sieb [email protected], [email protected] Abstract: During the last decade data mining and predictive
IBM WebSphere DataStage Online training from Yes-M Systems
Yes-M Systems offers the unique opportunity to aspiring fresher s and experienced professionals to get real time experience in ETL Data warehouse tool IBM DataStage. Course Description With this training
StreamStorage: High-throughput and Scalable Storage Technology for Streaming Data
: High-throughput and Scalable Storage Technology for Streaming Data Munenori Maeda Toshihiro Ozawa Real-time analytical processing (RTAP) of vast amounts of time-series data from sensors, server logs,
VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS
VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS Perhaad Mistry, Yash Ukidave, Dana Schaa, David Kaeli Department of Electrical and Computer Engineering Northeastern University,
Windchill Service Information Manager 10.1. Curriculum Guide
Windchill Service Information Manager 10.1 Curriculum Guide Live Classroom Curriculum Guide Building Information Structures with Windchill Service Information Manager 10.1 Building Publication Structures
Hardware Acceleration for Just-In-Time Compilation on Heterogeneous Embedded Systems
Hardware Acceleration for Just-In-Time Compilation on Heterogeneous Embedded Systems A. Carbon, Y. Lhuillier, H.-P. Charles CEA LIST DACLE division Embedded Computing Embedded Software Laboratories France
10g versions followed on separate paths due to different approaches, but mainly due to differences in technology that were known to be huge.
Oracle BPM 11g Platform Analysis May 2010 I was privileged to be invited to participate in "EMEA BPM 11g beta bootcamp" in April 2010, where I had close contact with the latest release of Oracle BPM 11g.
Enhance visibility into and control over software projects IBM Rational change and release management software
Enhance visibility into and control over software projects IBM Rational change and release management software Accelerating the software delivery lifecycle Faster delivery of high-quality software Software
SCADE System 17.0. Technical Data Sheet. System Requirements Analysis. Technical Data Sheet SCADE System 17.0 1
SCADE System 17.0 SCADE System is the product line of the ANSYS Embedded software family of products and solutions that empowers users with a systems design environment for use on systems with high dependability
Equalizer. Parallel OpenGL Application Framework. Stefan Eilemann, Eyescale Software GmbH
Equalizer Parallel OpenGL Application Framework Stefan Eilemann, Eyescale Software GmbH Outline Overview High-Performance Visualization Equalizer Competitive Environment Equalizer Features Scalability
Simplified Management With Hitachi Command Suite. By Hitachi Data Systems
Simplified Management With Hitachi Command Suite By Hitachi Data Systems April 2015 Contents Executive Summary... 2 Introduction... 3 Hitachi Command Suite v8: Key Highlights... 4 Global Storage Virtualization
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM
Cluster, Grid, Cloud Concepts
Cluster, Grid, Cloud Concepts Kalaiselvan.K Contents Section 1: Cluster Section 2: Grid Section 3: Cloud Cluster An Overview Need for a Cluster Cluster categorizations A computer cluster is a group of
Automating Big Data Benchmarking for Different Architectures with ALOJA
www.bsc.es Jan 2016 Automating Big Data Benchmarking for Different Architectures with ALOJA Nicolas Poggi, Postdoc Researcher Agenda 1. Intro on Hadoop performance 1. Current scenario and problematic 2.
Visualizing gem5 via ARM DS-5 Streamline. Dam Sunwoo ([email protected]) ARM R&D December 2012
Visualizing gem5 via ARM DS-5 Streamline Dam Sunwoo ([email protected]) ARM R&D December 2012 1 The Challenge! System-level research and performance analysis becoming ever so complicated! More cores and
DELL s Oracle Database Advisor
DELL s Oracle Database Advisor Underlying Methodology A Dell Technical White Paper Database Solutions Engineering By Roger Lopez Phani MV Dell Product Group January 2010 THIS WHITE PAPER IS FOR INFORMATIONAL
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
MAQAO Performance Analysis and Optimization Tool
MAQAO Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Evaluation Team, University of Versailles S-Q-Y http://www.maqao.org VI-HPS 18 th Grenoble 18/22
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
Spring 2011 Prof. Hyesoon Kim
Spring 2011 Prof. Hyesoon Kim Today, we will study typical patterns of parallel programming This is just one of the ways. Materials are based on a book by Timothy. Decompose Into tasks Original Problem
SOFTWARE TESTING TRAINING COURSES CONTENTS
SOFTWARE TESTING TRAINING COURSES CONTENTS 1 Unit I Description Objectves Duration Contents Software Testing Fundamentals and Best Practices This training course will give basic understanding on software
Integrity 10. Curriculum Guide
Integrity 10 Curriculum Guide Live Classroom Curriculum Guide Integrity 10 Workflows and Documents Administration Training Integrity 10 SCM Administration Training Integrity 10 SCM Basic User Training
Hardware design for ray tracing
Hardware design for ray tracing Jae-sung Yoon Introduction Realtime ray tracing performance has recently been achieved even on single CPU. [Wald et al. 2001, 2002, 2004] However, higher resolutions, complex
Fundamentals of LoadRunner 9.0 (2 Days)
Fundamentals of LoadRunner 9.0 (2 Days) Quality assurance engineers New users of LoadRunner who need to load test their applications and/or executives who will be involved in any part of load testing.
Data Structure Oriented Monitoring for OpenMP Programs
A Data Structure Oriented Monitoring Environment for Fortran OpenMP Programs Edmond Kereku, Tianchao Li, Michael Gerndt, and Josef Weidendorfer Institut für Informatik, Technische Universität München,
Key Attributes for Analytics in an IBM i environment
Key Attributes for Analytics in an IBM i environment Companies worldwide invest millions of dollars in operational applications to improve the way they conduct business. While these systems provide significant
ANDROID DEVELOPER TOOLS TRAINING GTC 2014. Sébastien Dominé, NVIDIA
ANDROID DEVELOPER TOOLS TRAINING GTC 2014 Sébastien Dominé, NVIDIA AGENDA NVIDIA Developer Tools Introduction Multi-core CPU tools Graphics Developer Tools Compute Developer Tools NVIDIA Developer Tools
TEST AUTOMATION FRAMEWORK
TEST AUTOMATION FRAMEWORK Twister Topics Quick introduction Use cases High Level Description Benefits Next steps Twister How to get Twister is an open source test automation framework. The code, user guide
Exploiting GPU Hardware Saturation for Fast Compiler Optimization
Exploiting GPU Hardware Saturation for Fast Compiler Optimization Alberto Magni School of Informatics University of Edinburgh United Kingdom [email protected] Christophe Dubach School of Informatics
IBM Rational ClearCase, Version 8.0
IBM Rational ClearCase, Version 8.0 Improve software and systems delivery with automated software configuration management solutions Highlights Improve software delivery and software development life cycle
Application Performance Analysis Tools and Techniques
Mitglied der Helmholtz-Gemeinschaft Application Performance Analysis Tools and Techniques 2012-06-27 Christian Rössel Jülich Supercomputing Centre [email protected] EU-US HPC Summer School Dublin
Learn CUDA in an Afternoon: Hands-on Practical Exercises
Learn CUDA in an Afternoon: Hands-on Practical Exercises Alan Gray and James Perry, EPCC, The University of Edinburgh Introduction This document forms the hands-on practical component of the Learn CUDA
Customer Analytics. Turn Big Data into Big Value
Turn Big Data into Big Value All Your Data Integrated in Just One Place BIRT Analytics lets you capture the value of Big Data that speeds right by most enterprises. It analyzes massive volumes of data
DB2 for i. Analysis and Tuning. Mike Cain IBM DB2 for i Center of Excellence. [email protected]
DB2 for i Monitoring, Analysis and Tuning Mike Cain IBM DB2 for i Center of Excellence Rochester, MN USA [email protected] 8 Copyright IBM Corporation, 2008. All Rights Reserved. This publication may refer
Scala Storage Scale-Out Clustered Storage White Paper
White Paper Scala Storage Scale-Out Clustered Storage White Paper Chapter 1 Introduction... 3 Capacity - Explosive Growth of Unstructured Data... 3 Performance - Cluster Computing... 3 Chapter 2 Current
Parallel I/O on JUQUEEN
Parallel I/O on JUQUEEN 3. February 2015 3rd JUQUEEN Porting and Tuning Workshop Sebastian Lührs, Kay Thust [email protected], [email protected] Jülich Supercomputing Centre Overview Blue Gene/Q
Dynamic Network Analyzer Building a Framework for the Graph-theoretic Analysis of Dynamic Networks
Dynamic Network Analyzer Building a Framework for the Graph-theoretic Analysis of Dynamic Networks Benjamin Schiller and Thorsten Strufe P2P Networks - TU Darmstadt [schiller, strufe][at]cs.tu-darmstadt.de
Chapter 18: Database System Architectures. Centralized Systems
Chapter 18: Database System Architectures! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types 18.1 Centralized Systems! Run on a single computer system and
Driving force. What future software needs. Potential research topics
Improving Software Robustness and Efficiency Driving force Processor core clock speed reach practical limit ~4GHz (power issue) Percentage of sustainable # of active transistors decrease; Increase in #
Performance Tuning Guidelines for PowerExchange for Microsoft Dynamics CRM
Performance Tuning Guidelines for PowerExchange for Microsoft Dynamics CRM 1993-2016 Informatica LLC. No part of this document may be reproduced or transmitted in any form, by any means (electronic, photocopying,
AN INTEGRATION APPROACH FOR THE STATISTICAL INFORMATION SYSTEM OF ISTAT USING SDMX STANDARDS
Distr. GENERAL Working Paper No.2 26 April 2007 ENGLISH ONLY UNITED NATIONS STATISTICAL COMMISSION and ECONOMIC COMMISSION FOR EUROPE CONFERENCE OF EUROPEAN STATISTICIANS EUROPEAN COMMISSION STATISTICAL
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design
PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions Slide 1 Outline Principles for performance oriented design Performance testing Performance tuning General
GPU Computing - CUDA
GPU Computing - CUDA A short overview of hardware and programing model Pierre Kestener 1 1 CEA Saclay, DSM, Maison de la Simulation Saclay, June 12, 2012 Atelier AO and GPU 1 / 37 Content Historical perspective
Integrated Open-Source Geophysical Processing and Visualization
Integrated Open-Source Geophysical Processing and Visualization Glenn Chubak* University of Saskatchewan, Saskatoon, Saskatchewan, Canada [email protected] and Igor Morozov University of Saskatchewan,
Centralized Systems. A Centralized Computer System. Chapter 18: Database System Architectures
Chapter 18: Database System Architectures Centralized Systems! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types! Run on a single computer system and do
VWF. Virtual Wafer Fab
VWF Virtual Wafer Fab VWF is software used for performing Design of Experiments (DOE) and Optimization Experiments. Split-lots can be used in various pre-defined analysis methods. Split parameters can
A Pattern-Based Approach to. Automated Application Performance Analysis
A Pattern-Based Approach to Automated Application Performance Analysis Nikhil Bhatia, Shirley Moore, Felix Wolf, and Jack Dongarra Innovative Computing Laboratory University of Tennessee (bhatia, shirley,
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
SQL Server 2012 Optimization, Performance Tuning and Troubleshooting
1 SQL Server 2012 Optimization, Performance Tuning and Troubleshooting 5 Days (SQ-OPT2012-301-EN) Description During this five-day intensive course, students will learn the internal architecture of SQL
WebSphere Business Monitor
WebSphere Business Monitor Dashboards 2010 IBM Corporation This presentation should provide an overview of the dashboard widgets for use with WebSphere Business Monitor. WBPM_Monitor_Dashboards.ppt Page
A Multi-layered Domain-specific Language for Stencil Computations
A Multi-layered Domain-specific Language for Stencil Computations Christian Schmitt, Frank Hannig, Jürgen Teich Hardware/Software Co-Design, University of Erlangen-Nuremberg Workshop ExaStencils 2014,
Decomposition into Parts. Software Engineering, Lecture 4. Data and Function Cohesion. Allocation of Functions and Data. Component Interfaces
Software Engineering, Lecture 4 Decomposition into suitable parts Cross cutting concerns Design patterns I will also give an example scenario that you are supposed to analyse and make synthesis from The
Findings in High-Speed OrthoMosaic
Findings in High-Speed OrthoMosaic David Piekny, Solutions Product Manager PCI Geomatics Committed To Image-Centric Excellence Technical Session 6, Rm. 203D Tuesday May 3 rd, 9:30-11:00 AM ASPRS 2011,
MS SQL Server 2014 New Features and Database Administration
MS SQL Server 2014 New Features and Database Administration MS SQL Server 2014 Architecture Database Files and Transaction Log SQL Native Client System Databases Schemas Synonyms Dynamic Management Objects
CHAPTER 4: SOFTWARE PART OF RTOS, THE SCHEDULER
CHAPTER 4: SOFTWARE PART OF RTOS, THE SCHEDULER To provide the transparency of the system the user space is implemented in software as Scheduler. Given the sketch of the architecture, a low overhead scheduler
SAP Data Services 4.X. An Enterprise Information management Solution
SAP Data Services 4.X An Enterprise Information management Solution Table of Contents I. SAP Data Services 4.X... 3 Highlights Training Objectives Audience Pre Requisites Keys to Success Certification
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
Once the product is installed, you'll have access to our complete User Guide from the client.
1. Getting Started Installation and Setup Steps There are three basic steps to installation and setup. 1. Install SQL Sentry 2. Complete the Setup Wizard 3. Start Using the Client Please take a moment
Recent Advances in HPC for Structural Mechanics Simulations
Recent Advances in HPC for Structural Mechanics Simulations 1 Trends in Engineering Driving Demand for HPC Increase product performance and integrity in less time Consider more design variants Find the
Microsoft Business Intelligence
Microsoft Business Intelligence P L A T F O R M O V E R V I E W M A R C H 1 8 TH, 2 0 0 9 C H U C K R U S S E L L S E N I O R P A R T N E R C O L L E C T I V E I N T E L L I G E N C E I N C. C R U S S
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications
High Performance Matrix Inversion with Several GPUs
High Performance Matrix Inversion on a Multi-core Platform with Several GPUs Pablo Ezzatti 1, Enrique S. Quintana-Ortí 2 and Alfredo Remón 2 1 Centro de Cálculo-Instituto de Computación, Univ. de la República
What s New in MATLAB and Simulink
What s New in MATLAB and Simulink Kevin Cohan Product Marketing, MATLAB Michael Carone Product Marketing, Simulink 2015 The MathWorks, Inc. 1 What was new for Simulink in R2012b? 2 What Was New for MATLAB
IBM Tivoli Composite Application Manager for WebSphere
Meet the challenges of managing composite applications IBM Tivoli Composite Application Manager for WebSphere Highlights Simplify management throughout the life cycle of complex IBM WebSphere-based J2EE
Communiqué 4. Standardized Global Content Management. Designed for World s Leading Enterprises. Industry Leading Products & Platform
Communiqué 4 Standardized Communiqué 4 - fully implementing the JCR (JSR 170) Content Repository Standard, managing digital business information, applications and processes through the web. Communiqué
Managing Adaptability in Heterogeneous Architectures through Performance Monitoring and Prediction
Managing Adaptability in Heterogeneous Architectures through Performance Monitoring and Prediction Cristina Silvano [email protected] Politecnico di Milano HiPEAC CSW Athens 2014 Motivations System
HP Application Lifecycle Management (ALM)
HP Application Lifecycle Management (ALM) Knowledge Share Maheshwar Salendra Date : 12/02/2012 AGENDA: Introduction to ALM ALM Functionality by Edition ALM Home page Side bars: Management Requirements
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications Harris Z. Zebrowitz Lockheed Martin Advanced Technology Laboratories 1 Federal Street Camden, NJ 08102
Enterprise Manager Performance Tips
Enterprise Manager Performance Tips + The tips below are related to common situations customers experience when their Enterprise Manager(s) are not performing consistent with performance goals. If you
Characterizing Performance of Enterprise Pipeline SCADA Systems
Characterizing Performance of Enterprise Pipeline SCADA Systems By Kevin Mackie, Schneider Electric August 2014, Vol. 241, No. 8 A SCADA control center. There is a trend in Enterprise SCADA toward larger
TPCalc : a throughput calculator for computer architecture studies
TPCalc : a throughput calculator for computer architecture studies Pierre Michaud Stijn Eyerman Wouter Rogiest IRISA/INRIA Ghent University Ghent University [email protected] [email protected]
Effective Java Programming. efficient software development
Effective Java Programming efficient software development Structure efficient software development what is efficiency? development process profiling during development what determines the performance of
DARPA, NSF-NGS/ITR,ACR,CPA,
Spiral Automating Library Development Markus Püschel and the Spiral team (only part shown) With: Srinivas Chellappa Frédéric de Mesmay Franz Franchetti Daniel McFarlin Yevgen Voronenko Electrical and Computer
Scalability and Classifications
Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static
