Orbital Dynamics of Eccentric Compact Binaries

Size: px
Start display at page:

Download "Orbital Dynamics of Eccentric Compact Binaries"

Transcription

1 Orbital Dynamics of Eccentric Compact Binaries Laboratoire Univers et Théories Observatoire de Paris / CNRS Collaborators: S. Akcay, L. Barack, N. Sago, N. Warburton Phys. Rev. D (2015), arxiv: [gr-qc] Phys. Rev. D submitted (2015), arxiv: [gr-qc]

2 Outline ➀ Gravitational wave source modelling ➁ Averaged redshift for eccentric orbits ➂ First law of mechanics and applications

3 Outline ➀ Gravitational wave source modelling ➁ Averaged redshift for eccentric orbits ➂ First law of mechanics and applications

4 Source modelling for compact binaries log 10 (r /m) 4 1 (compactness) post Newtonian theory numerical relativity perturbation theory & self force mass ratio 4 log 10 (m 2 /m 1 )

5 Source modelling for compact binaries log 10 (r /m) q m 1 m m 2 1 (compactness) post Newtonian theory numerical relativity perturbation theory & self force m mass ratio 4 log 10 (m 2 /m 1 )

6 Source modelling for compact binaries m 2 log 10 (r /m) r m 1 v 2 c 2 Gm c 2 r (compactness) post Newtonian theory numerical relativity perturbation theory & self force mass ratio 4 log 10 (m 2 /m 1 )

7 Source modelling for compact binaries log 10 (r /m) 4 m 2 1 (compactness) post Newtonian theory numerical relativity perturbation theory & self force m mass ratio 4 log 10 (m 2 /m 1 )

8 Source modelling for compact binaries log 10 (r /m) m 2 EOB 4 m 1 m = m 1 + m 2 1 (compactness) post Newtonian theory numerical relativity perturbation theory & self force mass ratio 4 log 10 (m 2 /m 1 )

9 Comparing the predictions from these methods Why? ˆ Independent checks of long and complicated calculations ˆ Identify domains of validity of approximation schemes ˆ Extract information inaccessible to other methods ˆ Develop a universal model for compact binaries

10 Comparing the predictions from these methods Why? ˆ Independent checks of long and complicated calculations ˆ Identify domains of validity of approximation schemes ˆ Extract information inaccessible to other methods ˆ Develop a universal model for compact binaries How? Use the same coordinate system in all calculations Using coordinate-invariant relationships

11 Comparing the predictions from these methods Why? ˆ Independent checks of long and complicated calculations ˆ Identify domains of validity of approximation schemes ˆ Extract information inaccessible to other methods ˆ Develop a universal model for compact binaries How? Use the same coordinate system in all calculations Using coordinate-invariant relationships What? ˆ Gravitational waveforms at future null infinity ˆ Conservative effects on the orbital dynamics

12 Comparing the predictions from these methods Paper Year Methods Observable Orbit Spin Detweiler 2008 SF/PN redshift observable Blanchet et al SF/PN redshift observable Damour 2010 SF/EOB ISCO frequency Mroué et al NR/PN periastron advance Barack et al SF/EOB periastron advance Favata 2011 SF/PN/EOB ISCO frequency Le Tiec et al NR/SF/PN/EOB periastron advance Damour et al NR/EOB binding energy Le Tiec et al NR/SF/PN/EOB binding energy Akcay et al SF/EOB redshift observable Hinderer et al NR/EOB periastron advance Le Tiec et al NR/SF/PN periastron advance Damour et al NR/PN/EOB scattering angle hyperbolic } Bini, Damour Shah et al SF/PN redshift observable Blanchet et al } Dolan et al SF/PN precession angle Bini, Damour Isoyama et al SF/PN/EOB ISCO frequency Akcay et al SF/PN averaged redshift eccentric

13 Comparing the predictions from these methods Paper Year Methods Observable Orbit Spin Detweiler 2008 SF/PN redshift observable Blanchet et al SF/PN redshift observable Damour 2010 SF/EOB ISCO frequency Mroué et al NR/PN periastron advance Barack et al SF/EOB periastron advance Favata 2011 SF/PN/EOB ISCO frequency Le Tiec et al NR/SF/PN/EOB periastron advance Damour et al NR/EOB binding energy Le Tiec et al NR/SF/PN/EOB binding energy Akcay et al SF/EOB redshift observable Hinderer et al NR/EOB periastron advance Le Tiec et al NR/SF/PN periastron advance Damour et al NR/PN/EOB scattering angle hyperbolic } Bini, Damour Shah et al SF/PN redshift observable Blanchet et al } Dolan et al SF/PN precession angle Bini, Damour Isoyama et al SF/PN/EOB ISCO frequency Akcay et al SF/PN averaged redshift eccentric

14 Outline ➀ Gravitational wave source modelling ➁ Averaged redshift for eccentric orbits ➂ First law of mechanics and applications

15 Post-Newtonian expansions and black hole perturbations m 2 log 10 (r /m) r 4 m 1 1 (compactness) post Newtonian theory numerical relativity post Newtonian theory & self force perturbation theory & self force mass ratio 4 log 10 (m 2 /m 1 )

16 Averaged redshift for eccentric orbits ˆ Generic eccentric orbit parameterized by the two invariant frequencies t = 0 = 0 t = P = T n = 2π P, ω = Φ P m 1 ˆ Time average of z = dτ/dt over one radial period [Barack & Sago 2010] m 2 P z 1 P 0 z(t) dt = T P ˆ Coordinate-invariant relation z (n, ω) is well defined in GSF and PN frameworks

17 Averaged redshift vs semi-latus rectum e = 0.1 1/z GSF p [Akcay et al. 2015]

18 Averaged redshift vs semi-latus rectum e = 0.2 1/z GSF p [Akcay et al. 2015]

19 Averaged redshift vs semi-latus rectum e = 0.3 1/z GSF p [Akcay et al. 2015]

20 Averaged redshift vs semi-latus rectum e = 0.4 1/z GSF p [Akcay et al. 2015]

21 1PN Extracting post-newtonian coefficients Coeff. Exact value Fitted value Fitted value [Akcay et al. 2015] [Akcay et al. 2015] [Meent, Shah 2015] e (8) 4 ± e (1) 2 ± e ±

22 1PN 2PN Extracting post-newtonian coefficients Coeff. Exact value Fitted value Fitted value [Akcay et al. 2015] [Akcay et al. 2015] [Meent, Shah 2015] e (8) 4 ± e (1) 2 ± e ± e (2) 7 ± e 4 1/4 1/4 ± e 6 5/2 5/2 ±

23 1PN 2PN 3PN Extracting post-newtonian coefficients Coeff. Exact value Fitted value Fitted value [Akcay et al. 2015] [Akcay et al. 2015] [Meent, Shah 2015] e (8) 4 ± e (1) 2 ± e ± e (2) 7 ± e 4 1/4 1/4 ± e 6 5/2 5/2 ± e (4) (5) e (7) e (3)

24 1PN 2PN 3PN Extracting post-newtonian coefficients Coeff. Exact value Fitted value Fitted value [Akcay et al. 2015] [Akcay et al. 2015] [Meent, Shah 2015] e (8) 4 ± e (1) 2 ± e ± e (2) 7 ± e 4 1/4 1/4 ± e 6 5/2 5/2 ± e (4) (5) e (7) e (3) New coefficients at 4PN and 5PN orders [van de Meent, Shah 2015]

25 Outline ➀ Gravitational wave source modelling ➁ Averaged redshift for eccentric orbits ➂ First law of mechanics and applications

26 First law of binary mechanics ˆ Canonical ADM Hamiltonian H of two point masses m a ˆ Variation δh + Hamilton s equation + orbital averaging: δm = ω δl + n δr + a z a δm a ˆ First integral associated with the variational first law: M = 2 (ωl + nr) + a z a m a ˆ These relations are satisfied up to at least 3PN order

27 Applications of the first law ˆ Conservative dynamics beyond the geodesic approximation ˆ Shift of the Schwarzschild separatrix and singular curve ˆ Calibration of EOB potentials for generic bound orbits M = z ω z m 1 ω n z n L = z m 1 ω R = z m 1 n

28 Applications of the first law ˆ Conservative dynamics beyond the geodesic approximation ˆ Shift of the Schwarzschild separatrix and singular curve ˆ Calibration of EOB potentials for generic bound orbits M = z ω z m 1 ω n z n L = z m 1 ω R = z m 1 n

29 Schwarzschild singular curve separatrix n const. sing. curve m 2 ω [Warburton et al. 2013]

30 Schwarzschild singular curve n separatrix n const. sing. curve m 2 ω [Warburton et al. 2013]

31 Shift of the Schwarzschild singular curve ˆ Singular curve ω = ω sing (n) characterized by condition (n, ω) (M, L) = 0 ˆ In the test-particle limit q 0 this is equivalent to [ ( 2 nω z ) ] n z ω z 2 = 0 ˆ O(q) shift in ω = ω sing (n) controlled by z GSF (n, ω)

32 EOB dynamics beyond circular motion H real m 2 m 1 EOB m 1 + m 2 H (A,D,Q) eff ˆ Conservative EOB dynamics determined by potentials A = 1 2u + ν a(u) + O(ν 2 ) D = 1 + ν d(u) + O(ν 2 ) Q = ν q(u) p 4 r + O(ν 2 ) ˆ Functions a(u), d(u) and q(u) controlled by z GSF (n, ω)

33 Summary ˆ GSF/PN comparison for eccentric orbits relying on z (n, ω) ˆ First law of mechanics for eccentric-orbit compact binaries ˆ Numerous applications of the first law: Conservative dynamics beyond the geodesic approximation Shift of the Schwarzschild separatrix and singular curve Calibration of EOB potentials for generic bound orbits... Prospects ˆ GSF/PN comparison for eccentric orbits relying on ψ (n, ω) ˆ Extension of the first law to precessing spinning binaries

34 Additional Material

35 Redshift invariant for circular orbits ˆ It measures the redshift of light emitted from the point particle [Detweiler 2008] x E obs E em = (pa u a ) obs (p a u a ) em = z m 2 m 1 ˆ It is a constant of the motion associated with the helical Killing field k a : t particle observer z = k a u a u a obs dt p a E obs ˆ In coordinates adapted to the symmetry: z = dτ dt = 1 u t u a em dτ p a E em x

36 Schwarzschild separatrix IBSO [Barack & Sago 2010]

37 Schwarzschild separatrix IBSO n = 0 ω [Barack & Sago 2010]

38 Shift of the Schwarzschild separatrix ˆ Separatrix ω = ω sep (e) characterized by the condition n = 0 ˆ GSF-induced shift of Schwarzschild ISCO frequency [Barack & Sago 2009; Le Tiec et al. 2012; Akcay et al. 2012] ω isco ω isco = (4) q ˆ GSF-induced shift of Schwarzschild IBSO frequency? ˆ O(q) shift in ω = ω sep (e) controlled by z GSF (n, ω)

Gravitational waves from compact object binaries

Gravitational waves from compact object binaries Gravitational waves from compact object binaries Laboratoire Univers et Théories Observatoire de Paris / CNRS aligo, avirgo, KAGRA, elisa, ( DECIGO, ET,... ( Main sources of gravitational waves (GW) elisa

More information

Gravitational waves from neutron stars binaries: accuracy and tidal effects in the late inspiral S. Bernuzzi TPI-PAF FSU Jena / SFB-TR7

Gravitational waves from neutron stars binaries: accuracy and tidal effects in the late inspiral S. Bernuzzi TPI-PAF FSU Jena / SFB-TR7 Gravitational waves from neutron stars binaries: accuracy and tidal effects in the late inspiral S. Bernuzzi TPI-PAF FSU Jena / SFB-TR7 M. Thierfelder, SB, & B.Bruegmann, PRD 84 044012 (2011) SB, MT, &

More information

Radiation reaction for inspiralling binary systems with spin-spin

Radiation reaction for inspiralling binary systems with spin-spin Radiation reaction for inspiralling binary systems with spin-spin coupling 1 Institute of Theoretical Physics, Friedrich-Schiller-University Jena December 3, 2007 1 H. Wang and C. M. Will, Phys. Rev. D,

More information

Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology

Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology with Rafael Porto (IAS) arxiv: 1302.4486 v2 soon! (with details) Capra16; Dublin, Ireland; July

More information

Orbital Dynamics with Maple (sll --- v1.0, February 2012)

Orbital Dynamics with Maple (sll --- v1.0, February 2012) Orbital Dynamics with Maple (sll --- v1.0, February 2012) Kepler s Laws of Orbital Motion Orbital theory is one of the great triumphs mathematical astronomy. The first understanding of orbits was published

More information

TEMPERATURE DEPENDENCE OF GRAVITATIONAL FORCE: EXPERIMENTS, ASTROPHYSICS, PERSPECTIVES. A.L. Dmitriev

TEMPERATURE DEPENDENCE OF GRAVITATIONAL FORCE: EXPERIMENTS, ASTROPHYSICS, PERSPECTIVES. A.L. Dmitriev TEMPERATURE DEPENDENCE OF GRAVITATIONAL FORCE: EXPERIMENTS, ASTROPHYSICS, PERSPECTIVES A.L. Dmitriev St-Petersburg University of Information Technologies, Mechanics and Optics 49, Kronverksky Prospect,

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Post-Newtonian dynamics for orbiting compact objects

Post-Newtonian dynamics for orbiting compact objects Post-Newtonian dynamics for orbiting compact objects Achamveedu Gopakumar Theoretisch-Physikalisches Institut Friedrich-Schiller-Universität Jena Turku, Finland 10/08/2008 Aim & Outline AIM: To introduce

More information

Gravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008

Gravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008 Gravitation modifiée à grande distance et tests dans le système solaire Gilles Esposito-Farèse, GRεCO, IAP et Peter Wolf, LNE-SYRTE 10 avril 2008 Gravitation modifiée à grande distance & tests dans le

More information

Testing dark matter halos using rotation curves and lensing

Testing dark matter halos using rotation curves and lensing Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences

More information

Binary Orbital Dynamics from the Analysis of Spherical Harmonic Modes of Gravitational Waves

Binary Orbital Dynamics from the Analysis of Spherical Harmonic Modes of Gravitational Waves Intro Motivations Binary Orbital Dynamics from the Analysis of Spherical Harmonic Modes of Gravitational Waves Dr. Jennifer Seiler (NASA GSFC) Gravity Theory Seminars University of Maryland College Park

More information

arxiv:1311.0239v3 [gr-qc] 5 Mar 2014

arxiv:1311.0239v3 [gr-qc] 5 Mar 2014 Mass of a Black Hole Firewall M.A. Abramowicz 1,2, W. Kluźniak 1, and J.-P. Lasota 3,1,4 1 Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa, Poland 2 Department of Physics, University of

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION A ANNALES DE L I. H. P., SECTION A T. DAMOUR N. DERUELLE General relativistic celestial mechanics of binary systems. I. The post-newtonian motion Annales de l I. H. P., section A, tome 43, n o 1 (1985),

More information

From local to global relativity

From local to global relativity Physical Interpretations of Relativity Theory XI Imperial College, LONDON, 1-15 SEPTEMBER, 8 From local to global relativity Tuomo Suntola, Finland T. Suntola, PIRT XI, London, 1-15 September, 8 On board

More information

Phase-plane analysis of perihelion precession and Schwarzschild orbital dynamics

Phase-plane analysis of perihelion precession and Schwarzschild orbital dynamics Phase-plane analysis of perihelion precession and Schwarzschild orbital dynamics Bruce Dean a) Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 Received 22 December 1997;

More information

Celestial mechanics: The perturbed Kepler problem.

Celestial mechanics: The perturbed Kepler problem. Celestial mechanics: The perturbed Kepler problem. László Árpád Gergely1,2 1 Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720, Hungary 2 Department of Experimental

More information

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom kw@mssl.ucl.ac.uk

More information

Structure formation in modified gravity models

Structure formation in modified gravity models Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general

More information

Modified Newtonian gravity and field theory

Modified Newtonian gravity and field theory Modified Newtonian gravity and field theory Gilles Esposito-Farèse GRεCO, Institut d Astrophysique de Paris Based on Phys. Rev. D 76 (2007) 2402 in collaboration with J.-P. Bruneton, on my study of scalar-tensor

More information

Complete gravitational waveforms from black-hole binaries with non-precessing spins

Complete gravitational waveforms from black-hole binaries with non-precessing spins Complete gravitational waveforms from black-hole binaries with non-precessing spins P. Ajith LIGO Lab & Theoretical Astrophysics - Caltech / AEI Hannover In collaboration with M. Hannam, S. Husa, B. Bruegmann,

More information

Resonances in orbital dynamics

Resonances in orbital dynamics Resonances in orbital dynamics Maarten van de Meent University of Southampton Capra 16, July 2013 Outline 1 Resonant Orbits 2 Self-force 3 Resonant evolution 4 Sustained resonances Outline 1 Resonant Orbits

More information

Orbital Mechanics. Orbital Mechanics. Principles of Space Systems Design. 2001 David L. Akin - All rights reserved

Orbital Mechanics. Orbital Mechanics. Principles of Space Systems Design. 2001 David L. Akin - All rights reserved Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time and flight path angle as a function of orbital position Relative orbital

More information

Binary Stars. Kepler s Laws of Orbital Motion

Binary Stars. Kepler s Laws of Orbital Motion Binary Stars Kepler s Laws of Orbital Motion Kepler s Three Laws of orbital motion result from the solution to the equation of motion for bodies moving under the influence of a central 1/r 2 force gravity.

More information

Gravitational lensing in alternative theories of gravitation

Gravitational lensing in alternative theories of gravitation UNIVERSITY OF SZEGED FACULTY OF SCIENCE AND INFORMATICS DEPARTMENT OF THEORETICAL PHYSICS DOCTORAL SCHOOL OF PHYSICS Gravitational lensing in alternative theories of gravitation Abstract of Ph.D. thesis

More information

What Can We Learn From Simulations of Tilted Black Hole Accretion Disks?

What Can We Learn From Simulations of Tilted Black Hole Accretion Disks? What Can We Learn From Simulations of Tilted Black Hole? Dr. P. Chris Fragile College of Charleston, SC Collaborators: Omer Blaes (UCSB), Ken Henisey (UCSB), Bárbara Ferreira (Cambridge), Chris Done (Durham),

More information

arxiv:0803.1853v2 [gr-qc] 30 Mar 2011

arxiv:0803.1853v2 [gr-qc] 30 Mar 2011 Accuracy of the Post-Newtonian Approximation: Optimal Asymptotic Expansion for Quasi-Circular, Extreme-Mass Ratio Inspirals Nicolás Yunes 1 and Emanuele Berti 2 1 Institute for Gravitational Physics and

More information

Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses

Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses Russell L. Herman and Gabriel Lugo University of North Carolina Wilmington, Wilmington, NC Abstract We describe the

More information

= = GM. v 1 = Ωa 1 sin i.

= = GM. v 1 = Ωa 1 sin i. 1 Binary Stars Consider a binary composed of two stars of masses M 1 and We define M = M 1 + and µ = M 1 /M If a 1 and a 2 are the mean distances of the stars from the center of mass, then M 1 a 1 = a

More information

Euclidean quantum gravity revisited

Euclidean quantum gravity revisited Institute for Gravitation and the Cosmos, Pennsylvania State University 15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology Based on: First-order action and Euclidean quantum gravity,

More information

Exponentially small splitting of separatrices for1 1 2 degrees of freedom Hamiltonian Systems close to a resonance. Marcel Guardia

Exponentially small splitting of separatrices for1 1 2 degrees of freedom Hamiltonian Systems close to a resonance. Marcel Guardia Exponentially small splitting of separatrices for1 1 2 degrees of freedom Hamiltonian Systems close to a resonance Marcel Guardia 1 1 1 2 degrees of freedom Hamiltonian systems We consider close to completely

More information

Outline Lagrangian Constraints and Image Quality Models

Outline Lagrangian Constraints and Image Quality Models Remarks on Lagrangian singularities, caustics, minimum distance lines Department of Mathematics and Statistics Queen s University CRM, Barcelona, Spain June 2014 CRM CRM, Barcelona, SpainJune 2014 CRM

More information

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB)

Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB) Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System Man Hoi Lee (UCSB) Introduction: Extrasolar Planetary Systems Extrasolar planet searches have yielded ~ 150 planetary

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

More information

Orbits of the Lennard-Jones Potential

Orbits of the Lennard-Jones Potential Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials

More information

Orbital Dynamics: Formulary

Orbital Dynamics: Formulary Orbital Dynamics: Formulary 1 Introduction Prof. Dr. D. Stoffer Department of Mathematics, ETH Zurich Newton s law of motion: The net force on an object is equal to the mass of the object multiplied by

More information

Attitude and Orbit Dynamics of High Area-to-Mass Ratio (HAMR) Objects and

Attitude and Orbit Dynamics of High Area-to-Mass Ratio (HAMR) Objects and Attitude and Orbit Dynamics of High Area-to-Mass Ratio (HAMR) Objects and Carolin Früh National Research Council Postdoctoral Fellow, AFRL, cfrueh@unm.edu Orbital Evolution of Space Debris Objects Main

More information

Modified Gravity and the CMB

Modified Gravity and the CMB Modified Gravity and the CMB Philippe Brax, IphT Saclay, France arxiv:1109.5862 PhB, A.C. Davis Work in progress PhB, ACD, B. Li Minneapolis October 2011 PLANCK will give us very precise information on

More information

The Essence of Gravitational Waves and Energy

The Essence of Gravitational Waves and Energy The Essence of Gravitational Waves and Energy F. I. Cooperstock Department of Physics and Astronomy University of Victoria P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada) March 26, 2015 Abstract We discuss

More information

Lecture 2. Gravitational Waves from Binary Systems: Probes of the Universe. Historical importance of orbiting systems.

Lecture 2. Gravitational Waves from Binary Systems: Probes of the Universe. Historical importance of orbiting systems. Gravitational Waves Notes for Lectures at the Azores School on Observational Cosmology September 2011 B F Schutz Albert Einstein Institute (AEI), Potsdam, Germany http://www.aei.mpg.de, Bernard.Schutz@aei.mpg.de

More information

Carol and Charles see their pencils fall exactly straight down.

Carol and Charles see their pencils fall exactly straight down. Section 24-1 1. Carol is in a railroad car on a train moving west along a straight stretch of track at a constant speed of 120 km/h, and Charles is in a railroad car on a train at rest on a siding along

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

Neutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967.

Neutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967. Neutron Stars How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967. Using a radio telescope she noticed regular pulses of radio

More information

Neutron stars as laboratories for exotic physics

Neutron stars as laboratories for exotic physics Ian Jones Neutron stars as laboratories for exotic physics 1/20 Neutron stars as laboratories for exotic physics Ian Jones D.I.Jones@soton.ac.uk General Relativity Group, Southampton University Context

More information

Math 1302, Week 3 Polar coordinates and orbital motion

Math 1302, Week 3 Polar coordinates and orbital motion Math 130, Week 3 Polar coordinates and orbital motion 1 Motion under a central force We start by considering the motion of the earth E around the (fixed) sun (figure 1). The key point here is that the

More information

arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000

arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 Lagrangians and Hamiltonians for High School Students John W. Norbury Physics Department and Center for Science Education, University of Wisconsin-Milwaukee,

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

How Gravitational Forces arise from Curvature

How Gravitational Forces arise from Curvature How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate

More information

Orbital Dynamics in Terms of Spacetime Angular Momentum

Orbital Dynamics in Terms of Spacetime Angular Momentum Chapter 4 Orbital Dynamics in Terms of Spacetime Angular Momentum by Myron W. Evans 1 and H. Eckardt 2 Alpha Institute for Advanced Study (AIAS) (www.aias.us, www.atomicprecision.com) Abstract Planar orbital

More information

On a Flat Expanding Universe

On a Flat Expanding Universe Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden

More information

A Model of the Rotation of Venus Based on 5 Parameters. J.Souchay, L.Cottereau (SYRTE, observatoire de Paris)

A Model of the Rotation of Venus Based on 5 Parameters. J.Souchay, L.Cottereau (SYRTE, observatoire de Paris) A Model of the Rotation of Venus Based on 5 Parameters J.Souchay, L.Cottereau (SYRTE, observatoire de Paris) Plan General Remarks on Venus and its rotation How to model the Venus rotation The «polar motion»

More information

PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 University Physics I. PHYS 2644 University Physics II PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

Planetesimal Dynamics Formation of Terrestrial Planets from Planetesimals

Planetesimal Dynamics Formation of Terrestrial Planets from Planetesimals Planetesimal Dynamics Formation of Terrestrial Planets from Planetesimals Protoplanetary disk Gas/Dust Planetesimals...... 10 6 yr 10 5-6 yr Protoplanets 10 7-8 yr Terrestrial planets Eiichiro Kokubo National

More information

Gravity Testing and Interpreting Cosmological Measurement

Gravity Testing and Interpreting Cosmological Measurement Cosmological Scale Tests of Gravity Edmund Bertschinger MIT Department of Physics and Kavli Institute for Astrophysics and Space Research January 2011 References Caldwell & Kamionkowski 0903.0866 Silvestri

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Extra-solar massive planets with small semi-major axes?

Extra-solar massive planets with small semi-major axes? Monografías de la Real Academia de Ciencias de Zaragoza. 25: 115 120, (2004). Extra-solar massive planets with small semi-major axes? S. Fernández, D. Giuliodori and M. A. Nicotra Observatorio Astronómico.

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

AT THE INTERFACE: GRAVITATIONAL WAVES AS TOOLS TO TEST QUANTUM GRAVITY AND PROBE THE ASTROPHYSICAL UNIVERSE

AT THE INTERFACE: GRAVITATIONAL WAVES AS TOOLS TO TEST QUANTUM GRAVITY AND PROBE THE ASTROPHYSICAL UNIVERSE The Pennsylvania State University The Graduate School Department of Physics AT THE INTERFACE: GRAVITATIONAL WAVES AS TOOLS TO TEST QUANTUM GRAVITY AND PROBE THE ASTROPHYSICAL UNIVERSE A Dissertation in

More information

The Two-Body Problem

The Two-Body Problem The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

Pablo Laguna Center for Relativistic Astrophysics School of Physics Georgia Tech, Atlanta, USA

Pablo Laguna Center for Relativistic Astrophysics School of Physics Georgia Tech, Atlanta, USA Pablo Laguna Center for Relativistic Astrophysics School of Physics Georgia Tech, Atlanta, USA The Transient Sky SN, GRBs, AGN or TDEs? Arcavi et al. 2014, ApJ, 793, 38 van Velzen et al. 2011, ApJ, 741,

More information

Curriculum for Excellence. Higher Physics. Success Guide

Curriculum for Excellence. Higher Physics. Success Guide Curriculum for Excellence Higher Physics Success Guide Electricity Our Dynamic Universe Particles and Waves Electricity Key Area Monitoring and Measuring A.C. Monitoring alternating current signals with

More information

Solar System Gravity. Jeremy Sakstein

Solar System Gravity. Jeremy Sakstein Prepared for submission to JCAP Solar System Gravity Jeremy Sakstein Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK E-mail: jeremy.sakstein@port.ac.uk Contents

More information

DYNAMICS OF GALAXIES

DYNAMICS OF GALAXIES DYNAMICS OF GALAXIES 2. and stellar orbits Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 and stellar orbits Contents Range of timescales Two-body

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

The helical structure of the electromagnetic gravity field

The helical structure of the electromagnetic gravity field The helical structure of the electromagnetic gravity field Introduction Frank H. Makinson Abstract Within the universe an influence creates processes and forms with helicity and spin, and there is a handedness

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G: ... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

More information

Binary Systems as Test-beds of Gravity Theories

Binary Systems as Test-beds of Gravity Theories Binary Systems as Test-beds of Gravity Theories Thibault DAMOUR Institut des Hautes Études Scientifiques 35, route de Chartres 91440 Bures-sur-Yvette (France) Avril 2007 IHES/P/07/16 Binary Systems as

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

Presentation of problem T1 (9 points): The Maribo Meteorite

Presentation of problem T1 (9 points): The Maribo Meteorite Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground

More information

General Relativity. Proff. Valeria Ferrari, Leonardo Gualtieri AA 2011-2012

General Relativity. Proff. Valeria Ferrari, Leonardo Gualtieri AA 2011-2012 1 General Relativity Proff. Valeria Ferrari, Leonardo Gualtieri AA 2011-2012 Contents 1 Introduction 1 1.1 Non euclidean geometries............................ 1 1.2 How does the metric tensor transform

More information

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth 3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

More information

Spacetime Embedding Diagrams for Black Holes. Abstract

Spacetime Embedding Diagrams for Black Holes. Abstract Spacetime Embedding Diagrams for Black Holes gr-qc/98613 Donald Marolf Physics Department, Syracuse University, Syracuse, New ork 13 (June, 1998) Abstract We show that the 1+1 dimensional reduction (i.e.,

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Dynamics of Celestial Bodies, 103-107 PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY

Dynamics of Celestial Bodies, 103-107 PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY Dynamics of Celestial Bodies, 103-107 Contributed paper PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY J. DUFEY 1, N. RAMBAUX 1,2, B. NOYELLES 1,2 and A. LEMAITRE 1 1 University of Namur, Rempart de

More information

Numerical Simulations of Black-Hole Spacetimes

Numerical Simulations of Black-Hole Spacetimes Numerical Simulations of Black-Hole Spacetimes Thesis by Tony Chu In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California

More information

) and mass of each particle is m. We make an extremely small

) and mass of each particle is m. We make an extremely small Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, --6, kl 9.-5. Hjälpmedel: Students may use any book including the textbook Thermal physics. Present your solutions in details: it will

More information

Central configuration in the planar n + 1 body problem with generalized forces.

Central configuration in the planar n + 1 body problem with generalized forces. Monografías de la Real Academia de Ciencias de Zaragoza. 28: 1 8, (2006). Central configuration in the planar n + 1 body problem with generalized forces. M. Arribas, A. Elipe Grupo de Mecánica Espacial.

More information

Spacecraft Dynamics and Control. An Introduction

Spacecraft Dynamics and Control. An Introduction Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

Physical Self-Calibration of X-ray and SZ Surveys

Physical Self-Calibration of X-ray and SZ Surveys Physical Self-Calibration of X-ray and SZ Surveys Greg L. Bryan, Zoltan Haiman (Columbia University) and Joshua D. Younger (CfA) 1. Cluster Surveys and Self-Calibration Clusters of galaxies form at the

More information

Effects of strong gravity on the polarization degree and angle. Galactic BH Binaries

Effects of strong gravity on the polarization degree and angle. Galactic BH Binaries Effects of strong gravity on the polarization degree and angle Applications to: Galactic BH Binaries Active Galactic Nuclei General and Special Relativity effects around a compact object (here-in-after

More information

Journal of Theoretics Journal Home Page

Journal of Theoretics Journal Home Page Journal of Theoretics Journal Home Page MASS BOOM VERSUS BIG BANG: THE ROLE OF PLANCK S CONSTANT by Antonio Alfonso-Faus E.U.I.T. Aeronáutica Plaza Cardenal Cisneros s/n 8040 Madrid, SPAIN e-mail: aalfonso@euita.upm.es

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

On the Gravitational Field of a Point-Mass, According to Einstein s Theory

On the Gravitational Field of a Point-Mass, According to Einstein s Theory On the Gravitational Field of a Point-Mass, According to Einstein s Theory Karl Schwarzschild Submitted on January 3, 96 Abstract: This is a translation of the paper Über das Gravitationsfeld eines Massenpunktes

More information

Preview of Period 2: Forms of Energy

Preview of Period 2: Forms of Energy Preview of Period 2: Forms of Energy 2.1 Forms of Energy How are forms of energy defined? 2.2 Energy Conversions What happens when energy is converted from one form into another form? 2.3 Efficiency of

More information

Orbital Mechanics and Space Geometry

Orbital Mechanics and Space Geometry Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit

More information

Specific Intensity. I ν =

Specific Intensity. I ν = Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositely-directed

More information

Introduction to spectral methods

Introduction to spectral methods Introduction to spectral methods Eric Gourgoulhon Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris Meudon, France Based on a collaboration with Silvano Bonazzola, Philippe

More information

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)

Celestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun) Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial

More information

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental

More information

PS 320 Classical Mechanics Embry-Riddle University Spring 2010

PS 320 Classical Mechanics Embry-Riddle University Spring 2010 PS 320 Classical Mechanics Embry-Riddle University Spring 2010 Instructor: M. Anthony Reynolds email: reynodb2@erau.edu web: http://faculty.erau.edu/reynolds/ps320 (or Blackboard) phone: (386) 226-7752

More information

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) Outline 1. ADM formulation & EFT formalism. Illustration: Horndeski s theories 3. Link with observations Based on

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information