Radiation reaction for inspiralling binary systems with spinspin


 Bruce Daniels
 3 years ago
 Views:
Transcription
1 Radiation reaction for inspiralling binary systems with spinspin coupling 1 Institute of Theoretical Physics, FriedrichSchillerUniversity Jena December 3, H. Wang and C. M. Will, Phys. Rev. D, (2007)
2 PostNewtonian approximation Movitation Method: PostNewtonian approximation PostNewtonian approximation is so far the best method to study the inspiral stage of coalescing compact binaries. Assumptions: slow motion and weak gravitational interaction: (M/r << 1, v << 1 ). Newtonian gravity dominants, small modification introduced by general relativity. Solutions are expressed as power series in the postnewtonian parameter ɛ v 2 M/r. Different approaches (PM approach, Hamiltonian approach, DIRE,... ). It was pointed out [Cutler et al. 1993] extremely high order PN results (up to O[ɛ 7/2 ] beyond Newtonian order) for both the equations of motion and GW waveforms are needed for the current GW detectors.
3 PostNewtonian approximation Movitation PostNewtonian equations of motion for binary systems The general structure of the hydrodynamic postnewtonian EOM: dv i /dt = U,i + a i PN + a i 2PN + a i 2.5PN + a i 3PN + a i 3.5PN +..., Equations of motion for nonspinning binaries has been know through 3.5PN order: PN order 1PN derived by Lorentz & Droste (1917), confirmed by Einstein, Infeld & Hoffmann. Damour et al. (1981, 1987), 2 & 2.5PN confirmed by Kopeikin et al., Blanchet et al., Itoh et al. and Pati et al.. 3PN Schaefer et al. (2000, 2001), confirmed by Blanchet et al. and Itoh et al.. 3.5PN Q: What about spin? Pati & Will (2000, 2002), confirmed by Schaefer et al. and Blanchet et al.
4 Spin effect: why do we care? PostNewtonian approximation Movitation Most astrophysical objects are spinning bodies. the orbital motion can be very different from the nonspinning case. Spin effects contribute to the gravitational waveform and the overall emission of energy and angular momentum. Including spin increases the computational burden and may affect (Berti et al. 2005, Lang et al. 2006) the accuracy on source parameter estimation. It s important to have a complete and reasonable accurate picture of the spin effects in the binary systems.
5 Derivation of the spinspin effects The equations of motion and the evolution of spins Spin makes counting the PN order a nonsimple task PostNewtonian parameter ɛ m r v 2, (G = c = 1) Rapidly rotating compact objects For arbitrary rotating objects v O(1), x O(m) S A O(m 2 ) O(ɛ 2 )r 2 S 1S 2 O(ɛ 4 )r 4 Leading order equation of motion with spin: a SO v S m v 3 1.5PN r 3 r 2 a SS 1 S 2 m v 4 2PN mr 4 r 2 v O(v), x O(r) S A O(mvr) O(ɛ 3/2 )r 2 S 1S 2 O(ɛ 3 )r 4 Leading order equation of motion with spin: a SO v S m v 2 1PN r 3 r 2 a SS 1 S 2 m v 2 1PN mr 4 r 2 For our calculation, we assume arbitrary rotating objects.
6 Spin effects: much less understood Derivation of the spinspin effects The equations of motion and the evolution of spins What we (do not) know about spin effects. PN order SO SS N 1PN Barker et al. (1975) Barker et al. (1979) 2PN Blanchet et al. (2006) Porto et al. (2006) 3PN?? 2.5PN 3.5PN Will (2005) This work Formally, the spin effects first appear at 1PN order. Leading order spin contribution to the R. R.: 3.5PN effects. Kidder (1995) calculated the leading order spin contribution to the energy and angular momentum flux in the radiation zone, however a rigorous derivation of the equations of motion at radiation reaction order is still necessary. The spinorbit and spinspin coupling may lead to the precession of the orbital plane and the individual spins. To fully describe the dynamics, both dv i /dt and ds i /dt are needed.
7 Deriving the spin effects Derivation of the spinspin effects The equations of motion and the evolution of spins We start from the hydrodynamic EOM derived by Pati&Will (2002). dv i /dt = U,i + a i PN + ai 2.5PN + ai 3.5PN +..., We assume the bodies are perfect fluid balls. Definition of spin: S i A = ɛijk R A ρ x j v k d 3 x. It is also useful to define another quantity called the proper spin: SA i Si A ( v A m B r ) 1 2 [v A (v A S A )] i (3) SA i I jj +S j (3) A I ij Using expansion parameters x, x, v, v, we expand EOM w.r.t. center of each bodies. By keeping the terms that are proportional to (ρ x v) or (ρ x v ), we obtain the spinorbit contributions. By keeping terms that are proportional to (ρ x v)(ρ x v ) we obtain the spinspin contributions. Similarly, we can obtain the evolution of individual spins by calculating Ṡi A = ɛijk R A ρ x j a k d 3 x
8 Results Introduction Derivation of the spinspin effects The equations of motion and the evolution of spins At PN order, we recover the spinspin contributions to equations of motion and of individual spins: a PN SS = 3 µr 4 [n(s 1 S 2 ) + S 1 (n S 2 ) + S 2 (n S 1 ) 5n(n S 1 )(n S 2 )]. (Ṡ 1 ) PN SS = 1 «r 3 S 2 3(n S 2 )n S 1. At 3.5PN order, the EOM and equations of individual spins are given by: OK, you got these lengthy expressions, now what?
9 Energy balance From our result, the near zone orbital energy loss due to the leading order spinspin gravitational radiation can be obtained by calculating: Ė Near (SS) = µ (v a 3.5PN SS ) When comparing with the radiation zone energy flux (Kidder 1995), we found our result of the energy loss doesn t exactly balance the flux in the radiation zone. Energy is not conserved? The difference is a meaningless total time derivative. Can be absorbed into the definition of the near zone energy (Gauge effects). Our result of energy loss precisely equals the radiation zone flux. Energy conservation.
10 Angular momentum balance Near zone orbital angular momentum loss: L Near (SS) = µ (x a 3.5PN SS ). Originally, the L Near (SS) doesn t agree with the radiative flux. No big deal, let us prove the difference is a total time derivative. Wait a second, what about the spin angular momentum? We need to consider the total angular momentum loss J Near (SS) = L Near (SS) + S Near (SS). The difference between the total angular momentum loss in the near zone and the radiation zone flux is also a meaningless total time derivative. Redefine the near zone total angular momentum angular momentum conservation.
11 Spin precession S A can not be completely eliminated by extracting time derivatives (different from the spinorbit case!). After absorbing the total time derivative to the definition of spin, the residual contribution is a pure precession. No precession if the companion spin is perpendicular to the orbital plane.
12 Conclusion We obtained the 3.5 postnewtonian order spinspin radiation reaction and equation of spin for inspiralling binary systems. Using the our result, we calculated the near zone energy and angular momentum loss, which precisely balance the radiative flux of these quantities in the radiation zone. The spinspin coupling introduces an additional pure precession to the individual spins.
Orbital Dynamics of Eccentric Compact Binaries
Orbital Dynamics of Eccentric Compact Binaries Laboratoire Univers et Théories Observatoire de Paris / CNRS Collaborators: S. Akcay, L. Barack, N. Sago, N. Warburton Phys. Rev. D 91 124014 (2015), arxiv:1503.01374
More informationGravitational waves from compact object binaries
Gravitational waves from compact object binaries Laboratoire Univers et Théories Observatoire de Paris / CNRS aligo, avirgo, KAGRA, elisa, ( DECIGO, ET,... ( Main sources of gravitational waves (GW) elisa
More informationGravitational selfforce in the ultrarelativistic regime Chad Galley, California Institute of Technology
Gravitational selfforce in the ultrarelativistic regime Chad Galley, California Institute of Technology with Rafael Porto (IAS) arxiv: 1302.4486 v2 soon! (with details) Capra16; Dublin, Ireland; July
More informationLecture 2. Gravitational Waves from Binary Systems: Probes of the Universe. Historical importance of orbiting systems.
Gravitational Waves Notes for Lectures at the Azores School on Observational Cosmology September 2011 B F Schutz Albert Einstein Institute (AEI), Potsdam, Germany http://www.aei.mpg.de, Bernard.Schutz@aei.mpg.de
More informationGravitational waves from neutron stars binaries: accuracy and tidal effects in the late inspiral S. Bernuzzi TPIPAF FSU Jena / SFBTR7
Gravitational waves from neutron stars binaries: accuracy and tidal effects in the late inspiral S. Bernuzzi TPIPAF FSU Jena / SFBTR7 M. Thierfelder, SB, & B.Bruegmann, PRD 84 044012 (2011) SB, MT, &
More informationComplete gravitational waveforms from blackhole binaries with nonprecessing spins
Complete gravitational waveforms from blackhole binaries with nonprecessing spins P. Ajith LIGO Lab & Theoretical Astrophysics  Caltech / AEI Hannover In collaboration with M. Hannam, S. Husa, B. Bruegmann,
More informationMASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)
MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for nonphysics majors, a GPA of 2.5 or better in at least 15 units in the following advanced
More informationSpecific Intensity. I ν =
Specific Intensity Initial question: A number of active galactic nuclei display jets, that is, long, nearly linear, structures that can extend for hundreds of kiloparsecs. Many have two oppositelydirected
More informationLaws of Motion and Conservation Laws
Laws of Motion and Conservation Laws The first astrophysics we ll consider will be gravity, which we ll address in the next class. First, though, we need to set the stage by talking about some of the basic
More informationOrbital Dynamics in Terms of Spacetime Angular Momentum
Chapter 4 Orbital Dynamics in Terms of Spacetime Angular Momentum by Myron W. Evans 1 and H. Eckardt 2 Alpha Institute for Advanced Study (AIAS) (www.aias.us, www.atomicprecision.com) Abstract Planar orbital
More information= = GM. v 1 = Ωa 1 sin i.
1 Binary Stars Consider a binary composed of two stars of masses M 1 and We define M = M 1 + and µ = M 1 /M If a 1 and a 2 are the mean distances of the stars from the center of mass, then M 1 a 1 = a
More informationPostNewtonian dynamics for orbiting compact objects
PostNewtonian dynamics for orbiting compact objects Achamveedu Gopakumar TheoretischPhysikalisches Institut FriedrichSchillerUniversität Jena Turku, Finland 10/08/2008 Aim & Outline AIM: To introduce
More informationUnderstanding the motion of the Universe. Motion, Force, and Gravity
Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.
More information1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
More informationDIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding
More informationSummary: The Universe in 1650
Celestial Mechanics: The Why of Planetary Motions Attempts to Describe How Celestial Objects Move Aristotle, Hipparchus, and Ptolemy: The Ptolemaic System Aristarchus, Copernicus, and Kepler: The Copernican
More informationNeutron stars as laboratories for exotic physics
Ian Jones Neutron stars as laboratories for exotic physics 1/20 Neutron stars as laboratories for exotic physics Ian Jones D.I.Jones@soton.ac.uk General Relativity Group, Southampton University Context
More informationarxiv:grqc/9409057v1 27 Sep 1994
Gravitational Radiation from Nonaxisymmetric Instability in a Rotating Star J. L. Houser, J. M. Centrella, and S. C. Smith Department of Physics and Atmospheric Science, Drexel University, Philadelphia,
More informationBasic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
More informationLaser Interferometer Space Antenna Listening to the Universe with Gravitational Waves
Laser Interferometer Space Antenna Listening to the Universe with Gravitational Waves Scott E Pollack for the LISA team UW General Relativity Labs AAPT Workshop GSFC  JPL 5 January 2007 Outline LISA Overview
More informationDynamics and Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field
Dynamics and Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field Amit K. Sanyal Jinglai Shen N. Harris McClamroch Department of Aerospace Engineering University of Michigan Conference
More informationTesting dark matter halos using rotation curves and lensing
Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences
More informationDynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005
Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital
More informationNEWTON S LAWS OF MOTION
NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied
More informationAttitude and Orbit Dynamics of High AreatoMass Ratio (HAMR) Objects and
Attitude and Orbit Dynamics of High AreatoMass Ratio (HAMR) Objects and Carolin Früh National Research Council Postdoctoral Fellow, AFRL, cfrueh@unm.edu Orbital Evolution of Space Debris Objects Main
More informationState of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
More informationDO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.
More informationChapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries
Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities
More informationStructure formation in modified gravity models
Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general
More informationPrecession of spin and Precession of a top
6. Classical Precession of the Angular Momentum Vector A classical bar magnet (Figure 11) may lie motionless at a certain orientation in a magnetic field. However, if the bar magnet possesses angular momentum,
More informationName Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
More informationFluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
More informationSound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
More informationME6130 An introduction to CFD 11
ME6130 An introduction to CFD 11 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
More informationApril 07, 2015. Force motion examples.notebook MOTION AND FORCES. GRAVITY: a force that makes any object pull toward another object.
Force motion examples.notebook April 07, 2015 MOTION AND FORCES GRAVITY: a force that makes any object pull toward another object Feb 15 12:00 PM 1 FRICTION: a force that acts to slow down moving objects
More informationDynamics of Celestial Bodies, 103107 PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY
Dynamics of Celestial Bodies, 103107 Contributed paper PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY J. DUFEY 1, N. RAMBAUX 1,2, B. NOYELLES 1,2 and A. LEMAITRE 1 1 University of Namur, Rempart de
More informationSome Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)
Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving
More informationThe Layout of the Solar System
The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earthlike) Jovian (i.e. Jupiterlike or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density
More informationA unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)
A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) Outline 1. ADM formulation & EFT formalism. Illustration: Horndeski s theories 3. Link with observations Based on
More informationCelestial Sphere. Celestial Coordinates. Lecture 3: Motions of the Sun and Moon. ecliptic (path of Sun) ecliptic (path of Sun)
Lecture 3: Motions of the and Moon ecliptic (path of ) ecliptic (path of ) The 23.5 degree tilt of Earth s spin axis relative to its orbital axis around the causes the seasons Celestial Sphere Celestial
More informationChapter 13. Gravitation
Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67
More informationLet s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
More informationBinary Orbital Dynamics from the Analysis of Spherical Harmonic Modes of Gravitational Waves
Intro Motivations Binary Orbital Dynamics from the Analysis of Spherical Harmonic Modes of Gravitational Waves Dr. Jennifer Seiler (NASA GSFC) Gravity Theory Seminars University of Maryland College Park
More informationGravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008
Gravitation modifiée à grande distance et tests dans le système solaire Gilles EspositoFarèse, GRεCO, IAP et Peter Wolf, LNESYRTE 10 avril 2008 Gravitation modifiée à grande distance & tests dans le
More informationIntroduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.
June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a
More information2, 8, 20, 28, 50, 82, 126.
Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons
More informationSTATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
More informationGravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole
Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom kw@mssl.ucl.ac.uk
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationSolar Ast ro p h y s ics
Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY VCH WILEYVCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3
More informationContents. Goldstone Bosons in 3HeA Soft Modes Dynamics and Lie Algebra of Group G:
... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse
More informationCentral configuration in the planar n + 1 body problem with generalized forces.
Monografías de la Real Academia de Ciencias de Zaragoza. 28: 1 8, (2006). Central configuration in the planar n + 1 body problem with generalized forces. M. Arribas, A. Elipe Grupo de Mecánica Espacial.
More informationGENERAL RELATIVITY & the UNIVERSE
GENERAL RELATIVITY & the UNIVERSE PCES 3.32 It was realised almost immediately after Einstein published his theory that it possessed solutions for the configuration of spacetime, in the presence of a homogeneous
More informationNeutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24yearold graduate student Jocelyn Bell in 1967.
Neutron Stars How were neutron stars discovered? The first neutron star was discovered by 24yearold graduate student Jocelyn Bell in 1967. Using a radio telescope she noticed regular pulses of radio
More informationDYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY
DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY Sulona Kandhai University of Cape Town, South Africa Supervised by Prof. Peter Dunsby FIELD EQUATIONS OF F(R) GRAVITY Field equations are derived from the generalised
More informationLecture 14. Introduction to the Sun
Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy  nuclear energy  magnetic energy 2. Radiation  continuum
More informationF ij = Gm im j r i r j 3 ( r j r i ).
Physics 3550, Fall 2012 Newton s Third Law. Multiparticle systems. Relevant Sections in Text: 1.5, 3.1, 3.2, 3.3 Newton s Third Law. You ve all heard this one. Actioni contrariam semper et qualem esse
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationEXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL
EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist
More information3.1 Photoelectricity AS13. 3.1 Photoelectricity 2
Photoelectricity Einstein s quantum explanation of the photoelectric effect  Einstein used Planck s quantum theory of radiation, (see Revision Card AS1), to explain photoelectric emission. He assumed
More informationCBE 6333, R. Levicky 1 Differential Balance Equations
CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,
More informationFree Fall: Observing and Analyzing the Free Fall Motion of a Bouncing PingPong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing PingPong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
More informationOrbital Dynamics with Maple (sll  v1.0, February 2012)
Orbital Dynamics with Maple (sll  v1.0, February 2012) Kepler s Laws of Orbital Motion Orbital theory is one of the great triumphs mathematical astronomy. The first understanding of orbits was published
More informationOrbits of the LennardJones Potential
Orbits of the LennardJones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The LennardJones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
More informationM01/430/H(3) Name PHYSICS HIGHER LEVEL PAPER 3. Number. Wednesday 16 May 2001 (morning) 1 hour 15 minutes INSTRUCTIONS TO CANDIDATES
INTERNATIONAL BACCALAUREATE BACCALAURÉAT INTERNATIONAL BACHILLERATO INTERNACIONAL M01/430/H(3) PHYSICS HIGHER LEVEL PAPER 3 Wednesday 16 May 2001 (morning) Name Number 1 hour 15 minutes INSTRUCTIONS TO
More informationLecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline:
Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Intro to Magnetostatics. Magnetic Field Flux, Absence of Magnetic Monopoles. Force on charges moving in magnetic field. 1 Intro to
More informationHome Work Solutions 12
Hoe Work Solutions 1 11 In Fig.1, an electric field is directed out of the page within a circular region of radius R =. c. The field agnitude is E = (.5 V/ s)(1  r/r)t, where t is in seconds and r is
More informationAT THE INTERFACE: GRAVITATIONAL WAVES AS TOOLS TO TEST QUANTUM GRAVITY AND PROBE THE ASTROPHYSICAL UNIVERSE
The Pennsylvania State University The Graduate School Department of Physics AT THE INTERFACE: GRAVITATIONAL WAVES AS TOOLS TO TEST QUANTUM GRAVITY AND PROBE THE ASTROPHYSICAL UNIVERSE A Dissertation in
More informationDERIVATION OF ORBITS IN INVERSE SQUARE LAW FORCE FIELDS
MISN0106 DERIVATION OF ORBITS IN INVERSE SQUARE LAW FORCE FIELDS Force Center (also the coordinate center) satellite DERIVATION OF ORBITS IN INVERSE SQUARE LAW FORCE FIELDS by Peter Signell 1. Introduction..............................................
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationIncorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation
The OpenAccess Journal for the Basic Principles of Diffusion Theory, Experiment and Application Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation
More informationThis paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00
Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June
More information2. Orbits. FERZagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
More informationPROPOSED SCIENCE OFFERINGS FOR
PROPOSED SCIENCE OFFERINGS FOR 20142015 LEESVILLE ROAD HIGH SCHOOL The following courses are the courses that we are recommending being offered for the following school year. The science teachers recommend
More informationLecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemblemean equations of fluid motion/transport? Force balance in a quasisteady turbulent boundary
More informationCHAPTER 11. The total energy of the body in its orbit is a constant and is given by the sum of the kinetic and potential energies
CHAPTER 11 SATELLITE ORBITS 11.1 Orbital Mechanics Newton's laws of motion provide the basis for the orbital mechanics. Newton's three laws are briefly (a) the law of inertia which states that a body at
More informationProblem Solving Guide
Problem Solving Guide 1 Introduction Are you having trouble with solving dynamics problems? Do you often haven t got a clue where to start? Then this problem solving guide might come in handy for you.
More informationCONSERVATION LAWS. See Figures 2 and 1.
CONSERVATION LAWS 1. Multivariable calculus 1.1. Divergence theorem (of Gauss). This states that the volume integral in of the divergence of the vectorvalued function F is equal to the total flux of F
More informationThe rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
More informationData Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE
Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (20142015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question
More informationKERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD
KERN COMMUNITY COLLEGE DISTRICT CERRO COSO COLLEGE PHYS C111 COURSE OUTLINE OF RECORD 1. DISCIPLINE AND COURSE NUMBER: PHYS C111 2. COURSE TITLE: Mechanics 3. SHORT BANWEB TITLE: Mechanics 4. COURSE AUTHOR:
More informationNotes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
More information5.2 Rotational Kinematics, Moment of Inertia
5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position
More informationPES 1110 Fall 2013, Spendier Lecture 33/Page 1. [kg m 2 /s] (dropped radians)
PES 1110 Fall 2013, Spendier Lecture 33/Page 1 Today:  Conservation o Angular Momentum (11.11)  Quiz 5, next Friday Nov 22nd (covers lectures 2933,HW 8) angular moment or point particles: L r p mr v
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationG U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationAstro 11001 Lecture 10 Newton s laws
Astro 11001 Lecture 10 Newton s laws Twin Sungrazing comets 9/02/09 Habbal Astro11001 Lecture 10 1 http://umbra.nascom.nasa.gov/comets/movies/soho_lasco_c2.mpg What have we learned? How do we describe
More informationUnderstanding the motion of the Universe. Motion, Force, and Gravity
Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.
More informationSIMPLE CLASSICAL EXPLANATION OF PLANETARY PRECESSION WITH THREE DIMENSIONAL ORBIT THEORY: THOMAS PRECESSION THEORY. M. W. Evans and H.
I ~ SIMPLE CLASSICAL EXPLANATION OF PLANETARY PRECESSION WITH THREE DIMENSIONAL ORBIT THEORY: THOMAS PRECESSION THEORY by M. W. Evans and H. Eckardt, Civil List, AlAS and UPITEC (www.webarchive.org.uk,
More informationName: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
More informationChapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
More information5.111 Principles of Chemical Science
MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary
More informationEventbyevent anisotropies in hydro
Eventbyevent anisotropies in hydro Máté Csanád in collaboration with András Szabó, Sándor Lökös, Attila Bagoly Eötvös University, Budapest Balaton workshop, Tihany, 14 July 2015 July 14, 2015 Máté Csanád,
More informationBinary Stars. Kepler s Laws of Orbital Motion
Binary Stars Kepler s Laws of Orbital Motion Kepler s Three Laws of orbital motion result from the solution to the equation of motion for bodies moving under the influence of a central 1/r 2 force gravity.
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationApril 24, 2015. A Classical Perspective. Exam #3: Solution Key online now! Graded exams by Monday!
April 24, 2015 Exam #3: Solution Key online now! Graded exams by Monday! Final Exam Monday, May 4 th, 10:30 a.m. Room: Perkins 107 1 A Classical Perspective A classical view will help us understand the
More information