Understanding Sound System Design and Feedback Using (Ugh!) Math by Rick Frank

Save this PDF as:

Size: px
Start display at page:

Download "Understanding Sound System Design and Feedback Using (Ugh!) Math by Rick Frank"

Transcription

1 Understanding Sound System Design and Feedback Using (Ugh!) Math by Rick Frank Shure Incorporated 222 Hartrey Avenue Evanston, Illinois (847)

2

3 Understanding Sound System Design and Feedback Using (Ugh!) Math One of the basic building blocks of sound system design is the Potential Acoustic Gain (PAG) equation. With a few simple calculations it can provide a guide to dealing with the problems and restrictions encountered in this process. Here's a common situation confronting a sound contractor trying to provide a system for an existing room. He has a good working knowledge of the audio chain and the products at his disposal to assemble a "working system." He knows the room let's say a conference room. And he knows where he (or the client) would like to place the microphones and speakers. But how can he know in advance whether the components he would like to install, and the layout he would like to use, will produce the gain needed without feedback? And for that matter, how much gain is needed? If he wants to do more than try what he "feels" should work and then hope for the best, he will pull out his calculator, plug in the dimensions of his system design, and let the equation guide him in the right direction. Unfortunately, many people who could benefit by understanding and using the equation are put off by its apparent complexity. This doesn't have to be the case as I will show in the following pages. A calculator with a "log" button and possibly a sound level meter are really all you need to take some of the mystery and potential disaster out of sound system design. It all starts with the Inverse Square Law. THE INVERSE SQUARE LAW EASIER THAN IT SOUNDS Have you noticed that as you walk away from someone speaking, the talker's voice level decreases as perceived by your ears? What's happening is this: distance from a sound source affects the sound pressure level (SPL) on your ears in a particular way. It's described by the inverse square law which states that as listeners double their distance from the sound source, the SPL they perceive will decrease by 6.02dB. So if you first stand 4 feet from a talker and then move to a new position 8 feet from the talker, you should notice about a 6.02dB drop in level. (A one db increase is barely audible, 3dB is a generally noticeable change, and a 10dB increase is considered to be twice as loud.) Mathematically the inverse square law looks like this: New Level = Old Level + 20 X log of old distance - 20 X log of new distance or in math shorthand L' = L + 20 log D - 20 log D' This equation describes what happens in a so-called "free field." That means that there is no interference from things like reflected sounds and that the origin of the sound is a point source (a sound source which has much smaller dimensions than the distance to the listener). Since even the earth can complicate the issue, there is almost never a situation where we encounter the pure effects of this equation. That doesn't mean we have to abandon the theory, but rather that we have to use it with the understanding that it will not perfectly predict what is going to happen when we apply it to a real situation. Because it's easier to understand this way, let's try working through an example by assuming we're in a free field.

4 Using the previous example with the old distance, D, equal to 4 feet and the new distance, D' ("D prime"), equal to 8 feet, you can use your calculator to test this free space law. Let's say that the old level, L, of the talker measures 70dB at 4 feet. Incidentally, I've always found it is easiest to work in reverse on calculator logarithm (log) computations. So to work through the problem, punch the D' quantity "8" into the calculator, find the logarithm (hit the log button), and get Log of 8 = Now multiply by 20 and get 18 (rounded from ). (Since 1dB is considered to be the smallest difference we can actually hear, I'll round all these figures to the nearest whole number.) x 20 = 18 (rounded from ) Save this figure and punch in the old distance, D, of "4". If you follow the same steps the new answer is 12 (again, rounded). log of 4 = x 20 = 12 (rounded from ) The final answer is just the arithmetic of the inverse square law: take the old sound pressure level of 70 plus 12, minus 18, to arrive at the new level, 64 6dB less than the old level. New Level = Old Level + 20 X log of old distance - 20 X log of new distance 64 = Because of the nature of logarithms and the inverse square law, this solution will occur with any pair of distances where one is twice the other. Let's say we move from 13 feet to 26 feet away from the talker. Working backwards again, entering 26 followed by the log button and multiplying by 20 gives 28dB (rounded). The same procedure with 13 gives 22dB. And the arithmetic (70 plus 22 minus 28) results in a level of 64dB the same 6dB drop as we had with 4' to 8'. log of 13 = , x 20 = 22 (rounded from ), log of 26 = , x 20 = 28 New Level = Old Level + 20 X log of old distance - 20 X log of new distance 64 = Of course this works in reverse, as your ears will tell you. If we move closer to the sound source by cutting the distance in half (from 8' to 4'), the sound level rises by 6dB. The important point to remember is that in order to get a significant 6dB sound level change, the distance must change by double or half. CRITICAL DISTANCE IS CRITICAL A lot of the limitations on the practical use of the inverse square law and the PAG equation have to do with what's called "critical distance." Basically, when the listener is within the critical distance of the source, the inverse square law works pretty well. Outside the critical distance things get much more complex.

5 The term "critical distance" is defined as the distance from a sound source where the direct sound is the same level as the reverberant sound. With a sound level meter and a de-tuned FM radio you can make a good estimate of critical distance in a room. The radio serves as a sound source to provide a constant, broad spectrum sound. If you walk backwards from the sound source with a sound level meter, you will reach a point where the level stops registering change on the meter. At that point, if you walk back towards the sound source until the meter increases exactly 3dB you will have reached the critical distance. (Equal sound from the direct source and the reverberant field add up to 3dB more than the reverberant sound alone.) Whether or not you actually make estimates of the critical distances within a system, there is one thing that is important to know. Typically in sound systems, the distance between the microphone and the talker is the only place where the system component receiver (the listener or microphone) is less than the critical distance from the source. Later when we look at the actual distances between the parts of a system, we'll see the dramatic effects of changing this distance. HOW MUCH ACOUSTIC GAIN IS NEEDED? With this in mind we're ready to look at the question of how much gain is needed for listeners in a given room. (Remember that in a real room the reflective surfaces create echoes and a reverberant field that interfere with the theoretical results of the inverse square law as well as the potential acoustic gain equation. This interference generally lowers the actual performance of a system.) Let's take an example of a conference room with a 22' table. Normal conversational level in a quiet room at a normal conversational distance of 2 feet is about 70dB. The inverse square law will tell us how much the loss will be if the listener is at the opposite end of the table, 22 feet away. That listener would ideally like to hear exactly what the close listener hears. The distance to the far listener creates the loss which the sound system should replace. Putting the figures from this scene into the inverse square law equation (using the mathematical shorthand) looks like this: L' = L + 20 log D - 20 log D' = X log 2-20 X log 22 Working backwards from the new distance, 22, punch in 22, take its log and multiply the result by 20. Write down that result (27), take the log of 2 the same way and multiply it by 20, and you get 6. Now the arithmetic: 70 plus 6 minus 27 equals 49 telling us that the distant listener experiences a loss of 21dB (70-49). L' = L + 20 log D - 20 log D' 49 = = = -21 (a loss of 21dB) This is the sound system's target. The sound system must provide at least 21dB of gain for the farthest listener to hear the talker as if she is 2 feet away. This is called the needed acoustic gain (NAG). If the distant listener is supposed to hear as well as the near listener then the system must make up the 21dB loss caused by the distance. Of course if you have a sound level meter you can take a reading in both the near and far positions and subtract to get to this point. But with the first method you get to understand and see the inverse square law in action. It may also be interesting to compare the two answers to see how much the room acoustics affect the results that arc predicted by the inverse square law.

6 HOW MUCH ACOUSTIC GAIN CAN THE SYSTEM PRODUCE? Now let's work with the Potential Acoustic Gain equation to see if our system will theoretically produce the acoustic gain we need before it feeds back. To start we need to look at some of its individual terms. Each of these terms is a shorthand for a basic distance (D) in the sound system design, as illustrated in Figure 1. Since there are four significant distances between the elements in the system, each "D" has a subscript such as "D 1 ", "D S ", ("D sub one", "D sub S") etc. Specifically, this is what each term stands for: Figure 1. The basic distances in a simple sound reinforcement system. "Electronic to Electronic" or "People to People" Distances D 1 is the distance between the microphone and the loudspeaker (remember "1" as the first pan of the system). D 0 is the distance between the talker and the farthest listener (remember "0" for observer). "People to Electronic" Distances D 2 is the distance between the loudspeaker and the farthest listener (remember "2" as the last pan of the system). D S is the distance between the talker and the microphone (remember "S" for source). We now get to the point where we determine if the system can meet our need. This is where the Potential Acoustic Gain equation comes into play. The simplest form of this equation looks like this: PAG = 20 log D 1-20 log D log D 0-20 log D S This form of the equation will allow us to determine the amount of gain available from the system just before the undesirable oscillation we all know as feedback occurs. It also assumes the system uses omnidirectional microphones and loudspeakers and it neglects the effects of reverberation and echo (as if the system were outdoors). I'll mention more about this later, but for now this version of the equation will be easier to work with.

7 Looking at the system distances as they occur in the equation we can see some obvious facts. PAG = 20 log D 1-20 log D log D 0-20 log D S If we want the PAG on the left side of the equation to get larger, we have to make the positive terms (D 1 and D 0 ) as large as possible and the negative terms (D 2 and D S ) as small as possible on the right side of the equation. Notice that if the loudspeaker is moved farther from the microphone (as D 1 increases), the potential gain before feedback is increases. Unfortunately, with D 0 there is little change possible since it is usually fixed by the layout of the room. When the loudspeaker is moved closer to the listener, decreasing the negative term D 2 on the right side of the equation, the system gain increases on the left side. Finally, concerning the most important distance to change as we'll see later, when the talker moves closer to the microphone it decreases D S and increases PAG. THEORY MEETS REALITY IN A SOUND SYSTEM As I mentioned earlier, there are complications when we enter the real world. The variations in direct sound compared to reflected sound, the echoes, the presence of people, the atmosphere, and more conspire to make each position in a room acoustically different. This affects feedback, as anyone who has tried to set up a sound system in a gym will tell you. The most important point to remember as we work through these equations is this: if the dimensions of a sound system don't provide the needed gain with the theoretical free field conditions, then they are even less likely to work under real world conditions. To use these ideas in the equation we need the complete picture of our prospective sound system layout the specific distances D 1, D 0, D 2, and D S. Using the conference table we've already looked at, let's say that the room dimensions are 20' by 30' with a 10' ceiling. A possible set of system dimensions might be something like this (see Figure 2): Figure 2. The dimensions of a possible sound system. D 1 (mic to closest loudspeaker) = 9' D 2 (loudspeaker to farthest listener) = 20' D 0 (talker to listener) = 22' D S (talker to mic) = 1'

8 Now we simply plug these values into the equation and do the logarithms and arithmetic the same way we did with the inverse square law equation. PAG = 20 X log of 9-20 X log of X log of X log of 1 Working backwards as before, enter 1 and hit "log." Since the logarithm of 1 is zero this term will drop out. Now enter 22, hit "log", and multiply by 20 to get 27. Save it. and do the same with 20 and 9 and save each of the answers. We wind up with 19 minus 26 plus 27 for a potential acoustic gain in the system of 20dB. PAG = 20 X log of 9-20 X log of X log of X log of 1 = PAG = 20dB That seems like a lot, but not enough to help the listener at the far end of the table who needs 21dB of gain to be able to hear the talker as well as the listener close to the talker does. So let's change the dimensions of the system to bring the loudspeaker closer to the listener and farther from the microphone (see Figure 3): Figure 3. Revised system dimensions: loudspeaker closer to listener and farther from the microphone. D 1=11' D 2=19' D 0=22' D S=1' This time after we do the logs we'll get: PAG = 20 X X X X 0 Do the arithmetic and we get: PAG = 22dB This is enough gain so that the listener at the far end of the table hears as well as the listener near the talker without the system going into feedback. The potential gain minus the needed gain leaves a margin of 1dB which seems like what we needed when we started to look at this conference room. But there's a catch.

9 THE FEEDBACK STABILITY MARGIN The version of the equation that we've been using gives us the potential gain of the system at the point just before it starts to feedback, the point of unity gain. Virtually all systems need to be operated with a safety margin (called the feedback stability margin), usually 6dB, to avoid the annoying ringing sound associated with a pre-feedback condition. When this margin is included, the equation looks like this: PAG = 20 log D 1-20 log D log D 0-20 log D S - 6 Unfortunately this little minus 6 means that the gain from our latest version of the system is now reduced to 16dB not enough to meet the 21dB needed. So we're back to the drawing board. Let's try to move the loudspeaker even closer to the listener and further from the microphone (see Figure 4): Figure 4. Loudspeaker moved even closer to the listener. D 1 =17.5' D 2 =13' D 0 =22' D S =1' The result looks good this time even with the feedback margin: PAG = PAG = 24dB We're there and with a 3db margin to spare. If we operate the system just as described, the farthest listener will hear as well as the nearest without the system feeding back. Our conference table system works almost. THE NUMBER OF OPEN MICROPHONES THE LAST HURDLE All along we've assumed that this conference room uses only one microphone at a time. If more microphones are open for example, if microphones are placed and turned on in from of multiple talkers at the table another term is added to the equation which can affect the acoustic gain of the system. Multiple open microphones create a greater risk of feedback in the system and degrade the quality of the sound due to comb filtering and increased reverberation.

11 Remember in the inverse square law free field calculations, where we doubled the distance of the listener from the sound source, that we calculated a 6dB drop in the sound level as perceived by that listener. This also must work in reverse: if the distance changes from 8 feet to 4 feet, the perceived level will increase by 6dB. As I mentioned earlier, D S is where the doubling effect of the inverse square law really shows some dramatic changes in the system gain. This is because of the relatively short distances involved in doubling. When the talker doubles her distance from the microphone, the system gain drops by 6dB. If the change is instead from 1 foot to ½ foot (.5), then the system gain will increase by 6dB. Try these calculations yourself in the PAG equation by changing only D S and leaving the other distances the same as in the last version of the system we used. First change it from 1 foot to 2 feet. Then try changing it from 1 foot to.5 foot. This is sometimes an easy solution and is actually one of the first rules in microphone application: get the microphone as close as possible to the sound source. Compared to moving loudspeakers to change D 1 and D 2, it is also often the easiest distance in the system to change. This is simply because it is generally a much shorter distance to begin with and therefore much easier to cut in half to get that extra 6dB. The concept of critical distance also plays a part here. Since it's generally true that when D S is greater than the critical distance of the talker, the result is more reverberance and a loss of intelligibility. In the other parts of the system D 1 and D 2 the receiver (the listener or microphone) is generally outside the critical distance of the source (the talker or loudspeaker). When this is the case for D 1, the signal received by the microphone is not as low as predicted by the inverse square law, resulting in less potential gain than expected for the system. For D 2, this higher-than-expected level at the receiver actually gives the listener somewhat more sound than predicted. Here, however, working with loudspeaker placement and echoes is important since the added level is in part due to reflected sound. Early echoes tend to help intelligibility and later ones hurt it. So if a loudspeaker needs to be "somewhat near" the ceiling, put it close to the ceiling to take advantage of the early echoes produced within a few feet of the reflective surface. Without delving too far into the concept of speaker placement, let me just say that multiple speaker locations tend to act like late echoes if they arc far apart. The resulting comb filtering and loss of intelligibility is minimized by a single loudspeaker or closely spaced array if it can be placed far from the talker and close enough to the listeners. THE WORST CASE Finally, with the multiple microphone problem under our belts we need to deal with the fact that, unlike our theoretical system, most systems include multiple loudspeakers. The most practical approach in determining the distances, including specific loudspeaker distances to use in the PAG equation, is to consider the worst case for each. Therefore, as I stated earlier, you would use the most distant listener for Do. You should also pick the largest expected distance for the microphone to talker for D S ; the loudspeaker closest to the farthest listener for D 2 ; and the loudspeaker closest to the microphone for D 1. These choices will give the most accurate representation of the acoustic gain in the system. A LITTLE KNOWLEDGE I mentioned earlier that the microphones in the theoretical system we calculated were omnidirectional. Because unidirectional microphones have the ability to target desired sounds (the talker in our example) and reject unwanted sounds (the output from the loudspeaker), they can provide a margin of extra gain in a system. So can directional loudspeakers. But they are not a magic bullet. The practical limit on the improvement that these components can make is usually considered to be about 6dB. Although theory and component specifications seem to indicate a 6dB improvement for each component, real world conditions provide severe performance limitations.

12 SUMMARY The second assumption was that the system was not affected by reverberation and echo. Virtually any indoor system will be affected by these conditions and the acoustic gain and performance of the system will be limited by them. This article will not explore the vast topic of room acoustics, but here's something to keep in mind as you think about the PAG equation. If the system won't provide enough gain when you ignore these factors (as we have calculated in this article) it almost certainly won't work when they're included. In working through the math or just reading through this information, the major points to remember are: 1. To make a significant change in the gain of a sound system before it feeds back, distances need to be doubled or cut in half. (Inverse Square Law) 2. Changes to improve the potential acoustic gain of a system involve: a. Making the loudspeaker-to-microphone distance, D 1, as large as possible. b. Making the loudspeaker-to-listener distance, D 2, as small as possible. c. Most importantly and easiest, making the talker-to-microphone distance, D S, as small as possible. 3. Limiting the number of open microphones will also improve the potential acoustic gain of the system. If you're interested in studying these topics further, the following books are suggested, many of which were drawn from when writing this article. Handbook of Sound System Design, John Eargle; ELAR Publishing Co., Inc., Commack, NY Handbook for Sound Engineers, Ed. Glen Ballou (especially the article by Chris Foreman "Sound System Design") Howard W. Sams & Company, A Division of Macmillian, Inc., 4300 West 62nd Street. Indianapolis. Indiana Architectural Acoustics, M. David Egan; McGraw-Hill Book Company The Gain of a Sound System, by C.P. Boner and R.E. Boner (the original article on the topic) Thanks also to Mark Gilbert of Shure Brothers for technical assistance. AL1174

Cheat Sheet for Local Church Audio Training Sound Essentials. Kick:

Cheat Sheet for Local Church Audio Training Sound Essentials Thank you for attending this session and supporting your church s ministry. I believe that, as a sound technician, you are a vital part of the

Understanding the DriveRack PA. The diagram below shows the DriveRack PA in the signal chain of a typical sound system.

Understanding the DriveRack PA The diagram below shows the DriveRack PA in the signal chain of a typical sound system. The diagram below shows all the pieces within a sound system that the DriveRack PA

A PRACTICAL GUIDE TO db CALCULATIONS

A PRACTICAL GUIDE TO db CALCULATIONS This is a practical guide to doing db (decibel) calculations, covering most common audio situations. You see db numbers all the time in audio. You may understand that

Tuning Subwoofers - Calibrating Subwoofers

Tuning Subwoofers - Calibrating Subwoofers WHY The purpose of a subwoofer is to fill in the bottom octaves below the capabilities of the mains speakers. There are many reasons to use a subwoofer to do

TEN TIPS TO REDUCE FEEDBACK by Bruce Bartlett, Bartlett Microphones Copyright 2011

TEN TIPS TO REDUCE FEEDBACK by Bruce Bartlett, Bartlett Microphones Copyright 2011 SQUEAL! It s our old friend, feedback. Feedback in a sound system is that annoying howling or squealing tone you hear

Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany

Audio Engineering Society Convention Paper Presented at the 112th Convention 2002 May 10 13 Munich, Germany This convention paper has been reproduced from the author's advance manuscript, without editing,

Conference Phone Buyer s Guide Conference Phones are essential in most organizations. Almost every business, large or small, uses their conference phone regularly. Such regular use means choosing one is

cellularbooster.com THINGS YOU MUST KNOW BEFORE YOU 7BUY AND INSTALL A CELLULAR BOOSTER

cellularbooster.com THINGS YOU MUST KNOW BEFORE YOU 7BUY AND INSTALL A CELLULAR BOOSTER We have created this ebook for people who need some help understanding cellular phone boosters. As most people are

SYSTEM DESIGN AND THE IMPORTANCE OF ACOUSTICS

SYSTEM DESIGN AND THE IMPORTANCE OF ACOUSTICS n Will your communication or emergency notification system broadcast intelligible speech messages in addition to alarm tones? n Will your system include multiple

Using FM. A guide for children and their families on how to use an FM solution with hearing aids

Using FM A guide for children and their families on how to use an FM solution with hearing aids Congratulations on your new FM solution!! This booklet tells you how to use your FM solution, where to use

Canalis. CANALIS Principles and Techniques of Speaker Placement

Canalis CANALIS Principles and Techniques of Speaker Placement After assembling a high-quality music system, the room becomes the limiting factor in sonic performance. There are many articles and theories

SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems

SPEECH INTELLIGIBILITY and Fire Alarm Voice Communication Systems WILLIAM KUFFNER, M.A. Sc., P.Eng, PMP Senior Fire Protection Engineer Director Fire Protection Engineering October 30, 2013 Code Reference

Sound System Buying Guide The Guide format is like an FAQ (frequently asked questions), with the answers taken together forming a great basis for picking your favorite components. With this information,

Search keywords: Connect, Meeting, Collaboration, Voice over IP, VoIP, Acoustic Magic, audio, web conferencing, microphone, best practices

Title: Acoustic Magic Voice Tracker II array microphone improves operation with VoIP based Adobe Connect Meeting URL: www.acousticmagic.com By: Bob Feingold, President, Acoustic Magic Inc. Search keywords:

Optimal audio for. White Paper. May 2007

Optimal audio for Conference Rooms May 2007 2007 ClearOne Communications, Inc. All rights reserved. No part of this document may be reproduced in any form or by any means without written permission from

How can Lightspeed s sound panel solutions possibly break down acoustic barriers in the classroom?

How can Lightspeed s sound panel solutions possibly break down acoustic barriers in the classroom? There is no audio solution that throws sound. There is no solution that overcomes the laws of physics.

The Conference is Calling. A guide to getting the most out of your conference calls

The Conference is Calling A guide to getting the most out of your conference calls The Conference is Calling Why use a conference phone? Most phones today have a speakerphone button but there are in fact

10 THINGS TO AVOID WHEN BUILDING YOUR EMAIL LIST

10 10 THINGS TO AVOID WHEN BUILDING YOUR EMAIL LIST 10 THINGS TO AVOID WHEN BUILDING YOUR EMAIL LIST 1. Having your opt-in form in only one place Your sign up form is on your website for the purpose of

UB1 P R O F E S S I O N A L M I C R O P H O N E S

UB1 P R O F E S S I O N A L M I C R O P H O N E S Table of Contents Introduction........................... 1 UB1 Features............................2 Installing the UB1......................3-6 Operating

Lecture 1-8: Audio Recording Systems

Lecture 1-8: Audio Recording Systems Overview 1. Why do we need to record speech? We need audio recordings of speech for a number of reasons: for off-line analysis, so that we can listen to and transcribe

PS 29M DUAL CHANNEL BELTPACK IN METAL CASE

PS 29M DUAL CHANNEL BELTPACK IN METAL CASE USER MANUAL October 2013 This product is designed and manufactured by: ASL Intercom BV Zonnebaan 42 3542 EG Utrecht The Netherlands Phone: +31 (0)30 2411901 Fax:

The challenging duty of the sales person, engineer, or

Basic Principles of Audio Design in Conferencing by Ryan Shannon 2014 Participating in a video or audio conference is an individually subjective experience (indeed, every experience is individually subjective).

HIGH QUALITY AUDIO RECORDING IN NOKIA LUMIA SMARTPHONES. 1 Nokia 2013 High quality audio recording in Nokia Lumia smartphones

HIGH QUALITY AUDIO RECORDING IN NOKIA LUMIA SMARTPHONES 1 Nokia 2013 High quality audio recording in Nokia Lumia smartphones HIGH QUALITY AUDIO RECORDING IN NOKIA LUMIA SMARTPHONES This white paper describes

Functional Communication for Soft or Inaudible Voices: A New Paradigm

The following technical paper has been accepted for presentation at the 2005 annual conference of the Rehabilitation Engineering and Assistive Technology Society of North America. RESNA is an interdisciplinary

Basic Concepts of Sound. Contents: Definitions db Conversion Sound Fields db ± db

Basic Concepts of Sound Contents: Definitions db Conversion Sound Fields db ± db BA 7666-11, 1 Abstract This lecture introduces sound and sound measurements by describing sound pressure, sound level and

hearing products and acoustic regulations in school 1+1 could equal 3, if a classroom is acoustically regulated when using hearing systems

hearing products and acoustic regulations in school 1+1 could equal 3, if a classroom is acoustically regulated when using hearing systems By Anna K Lejon, November 2014 Anna Karlsson Lejon has a master's

Sweet Adelines Microphone and Sound System Guidelines

Page 1 Sweet Adelines Microphone and Sound System Guidelines This document establishes a common source of microphone and sound system guidelines for the members of the Sweet Adelines. These guidelines

Doppler Effect Plug-in in Music Production and Engineering

, pp.287-292 http://dx.doi.org/10.14257/ijmue.2014.9.8.26 Doppler Effect Plug-in in Music Production and Engineering Yoemun Yun Department of Applied Music, Chungwoon University San 29, Namjang-ri, Hongseong,

JdB Sound Acoustics Presents

JdB Sound Acoustics Presents KINGSTON ROAD UNITED CHURCH S A N C T U A RY A C O U S T I C S A N D S O U N D S Y S T E M B Y J O S E P H D E B U G L I O 2 0 0 8 Copyright by Joseph De Buglio 2008 The Beginning

application note Directional Microphone Applications Introduction Directional Hearing Aids

APPLICATION NOTE AN-4 Directional Microphone Applications Introduction The inability to understand speech in noisy environments is a significant problem for hearing impaired individuals. An omnidirectional

Echo Troubleshooting Guide How to identify, troubleshoot and remove echoes in installed-room AV systems

Echo Troubleshooting Guide How to identify, troubleshoot and remove echoes in installed-room AV systems Application Note Polycom Installed Voice Business Group September 2004 TABLE OF CONTENTS TABLE OF

Selecting the Right Conference Phone for Different Room Environments

Selecting the Right Conference Phone for Different Room Environments 1 Introduction When was the last time you used a conference phone? Today? Yesterday? It probably hasn t been more than a day or two.

What Type of PA System Do You Need? This really depends on the requirements of your particular event. There are 4 main PA types you could use:

If you re hiring a marquee the chances are it s for an important special event. This guide has been put together to help you get a hassle free audio experience at your special event whether it be a wedding,

QoS issues in Voice over IP

COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

This Document Contains:

Instructional Documents Video Conference >> PolyCom >> VSX 7000 Extension Computing Technology Unit This Document Contains: A Device Description An Installation Guide Instructions for Use Best Practices

Acoustics and Sound Systems in Architectural Design

Acoustics and Sound Systems in Architectural Design By RICK KAMLET The need for intelligible speech or pleasant, undistorted music is fundamental to the design of auditoriums, performing arts centers,

Finance 197. Simple One-time Interest

Finance 197 Finance We have to work with money every day. While balancing your checkbook or calculating your monthly expenditures on espresso requires only arithmetic, when we start saving, planning for

GUIDE TO CONSTANT-VOLTAGE SYSTEMS by the Crown Engineering staff

GUIDE TO CONSTANT-VOLTAGE SYSTEMS by the Crown Engineering staff Electric-power companies have a good idea which has been applied to audio engineering. When they run power through miles of cable, they

Application Notes. Contents. Overview. Introduction. Echo in Voice over IP Systems VoIP Performance Management

Application Notes Title Series Echo in Voice over IP Systems VoIP Performance Management Date January 2006 Overview This application note describes why echo occurs, what effects it has on voice quality,

PHASE ALIGNMENT BETWEEN SUBWOOFERS AND MID-HIGH CABINETS

PHASE ALIGNMENT BETWEEN SUBWOOFERS AND MID-HIGH CABINETS Introduction FFT based field measurement systems have made it possible for us to do phase alignment at fixed installations as well as at live events,

MICROPHONE TECHNIQUES

A Shure Educational Publication MICROPHONE TECHNIQUES REINFORCEMENT Table of Contents Microphone Techniques Introduction... 4 Microphone Characteristics... 5 Musical Instrument Characteristics... 11 Acoustic

A Microphone Array for Hearing Aids

A Microphone Array for Hearing Aids by Bernard Widrow 1531-636X/06/\$10.00 2001IEEE 0.00 26 Abstract A directional acoustic receiving system is constructed in the form of a necklace including an array of

ARTICLE Sound in surveillance Adding audio to your IP video solution Table of contents 1. First things first 4 2. Sound advice 4 3. Get closer 5 4. Back and forth 6 5. Get to it 7 Introduction Using audio

High Quality Podcast Recording

High Quality Podcast Recording Version 1.2, August 25, 2013 Markus Völter (voelter@acm.org) Abstract A good podcast comes with great content as well as great audio quality. Audio quality is as important

Testing FM Systems on the FP35 Hearing Aid Analyzer -1-

Testing FM Systems on the FP35 Hearing Aid Analyzer -1- Testing FM Systems on the FP35 Hearing Aid Analyzer Introduction This workbook describes how to test FM systems with the FP35 Hearing Aid Analyzer

In this chapter, you will learn improvement curve concepts and their application to cost and price analysis.

7.0 - Chapter Introduction In this chapter, you will learn improvement curve concepts and their application to cost and price analysis. Basic Improvement Curve Concept. You may have learned about improvement

Integrating the Acoustic Magic Voice Tracker Array Microphone with Adobe Acrobat Connect Professional Voice over IP

Integrating the Acoustic Magic Voice Tracker Array Microphone with Adobe Acrobat Connect Professional Voice over IP By Bob Feingold President, Acoustic Magic, Inc. www.acousticmagic.com 1 Trademarks 1

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

Excerpt from "Introduction to Algebra" 2014 AoPS Inc. www.artofproblemsolving.com

Exercises 7.3.1 Five chickens eat 10 bags of scratch in 20 days. How long does it take 18 chickens to eat 100 bags of scratch? 7.3.2 Suppose a is jointly proportional to b and c. If a = 4 when b = 8 and

is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10

RF Basics - Part 1 This is the first article in the multi-part series on RF Basics. We start the series by reviewing some basic RF concepts: Decibels (db), Antenna Gain, Free-space RF Propagation, RF Attenuation,

How to register and use our Chat System

How to register and use our Chat System Why this document? We have a very good chat system and easy to use when you are set up, but getting registered and into the system can be a bit complicated. If you

TELIKOU Intercom System. MS-500(4+1 channel) Main Station Instruction Manual

TELIKOU Intercom System MS-500(4+1 channel) Main Station Instruction Manual TELIKOU Systems All Rights Reserved While TELIKOU makes every attempt to maintain the accuracy of the information contained in

SOUND SYSTEM BASICS for instrument microphones

SOUND SYSTEM BASICS for instrument microphones (c) 2013 by Bruce Bartlett To amplify your musical instrument, you need a sound system or instrument amp. A sound system includes microphones, a mixer, a

TV & Assistive Listening Devices

10 TV & Assistive Listening Devices TV & Assistive Listening Devices l Relaxing at the end of the day watching TV l Enjoying listening to music l Catching up with family & friends at a restaurant l Developing

System? June, is: as much small size especially. efficiency have. Background. Before we. to keep the. know how. adapt the.

How Much Power Do I Need In A Portable Amp System? June, 2012 The typical answer to that question is: as much as you can get! But, in these days of ultra high power, small size amplifiers, it s not that

MIXER BASICS FOR BEGINNERS

MIXER BASICS FOR BEGINNERS Copyright 2012 by Bruce Bartlett A mixer is the central component of a P.A. system. It s a control panel that takes signals from several microphones, processes them, mixes or

CA Unified Communications Monitor

CA Unified Communications Monitor Addressing Echo in VoIP Systems Understanding and Monitoring Echo Cancellation for Optimal VoIP Performance This Documentation, which includes embedded help systems and

Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

FAQs. XAP Frequently Asked Questions. Software/Configuration

XAP Frequently Asked Questions ~ Software/Configuration ~ Echo Cancellation ~ Audio Performance ~ Expansion Bus ~ Firmware ~ Installation ~ Presets ~ Telephone Hybrid Software/Configuration What is the

Common Math Errors Written by Paul Dawkins

Common Math Errors Written by Paul Dawkins Originally the intended audience for this was my Calculus I students as pretty much every error listed here shows up in that class with alarming frequency. After

A Quick Algebra Review

1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

Databases in Microsoft Access David M. Marcovitz, Ph.D.

Databases in Microsoft Access David M. Marcovitz, Ph.D. Introduction Schools have been using integrated programs, such as Microsoft Works and Claris/AppleWorks, for many years to fulfill word processing,

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

Using Audacity to Podcast: University Classroom Version Dr. Marshall Jones Riley College of Education, Winthrop University

Using Audacity to Podcast: University Classroom Version Dr. Marshall Jones Riley College of Education, Winthrop University Audacity is available for the Mac and PC. It is free. (That s right, FREE!) You

RECORDING AND CAPTURING SOUND

12 RECORDING AND CAPTURING SOUND 12.1 INTRODUCTION Recording and capturing sound is a complex process with a lot of considerations to be made prior to the recording itself. For example, there is the need

A new era in classroom amplification

A new era in classroom amplification Life is on We are sensitive to the needs of everyone who depends on our knowledge, ideas and care. And by creatively challenging the limits of technology, we develop

The Office of Academic Technology http://academictech.ottawa.edu/ Zoom Guide Book LEADER GUIDE Documentation and screenshots are based on Zoom version 2.5.XXXX About Zoom: Zoom is a cloud-based conferencing

Conference Room Environmental Conditions :

Conference Room Environmental Conditions : Opening salutation: Welcome to the TANDBERG University prerequisite Conference Room Environmental Conditions lesson. Before commencing you are required to ensure

WHITE PAPER VoIP Networks August 2013. Keys to Minimizing Echo in VoIP Networks

WHITE PAPER VoIP Networks August 2013 Keys to Minimizing Echo in VoIP Networks Table of Contents Executive Summary 3 Section 1: The Challenge 4 Minimizing Echo in VoIP Systems Section 2: The Opportunity

User s Manual. Copyright 2014 Trick Technologies Oy

User s Manual Copyright 2014 Trick Technologies Oy Catchbox Pro Module Catchbox Cover Contents 1 Safety Instructions...4-5 2 Quick Start... 6-15 3 Product Description... 16-18 Overview...16 Compatibility...17

STRING TELEPHONES. Education Development Center, Inc. DESIGN IT! ENGINEERING IN AFTER SCHOOL PROGRAMS. KELVIN Stock #651817

STRING TELEPHONES KELVIN Stock #6587 DESIGN IT! ENGINEERING IN AFTER SCHOOL PROGRAMS Education Development Center, Inc. DESIGN IT! Engineering in After School Programs Table of Contents Overview...3...

Language Development and Deaf Children

Language Development and Deaf Children What is the difference between speech and language? Language is the words, structures, thoughts and concepts we have in our minds. Speech is one way in which we communicate

Reading 30 Ron Bertrand VK2DQ http://www.radioelectronicschool.com AM TRANSMITTERS & RECEIVERS Revision: our definition of amplitude modulation. Amplitude modulation is when the modulating audio is combined

Hear Better With FM. Get more from everyday situations. Life is on. www.phonak.com

Hear Better With FM Get more from everyday situations Life is on We are sensitive to the needs of everyone who depends on our knowledge, ideas and care. And by creatively challenging the limits of technology,

THE ACOUSTICS OF ROOMS

Killam 1 THE ACOUSTICS OF ROOMS Josiah Killam PHYS 193: The Physics of Music Prof. Steven Errede University of Illinois at Urbana-Champaign Killam 2 For my project for The Physics of Music, I decided to

The Basics Of Hearing Aid Processing. The Basics Of Hearing Aid Processing. Marc Brennan, PhD, CCC-A. Audiologist Postdoctoral Fellow

Marc Brennan, PhD, CCC-A Audiologist Postdoctoral Fellow The Basics Of Hearing Aid Processing 1 Questions? For any questions during this broadcast, please send an email to: teresa.mcevoy@boystown.org Questions

LeadingEdge Systematic Approach. Room Acoustic Principles - Paper One. The Standing Wave Problem

LeadingEdge Systematic Approach Room Acoustic Principles - Paper One The Standing Wave Problem Sound quality problems caused by poor room acoustics. We all recognise that room acoustics can cause sound

What Audio Engineers Should Know About Human Sound Perception. Part 2. Binaural Effects and Spatial Hearing

What Audio Engineers Should Know About Human Sound Perception Part 2. Binaural Effects and Spatial Hearing AES 112 th Convention, Munich AES 113 th Convention, Los Angeles Durand R. Begault Human Factors

BellSouth Complete Choice for Business plan

BellSouth Complete Choice for Business plan BellSouth Complete Choice for Business plan Customized to your exact business needs Here s the all-in-one local calling plan where you can customize your local

P10W Personal Wireless Sound System

P10W Personal Wireless Sound System U s e r s G u i d e Thank you for selecting the Fender Passport P10W Personal Wireless Sound System. Fender s Passport brand of products are known for their portability,

Phonak CROS II. The smart solution for single-sided hearing

Phonak CROS II The smart solution for single-sided hearing My CROS hearing aids gave me back sound and they gave me back my life. Hearing with one ear If you re in a noisy room and can t hear your spouse

Breathe. Relax. Here Are the Most Commonly Asked Questions and Concerns About Setting Up and Programming the SurroundBar 3000.

Breathe. Relax. Here Are the Most Commonly Asked Questions and Concerns About Setting Up and Programming the SurroundBar 3000. Our Customer Service Department has compiled the most commonly asked questions

Timing Errors and Jitter

Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

Trigonometric functions and sound

Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

SOUND REINFORCEMENT IN THE JAZZ CHOIR

SOUND REINFORCEMENT IN THE JAZZ CHOIR Michele Weir (www.micheleweir.com and www.michmusic.com) I. THE EQUIPMENT A. Microphones Use one mic per singer whenever possible. Unidirectional dynamic mics are

FTS Real Time Client: Equity Portfolio Rebalancer

FTS Real Time Client: Equity Portfolio Rebalancer Many portfolio management exercises require rebalancing. Examples include Portfolio diversification and asset allocation Indexation Trading strategies

PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be

Fast Approximation of the Tangent, Hyperbolic Tangent, Exponential and Logarithmic Functions 2007 Ron Doerfler http://www.myreckonings.com June 27, 2007 Abstract There are some of us who enjoy using our

Direct and Reflected: Understanding the Truth with Y-S 3

Direct and Reflected: Understanding the Truth with Y-S 3 -Speaker System Design Guide- December 2008 2008 Yamaha Corporation 1 Introduction Y-S 3 is a speaker system design software application. It is

Quantec Wiring Instructions

Approved Document No. DNUQ777 Rev Quantec Wiring Instructions GENERAL Quantec can be compared to a very sophisticated analogue addressable fire alarm system where the integrity of the wiring is of paramount

Woofer Speed 1 WOOFER SPEED

Woofer Speed 1 WOOFER SPEED There's a common misconception out there that heavy woofers must be "slow", and light woofers must be "fast". If a woofer A's moving mass is higher than woofer B's, then woofer

White Paper Effective Audio For Video Conferencing. January 2013. S. Ann Earon, Ph.D. President, Telemanagement Resources International Inc.

White Paper Effective Audio For Video Conferencing January 2013 S. Ann Earon, Ph.D. President, Telemanagement Resources International Inc. 2013 ClearOne Inc. All rights reserved. No part of this document

Acoustic Terms, Definitions and General Information

Acoustic Terms, Definitions and General Information Authored by: Daniel Ziobroski Acoustic Engineer Environmental and Acoustic Engineering GE Energy Charles Powers Program Manager Environmental and Acoustic

Double Deck Blackjack

Double Deck Blackjack Double Deck Blackjack is far more volatile than Multi Deck for the following reasons; The Running & True Card Counts can swing drastically from one Round to the next So few cards

SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT

UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m

The Design and Implementation of Multimedia Software

Chapter 10 Auditory Content The Design and Implementation of Multimedia Software David Bernstein Jones and Bartlett Publishers www.jbpub.com David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett

Finding Equations of Sinusoidal Functions From Real-World Data

Finding Equations of Sinusoidal Functions From Real-World Data **Note: Throughout this handout you will be asked to use your graphing calculator to verify certain results, but be aware that you will NOT

Audio processing and ALC in the FT-897D

Audio processing and ALC in the FT-897D I recently bought an FT-897D, and after a period of operation noticed problems with what I perceived to be a low average level of output power and reports of muffled

RingCentral Office. Learn what a cloud-based phone system can do for your business. RingCentral Office Overview 091710

RingCentral Office Learn what a cloud-based phone system can do for your business. RingCentral Office Overview 091710 For more information, call. Cloud-based Business Phone Systems At one time companies