Power Systems Monitoring and Control using Telecom Network Management Standards

Size: px
Start display at page:

Download "Power Systems Monitoring and Control using Telecom Network Management Standards"

Transcription

1 1 Power Systems Monitoring and Control using Telecom Network Standards S. Díaz, J. Luque, M.C. Romero and J. I. Escudero Abstract-- Historically, different solutions have been developed for power systems control and telecommunications network management environments. The former was characterized by proprietary solutions, while the latter has been involved for years in a strong standardization process guided by criteria of openness. Today, power systems control standardization is in progress, but it is at an early stage compared to the telecommunications management area, especially in terms of information modeling. Today, control equipment tends to exhibit more computational power, and communication lines have increased their performance. These trends hint at some conceptual convergence between power systems and telecommunications networks from a management perspective. This convergence leads us to suggest the application of well-established telecommunications management standards for power systems control. This paper shows that this is a real medium-to-long term possibility. Index Terms Power system monitoring, Power system control, Data communication, Computer network management, ITU, ISO, Internet. I. INTRODUCTION Our main objective in this paper is to suggest a brand new approach for carrying out power control, consisting in the adoption of well-established telecommunications network management standards. Although originally developed for this specific environment, we find they are also suitable for the power systems area, taking into account current trends in this field. Telecommunications management standards provide an open approach for the management of diverse equipment, by defining a common set of rules to follow for modeling, structuring and accessing management information. In Section II and III we discuss the singularities of both telecommunications and power systems environments, while Section IV focuses on the reasons that gave rise to this proposal. Section V shows the similarities between both environments and proposes a mapping from the current telecontrol approach onto a standard telecommunications management architecture. Comments on gradual migration S. Díaz is with the Departamento de Tecnología Electrónica, Universidad de Sevilla, Sevilla, SPAIN ( sdiaz@dte.us.es). J. Luque is with the Departamento de Tecnología Electrónica, Universidad de Sevilla, Sevilla, SPAIN ( jluque@us.es). M. C. Romero is with the Departamento de Tecnología Electrónica, Universidad de Sevilla, Sevilla, SPAIN ( mcromero@dte.us.es). J. I. Escudero is with the Departamento de Tecnología Electrónica, Universidad de Sevilla, Sevilla, SPAIN ( ignacio@us.es). from legacy SCADA/EMS to telecommunications management architectures are provided in Section VI. Conclusions by the authors are collected in Section VII. II. TELECOMMUNICATIONS NETWORK MANAGEMENT OVERVIEW In the telecommunications area, the equipment to be managed is very diverse, with many different technologies and suppliers in the market. Communication lines in telecommunications networks are usually fast, typically in the Mbps range. These characteristics lead to open solutions for network management, which allow interconnectivity and interoperability between those different elements no matter if the protocols used for this purpose are not especially lightweight. Within this framework, we find two widely applied standards: (Simple Network Protocol) [1] and TMN (Telecommunications Network) [2]. These solutions are basically characterized by defining the following: physical and functional architectures, a management information model, and a protocol for information interchange. We address the fundamentals of both management technologies in the following paragraphs. A. Simple Network Protocol is an Internet standard frequently used in computer network management applications, and, though at first it was considered a simple, short-term solution in telecom management, the reality is that its acceptance in the industry is still increasing. functional architecture distinguishes between two software components: the agent and the manager. An agent is related to a managed resource (which can be physical or logical) and contains the managed objects which represent its properties. These objects can be read or written by the manager at any time. Reading a managed object can result in some kind of access to the managed resource, as writing to a managed object can result in the modification of some characteristic or in the firing of some action on the managed resource. This architecture also contains the notion of proxy agent. A proxy agent is needed when some kind of translation between a environment and a non- environment should be done. Agents and managers could be deployed on physical components in different ways, leading to distinct physical

2 2 architectures. An agent is a process which runs inside the managed device (or in a module attached to it) and hosts the managed resource(s). Proxy agents run outside the device, in a separate box, but physically connected to it. The manager is also a process but it is run in the management station. Managed resources and management station are connected to a network which enables the communication among them. In large environments, it may be necessary to split the management system in logical subdomains, leading to a hierarchical architecture known as manager of managers. There is a top-level manager which manages the entire network, and several mid-level managers which are responsible for each subdomain. These mid-managers exhibit manager behavior from the managed devices perspective, and agent behavior from the top-level manager perspective. See Fig. 1. Virtually, this structure can exhibit any number of levels. Top-level manager Manager subdomain 1 Managed device Mid-level manager Agent Agent Manager TCP/IP network TCP/IP network Proxy Agent subdomain N Device functionality subject to management Information Base Mid-level manager Managed device Managed device Fig.1. physical and logical architecture. Managed objects and their structure conform the management information model. These are described using a relatively small subset of ASN.1 type constructors, as specified in the standard SMI (Structure of Information) document [3]. The models are organized in modules known as s ( Information Base), provided as text files. There are a large number of generic and specific s defined for management. Managed objects are restricted to atomic and tabular types and are placed into a tree-shaped structure, which represents containment. There is no notion of object class and thus there is no inheritance possible. The model is not object-oriented despite the term managed object. information, in form of managed objects, can be interchanged by protocol messages. These messages are issued under service requests made by the agent or the manager processes. managers use services to get and set managed object values in agents, and agents use services to send confirmed or unconfirmed asynchronous notifications to managers. More information about can be found in the References Section. B. Telecommunications Network TMN presents a more elaborated, object-oriented framework, developed by ITU-T (International Telecommunications Union Telecommunications standardization sector) over existing ISO OSI (International Organization for Standardization Open Systems Interconnection) management standards. TMN is a recommendation focused on the management of large telecommunications networks. The term TMN refers itself to a data network, conceptually (but may not physically) separated from the telecommunications network, where management information flows. In TMN, the functional architecture is built upon different types of functional blocks: Network Element Functions (NEFs) represent the functionality of network devices from a management perspective; Operations Systems Functions (s) process management data in order to monitor, coordinate and/or control both telecommunications and management functions; Workstations Functions (WSFs) provide a means for the human user to access management information; Q Adaptor Functions (s) allow the integration of non-tmn entities in the TMN environment; and Mediation Functions (s) translate data between s and NEFs/s when their respective information models differ in their abstraction level. This translation may imply the storage, adaptation, filtering, thresholding and/or condensation of the information. To represent the communication between two functional blocks, TMN introduces the concept of reference point. In a reference point, the blocks involved communicate using the manager-agent paradigm, as in. In TMN, all the management environment is functionally split into four layers depending on its scope: element management, network management, service management and business management. Then, each functional block can be placed in one of these layers. The functional blocks are placed in physical boxes or

3 3 building blocks in TMN terminology. The building blocks taxonomy resembles the functional blocks one: there are Network Elements (NEs), Operations Systems (OSs), Workstations (WSs), Q Adaptors (QAs) and Mediation Devices (MDs). Each one of these blocks can perform one or more TMN functions, e.g. an OS building block contains an functional block, but it also may contain, or WSF functional blocks. Building blocks can communicate via a Data Communications Network (DCN), which they are connected to by means of physical interfaces. A TMN interface is, therefore, the physical realization of a reference point that is between functional blocks placed on different building blocks. Fig. 2 summarizes these points. Note the similarity between this architecture and that of despite differences in terminology. TMN MD NE NEF Workstation (WS) WSF Platform (OS) CORBA Data Communications Network Element Sytstem(OS) Data Communications Network Network Element (NE) NEF Non-TMN Network Element (NE) NEF-like Device functionality subject to management Mediation Device Mediation Function Information Base Network Element Network Element Function Server (OS) CORBA Element System (OS) subdomain N subdomain 1 Proxy (MD) Non-TMN Network Element (NE) NEF-like To another TMN QA Q Adapter Q Adapter Function OS Operations System Operations System Function WS Workstation WSF Workstation Function Fig. 2. TMN physical and logical architecture. TMN information architecture is fully imported from OSI management. A management information model is specified in terms of object classes built upon packages which can contain attribute, action and notification definitions. This is a true object-oriented model with support for (multiple) inheritance and containment (i.e., aggregation). In particular, containment relationship leads to a tree-shaped arrangement of the object instances, known as the containment tree, which is also used for instance naming. A management information model in OSI (and hence TMN) is specified by using the Guidelines for the Definition of Managed Objects (GDMO) [4], which introduces a concrete syntax for that purpose. GDMO provide text-based templates to define each element of the model (class, package, behavior, attribute, attribute group, action, notification, relationship, etc.), relying on ASN.1 only for specifying the basic data types. A management information model is provided, therefore, as a set of GDMO and ASN.1 text files. OSI management standards define a set of classes (using GDMO) which are the basis of the TMN generic network information model. This model is then specialized for specific network types. (Common Information Protocol) is the main protocol in TMN/OSI management standards, though it is not the only choice. messages are issued under CMIS (Common Information Service) service requests, which enable the manipulation of the objects: get/set attribute values, start actions, create/delete object instances and report events. CMIS uses a selection mechanism known as scoping and filtering in order to define the set of objects which the protocol operation will be applied to. In essence, scoping uses the containment tree as basis to select the subtree of instances where the filter will be applied to. Only those instances which were selected by scoping and passed the filter test will be used as destination for the protocol operation. TMN and OSI management standards define a rich set of management functions. These functions can be seen as extensions to the services provided by CMIS, facilitating the performance of management tasks such as: event reporting, log control, state management, etc. TMN is more powerful than, but also more complex and expensive. Nevertheless, TMN can interact with by means of a gateway. Merging adequately both approaches, a cost-effective and financially less risky solution can be reached. It also enables a way to a gradual migration from to TMN, if needed. TMN can also interact with CORBA (Common Object Request Broker Architecture), an solution mainly adopted in service management area. More information about TMN and OSI management can be found in the References Section. III. POWER SYSTEMS CONTROL OVERWIEW Telecontrol is basically structured in SCADA (Supervisory Control And Data Acquisition) and RTUs (Remote Terminal Units). The SCADA system is placed on the CC (Control Center), monitoring and controlling the RTUs. Each RTU belongs to a substation, managing its power devices. Usually, a group of study applications run over the information managed by the SCADA, in order to estimate the network state and its parameters, determine the optimal power flow, etc. These application are usually referred as EMSs (Energy

4 4 Systems). Traditionally, power systems equipment was not very diverse, so openness was not so important. RTUs were simple and lacked intelligence. Moreover, power systems have been using slow communication lines for telecontrol, such as legacy power line communications and radio-relays. Delays are critical in alarm notification, so protocols were designed lightweight and efficient to deal with low transmission rates, but they also became unlayered and, very frequently, proprietary. Currently there is a deployment of new communication facilities in progress throughout the power systems, such as OPGW (Optic Fiber Composite Overhead Ground Wire) and fast power line communications. Therefore, data bandwidth has increased over traditional telecontrol communication lines, supporting the distribution of intelligence. Current substation automation systems and IEDs (Intelligent Electronic Devices), can support a broader functionality than legacy RTUs. Diversity among telecontrol systems has increased as well as market choices. Therefore, openness now becomes a necessity against proprietary implementations. Efforts are being made, mainly by some IEC (International Electrotechnical Commission) workgroups, to standardize telecontrol systems. Fig. 3 shows the telecontrol architecture proposed by IEC. According to IEC, control centers are composed by a set of servers running energy and distribution management applications (EMS and DMS) over SCADA services. The SCADA monitors and control the substations belonging to the control center domain. The telecontrol of the substation devices (switchgears, transformers, etc.) is carried out through its associated remote terminal unit or substation automation system. IEC standards span the whole telecontrol architecture. Specifically, we want to highlight the following: IEC specifies a set of protocols aimed to the exchange of telecontrol information between RTU-CC, and inter-rtu. They follow the approach of traditional telecontrol protocols, but with the benefit that they are standardized. IEC or TASE.2 (Telecontrol Application Service Element 2) defines a set of server objects and a protocol to support the inter-cc communications, though the specification does not preclude the possibility of its use for RTU-CC communications [5]. IEC deals with substation communications and systems. Specifically, , proposes an objectoriented information model for the representation of substation devices [6] [7] [8]. IEC and define standard interfaces for DMS and EMS systems, enabling an easier integration of these applications in the system. IV. MOTIVATION The increment in the capacity of the communication lines means that electric utilities can use their data networks not only for telecontrol, but also for their own telecommunications needs. Furthermore, even with these distributed applications running, there is an excess of bandwidth which can be marketed. Thus, electric utilities, in a medium-to-long term, can enter the telecommunications market, offering data and voice services, e.g,, Internet access to residential users [9]. In this context, it will be necessary to deploy a telecommunications management system throughout the network. Power systems control standards are not flexible enough to be adapted to telecommunications management, so the obvious solution would be the use of separate architectures for power control and telecommunications management. Nevertheless, we find that a unified solution is possible, based on already existing telecommunications management standards, such as or TMN. This is the issue we address, from a technical point of view, in the next chapters. Control Center A Substation 1 EMS Applications SCADA Remote Terminal Unit DMS Applications Communication Bus / Protection, Control, Metering Switchgears, Transformers, Instrumental Transformers IT-System Inter-Control Center Datalink Substation Automation System Fig. 3. IEC telecontrol architecture. Provided that electric utilities face, or will do in the near future, telecommunications management requirements, the adoption of TMN and/or for both power system control and telecommunications network management environments imply the adoption of the same software tools and platforms for them. This will reduce the costs related to the purchase, implantation, operator training and maintenance of the telecontrol and management software systems. Control Center B Substation N

5 5 Moreover, experience on TMN and span several years, with great success; many tools, platforms and management applications are available in the market today at affordable prices due to the competition of a large number of vendors. Some power systems IEC key standards, such as the set, are still under development or in an early stage of production compared to TMN/. V. MAPPING TELECONTROL SYSTEMS ONTO A TELECOMMUNICATIONS MANAGEMENT ARCHITECTURE We propose the application of TMN/ management architectures to RTU-CC, intra-cc and inter-cc scopes. Communication of management information inside a substation can be done by legacy protocols, DNP3 or IEC 60870/61850 standard protocols; the integration with the rest of the telecontrol system is responsibility of the RTU or substation automation system. To show how TMN/ can be applied to power systems telecontrol, we address the following key issues: A. The mapping of IEC telecontrol architecture onto TMN/ physical and functional architectures; B. The description of power devices using GDMO or SMI syntax, including a simple example; C. The mapping of usual telecontrol services to / protocol operations. D. Security against external network attacks. A. Architectural mapping The architectural mapping can be deduced by comparing the architectures shown on Figs. 1-2 and Fig. 3. In a control center, the SCADA system can be implemented as a network management platform, having a view of every power network device in the management domain, and providing basic management services to the EMS/DMS applications. These are manager processes carrying out network and service management functions. This management platform could be deployed following a hierarchical structure in order to optimize polling. At substation level, proxy agent processes run in the RTUs or substation automation systems, performing Q-adaptor functions and mediation functions. Devices such as switchgears, transformers, protections, etc. are out of the scope of the management network, being under the jurisdiction of the RTU or substation automation system. Fig. 4 summarizes these points showing both physical and functional blocks, using, as reference, TMN notation. Normally, this management architecture will be integrated with the existing telecontrol architecture. Integration and migration issues are covered in Section VI. The architecture depicted in Fig. 4 would eventually evolve to a model whose network elements would become TMN/-compliant so the RTUs could simply be replaced by network routers. This is the approach that telecommunications management takes. B. Telecontrol information mapping Managed devices are represented by managed objects which reside in the -caches associated to the TMN/-compliant RTUs or substation automation systems. These objects are instances of the managed classes which are specified in modules, using a standard notation such as GDMO or SMI syntax. These classes can be based on IEC standards. The management platform, performing SCADA functions, uses the modules to learn the capabilities of the objects to manage. As a example, a circuit breaker can be described using GDMO and ASN.1 syntax, see Fig. 5. This example is based on IEC XCBR class [7] [8]. circuitbreaker class is defined with a MANAGED OBJECT CLASS template as a specialization of logicalnode class. Then, circuitbreaker is characterized by the following packages: basiclogicalnodeinfopackage (inherited from logicalnode), controllabledatapackage and statusinformationpackage (which are specialized circuitbreaker packages). Each package must be further defined in a PACKAGE template, in terms of attributes, notifications and actions. In this example, for the sake of simplicity, some parts of the complete definition are omitted. Notifications and actions (defined using NOTIFICATION and ACTION templates) are commented in Subsection C, regarding protocol operations. Substation 1 MD NE NEF Control Center A Workstation (WS) WSF SCADA (OS) CORBA Data Communications Network RTU/SAS (MD) Non-TMN Network Element (NE) NEF-like Device functionality subject to management Mediation Device Mediation Function Information Base Network Element Network Element Function Substation N EMS Apps (OS) CORBA RTU/SAS (MD) TMN/ To another Control Center QA Q Adapter Q Adapter Function OS Operations System Operations System Function RTU Remote Terminal Unit SAS Substation Automation System WS Workstation WSF Workstation Function Fig. 4. Physical architecture of a TMN/-compliant power system management environment.

6 6 logicalnode MANAGED OBJECT CLASS DERIVED FROM top; CHARACTERIZED BY basiclogicalnodeinfopackage; {telecontrol-classes 1}; basiclogicalnodeinfopackage PACKAGE BEHAVIOUR basiclogicalnodeinfobehaviour; ATTRIBUTES mode GET-REPLACE, lnerror GET, localoperation GET, devicenameplate GET-REPLACE, operationcounter GET, health GET; {telecontrol-packages 1}; mode ATTRIBUTE WITH ATTRIBUTE SYNTAX basicinfo-asn1.controllableintegerstatus MATCHES FOR EQUALITY; BEHAVIOUR modebehaviour; {telecontrol-attributes 3}; circuitbreaker MANAGED OBJECT CLASS DERIVED FROM logicalnode; CHARACTERIZED BY controllabledatapackage, statusinformationpackage; {telecontrol-classes 24}; controllabledatapackage PACKAGE BEHAVIOUR controllabledatapackagebehaviour; ATTRIBUTES switchposition GET-REPLACE, blockopening GET-REPLACE, blockclosing GET-REPLACE, chargermotorenabled GET-REPLACE; ACTIONS select, cancel, operate, timeactivatedoperate; NOTIFICATIONS statechange, qualitychange; {telecontrol-packages 10}; controllabledata-asn1 DEFINITIONS ::= BEGIN IMPORTS EXPORTS ControllableDoublePoint, ControlValue ::= BOOLEAN StateValue ::= ENUMERATED { intermediate-state (0), off (1), on (2), bad-state (3) } Quality ::= SEQUENCE { validity ENUMERATED { good, questionable, invalid} DEFAULT good, detail-quality BIT-STRING { overflow (0), outofrange (1), badreference (2), oscillatory (3), failure (4), olddata (5), inconsistent (6) }, source ENUMERATED { process, defaulted, substituted} DEFAULT process, test BOOLEAN, operatorblocked BOOLEAN } ControllableDoublePoint ::= SEQUENCE { ctlval ControlValue, stval StateValue, q Quality, } END switchposition ATTRIBUTE WITH ATTRIBUTE SYNTAX controllabledata-asn1.controllabledoublepoint MATCHES FOR EQUALITY; BEHAVIOUR switchpositionbehaviour; {telecontrol-attributes 31}; Fig. 5. Partial example of management information definition using GDMO: circuitbreaker class. ATTRIBUTE templates specify the data type of the attribute along with their allowable matching tests. Attribute data types are defined using ASN.1 basic and structured constructs in separate ASN.1 modules, such as controllabledata-asn1 in the example. Attributes can be grouped to create data sets. Every GDMO element definition should be registered to assure its uniqueness. In the example, we arbitrarily assigned unique values to the classes, packages and attributes using the statechange NOTIFICATION BEHAVIOUR statechangebehaviour; WITH INFORMATION SYNTAX reportformat-asn1.reportformat; {telecontrol-notifications 5}; operate ACTION BEHAVIOUR operatebehaviour; MODE CONFIRMED; WITH INFORMATION SYNTAX controlservice-asn1.operaterequest; WITH REPLY SYNTAX controlservice-asn1.operateresponse; {telecontrol-actions 8}; clause. In a real-world case, registration should be conducted by a recognized authority. GDMO definitions are machine-readable and can be compiled to automatically obtain instrumentable code for agent development. Package, attribute, notification, etc. behaviour should be implemented manually because BEHAVIOUR templates (referenced but omitted in the example) are specified in natural language.

7 7 C. Protocol operations and services mapping Data attributes can be read or modified, provided that their access requirements are met, using get and set or operations. Event reporting in TMN can be carried out by means of event-report operation and ITU-T X.734 management function, which introduces an event forwarding discriminator class that filters notifications emerging from managed objects, and redirects them to the specified destinations. The notifications that an object can issue are defined, along with their parameters, in NOTIFICATION templates referenced from the packages included in the GDMO class definition of that object, as it is done in the example with statechange notification. Event format should be defined in an ASN1 module. Event logging, ITU-T X.735, is similar to event reporting except that the destination is a log file. Both TMN event reporting and logging mechanism are very similar to that of IEC [6]. In, event reporting mechanism is based on trap and inform protocol messages. Filtering and logging design is up to the developer. Telecontrol specific services such as value substitution or select-before-operate control [6] can be implemented in TMN as action operations and specified in GDMO using ACTION templates. Actions are referenced in the packages imported by the classes which actually perform them. In the example, the operate action is defined as a confirmed service; its request and response format should be specified using ASN.1 types. In, such services can be mapped onto set operations, performed over a group of variables representing the action arguments, and a special variable whose behavior consists in firing the action when it is written. Again, specific design is up to the developer. Finally, has support for the dynamic creation or deletion of object instances. In case, this behavior should be implemented by means of set operations. D. Security issues The security of the telecontrol systems against external attacks is an important issue if the utility telecommunications network routes user data traffic (e.g. by offering Internet services) along with telecontrol information. Security mechanisms must be deployed to assure reliability of the power system. Fortunately, and can be used in secure distributed applications by using cryptographic keys for authentication and encryption. In particular: protocol can work over Internet IPsec (IP security protocol) or ISO NLSP (Network Layer Secure Protocol); v3 embeds a cryptographic security mechanism, though it is also possible to employ the more widely available v2 over IPsec. Telecommunications network management and power system telecontrol, even built upon the same kind of systems, are separate distributed applications and this can be taken into account when designing the data network and configuring access control rules into the routers, in order to reduce potential security risks. VI. MIGRATION AND COEXISTENCE BETWEEN LEGACY AND TMN/-BASED TELECONTROL SYSTEMS For TMN/ management to be successful as option for power systems telecontrol, it must be easy to: migrate from legacy telecontrol subsystems to TMN/-compliant subsystems; and integrate new TMN/-compliant subsystems with existent telecontrol subsystems. These requisites enable a cost-effective planning of telecontrol systems as an integrated mixture of upgradeable technologies. At control center level, existing telecontrol systems and TMN/ systems can be integrated by means of gateways, responsible of the translation between protocols and information models. For example, a /-IEC gateway could be developed to reach interoperability between those systems, especially if the TMN/ s are based on the standard classes definition. Moreover, existing IEC based EMS applications could interact with the TMN/ platform via a CORBA gateway. At substation level, legacy RTUs can be integrated into a TMN/ environment by developing a custom proxy agent. This agent will be similar to the one embedded in a TMN/-compliant RTU, because it will implement the same functions, but it will be deployed in a separate hardware module. Another option would be the simultaneous integration of several legacy RTUs by a proxy agent module located in the control center. Both approaches are shown in Fig. 6. Tools for agent development already exists in the market. These tools aid in the definition of the module, its compilation and the generation of a code skeleton which can be completed to implement managed object behaviors and protocols for the communications with the legacy RTU. VII. CONCLUSIONS Telecommunications management architectures utilize standard protocol and information models, thus assuring interoperability among the physical and logical management entities. These protocols and models, designed for the management of telecommunication networks and services, are flexible enough to be adapted to energy management following the guidelines described in Section V. Today utilities are experiencing an increment in their data bandwidth due to recent developments such as fast power line communications and the installation of optic fiber in high voltage power networks. Consequently, energy utilities are now interested in providing telecommunication services such as data transport, Internet access or voice over IP (Internet Protocol). These utilities can use the same solution for telecommunications management and energy management, which may help in reducing purchase, implantation, training and maintenance costs, by using well-known

8 8 telecommunications management platforms and tools. Nevertheless, configuration and management of both domains can be done separately though the same kind of systems have been implanted for them, in order to delegate these tasks to different departments and increase security at the same time. TMN/ Control Center Substation MD Proxy (MD) Data Communications Network / Legacy RTU/SAS Mediation Device Mediation Function Information Base Substation 1 RTU SAS Legacy RTU/SAS Proxy (MD) / Substation N Q Adapter Function Remote Terminal Unit Substation Automation System Fig. 6. Integrating legacy RTUs to a TMN/ environment. This paper introduces the fundamentals behind the adaptation of TMN/ standards for power system telecontrol, leaving open several topics for further discussion. These topics include the development of a complete GDMO/ SMI specification of power devices, maybe using IEC as a guide (like the example in Section V); the implementation of gateways for the integration with traditional telecontrol systems; the evaluation of security mechanism; and the analysis of / efficiency as real-time protocols. Also, communications network design is an essential issue which must be dealt with great care because it has a high impact on both performance and costs. In particular, if a utility decides to offer telecommunications services, the most appropriate solution would be an IP-based network. Therefore, if a management solution is needed for the power system control, it is natural to profit from having an IP network and implanting a CMOT ( over TCP/IP) and/or -based management environment. Nevertheless, some critical requirements must be met in order to use of IP for telecontrol tasks [10]. VIII. REFERENCES [1] Introduction to Version 3 of the Internet-standard Network Platform, RFC 2570, Apr [Online] Available: [2] Principles for a Telecommunications Network, ITU-T Recommendation M.3010, 2000 [3] Structure of Information Version 2 (SMIv2), RFC 2578, Apr [Online] Legacy RTU/SAS [4] Information Technology Open Systems Interconnection Structure of Information Guidelines for the Definition of Managed Objects, ITU-T Rec. X.722, 1992 [5] Telecontrol Equipment and Systems Part 6-505: Telecontrol Protocols Compatible with ISO Standards and ITU-T Recommendations TASE.2 User Guide, IEC , 2002 [6] Communications Networks and Systems in Substations Part 7-2: Basic Communication Structure for Substations and Feeder Equipment Abstract Communication Service Interface (ACSI), IEC (draft) , 2002 [7] Communications Networks and Systems in Substations Part 7-3: Basic Communication Structure for Substations and Feeder Equipment Common Data Classes, IEC (draft) , 2002 [8] Communications Networks and Systems in Substations Part 7-4: Basic Communication Structure for Substations and Feeder Equipment Compatible Logical Node Classes and Data Classes, IEC (draft) , 2002 [9] S. Díaz, El uso de arquitecturas de gestión de comunicaciones en el telecontrol de redes eléctricas, Dpto. de Tecnología Electrónica, University of Seville, Spain. Rep. TESP , Mar [10] C. Samitier, J. Darné. The Use of the IP Technology to Deploy a Modern Telecontrol Network. Presented at Distributech [Online]. Available: IX. BIOGRAPHIES S. Díaz received his degree in Computer Engineering in 1999 from the University of Seville (Spain). At present he is working in his Ph. D. thesis in Power System Control. Since 1999 he has worked in several research projects focused on telecommunications network management, protocol engineering and power systems telecontrol at the University of Seville. In 2000 he became Associate Professor and began his teaching work in the School of Computer Engineering, University of Seville. J. Luque received his degree in Industrial Engineering in 1980 and his Doctorate in Industrial Engineering in 1986 from the University of Seville (Spain). Since 1980 he has worked for several companies in the area of SCADA systems for electrical networks, participating in some of the primary EMS projects in Spain. He is currently Professor of electronic engineering at the University in Seville, and is a member of the IEEE. M. C. Romero received her degree in Computer Engineering in 1999 from the University of Seville (Spain). At present she is working in her Ph. D. thesis in Multimedia Control of Power Systems. Since 1999 she has worked in several research projects focused on telecommunications network management and power systems telecontrol at the University of Seville. In 2001 she became Associate Professor and began her teaching work in the School of Computer Engineering, University of Seville. J.I. Escudero received his Physics degree in 1979 and his Doctorate in Physics in 1995 from the University of Seville (Spain). He has held several teaching positions. He has been Professor of electronic engineering at the University of Seville since Dr. Escudero has focused his research activity on the study of telecommunications network performance.

Telecommunications Systems 2

Telecommunications Systems 2 Telecommunications Systems 2 Telecommunications Management Network Sistemas de Telecomunicações II - 4.1 Telecommunications Management Network ITU-T M.3000 M.3599 Sistemas de Telecomunicações II - 4.2

More information

Tik-109/110.300 Telecommunications architectures:

Tik-109/110.300 Telecommunications architectures: Tik-109/110.300 Telecommunications architectures: Network management Hannu H. KARI/Helsinki University of Technology (HUT) TML-laboratory/CS/HUT Tik-109/110.300 Fall 2000 Hannu H. Kari Page 1 Agenda Telecom

More information

Telecommunications Management Network (TMN)

Telecommunications Management Network (TMN) Telecommunications Management Network (TMN) Definition The telecommunications management network (TMN) provides a framework for achieving interconnectivity and communication across heterogeneous operating

More information

Lecture 18: Telecommunications Management Network (TMN)

Lecture 18: Telecommunications Management Network (TMN) Lecture 18: Telecommunications (TMN) Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4395 18-1 TMN Necessity for interoperability Need for management of more than

More information

Operations System. Data Communication Network. Exchange. Telecommunication network

Operations System. Data Communication Network. Exchange. Telecommunication network Introduction to TMN Aiko Pras, Bert-Jan van Beijnum, Ron Sprenkels CTIT Technical Report 99-09 April 1999 University of Twente The Netherlands Copyright 1999 by Aiko Pras, Enschede, The Netherlands This

More information

Chapter 18. Network Management Basics

Chapter 18. Network Management Basics Network Management Basics > FCAPS Model Chapter 18. Network Management Basics This chapter covers the following topics: FCAPS Model Network Management Architecture Network Management Protocols An Introduction

More information

NETWORK AND SERVICES MANAGEMENT AND CONTROL MSc MODULE (EEM.nsm)

NETWORK AND SERVICES MANAGEMENT AND CONTROL MSc MODULE (EEM.nsm) NETWORK AND SERVICES MANAGEMENT AND CONTROL MSc MODULE (EEM.nsm) Lecture Component: The Telecommunications Management Network Lectures 16-18 Prof. George Pavlou Centre for Communication Systems Research

More information

IEC 61850: Communication Networks and Systems in Substations

IEC 61850: Communication Networks and Systems in Substations IEC 61850: Communication Networks and Systems in Substations Sistemi e strumenti per l'automazione, A. Flammini, AA2011-2012 Background I: Power Grid Sistemi e strumenti per l'automazione A. Flammini,

More information

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION INTERNATIONAL TELECOMMUNICATION UNION ITU-T M.3010 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (02/2000) SERIES M: TMN AND NETWORK MAINTENANCE: INTERNATIONAL TRANSMISSION SYSTEMS, TELEPHONE CIRCUITS,

More information

Network Management (NETW-1001)

Network Management (NETW-1001) Network Management (NETW-1001) Dr. Mohamed Abdelwahab Saleh IET-Networks, GUC Spring 2016 TOC 1 Architecture of NMSs 2 OSI Network Management 3 Telecom Management Network 4 SNMP 5 SMI and MIB Remote Management

More information

Integrated management information in utilities

Integrated management information in utilities Integrated management information in utilities Information from Cigré The objective of this article is to assist utilities define, specify and evaluate the high level management systems that form the information

More information

Management Functional Areas

Management Functional Areas Management Functional Areas Identified in First OSI Systems Management (OSI-SM), also adopted in the TMN Fault Management Configuration Management Accounting Management Performance Management Security

More information

A MODERN DISTRIBUTION MANAGEMENT SYSTEM FOR REGIONAL ELECTRICITY COMPANIES

A MODERN DISTRIBUTION MANAGEMENT SYSTEM FOR REGIONAL ELECTRICITY COMPANIES A MODERN DISTRIBUTION MANAGEMENT SYSTEM FOR REGIONAL ELECTRICITY COMPANIES A Roberts, T Berry, W D Wilson Schneider Electric Ltd, UK SYNOPSIS This paper describes the features of a modern Distribution

More information

Simple Network Management Protocol

Simple Network Management Protocol 56 CHAPTER Chapter Goals Discuss the SNMP Management Information Base. Describe SNMP version 1. Describe SNMP version 2. Background The (SNMP) is an application layer protocol that facilitates the exchange

More information

Communications Management. 3ICT12 (with thanks to Prof. George Pavlou, University of Surrey)

Communications Management. 3ICT12 (with thanks to Prof. George Pavlou, University of Surrey) Communications Management 3ICT12 (with thanks to Prof. George Pavlou, University of Surrey) 1 Communications Management Network Management Overview What is Network Management? Manager Agent Model OSI Management:

More information

How To Manage A Distributed Application

How To Manage A Distributed Application of E-Commerce Brokerage Services Jorge E. López de Vergara, Víctor A. Villagrá, Juan I. Asensio, José I. Moreno, Julio J. Berrocal. Dept. de Ingeniería de Sistemas Telemáticos Universidad Politécnica de

More information

White Paper. Requirements of Network Virtualization

White Paper. Requirements of Network Virtualization White Paper on Requirements of Network Virtualization INDEX 1. Introduction 2. Architecture of Network Virtualization 3. Requirements for Network virtualization 3.1. Isolation 3.2. Network abstraction

More information

Lecture 5: Foundation of Network Management

Lecture 5: Foundation of Network Management Lecture 5: Foundation of Network Management Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4395 5-1 Network Management Standards OSI: Common Management Information

More information

A process-driven methodological approach for the design of telecommunications management systems

A process-driven methodological approach for the design of telecommunications management systems A process-driven methodological approach for the design of telecommunications management systems Thierry FRAIZE, Julio VILLENA, Jean-Daniel GUEDJ TELECOM ARGENTINA Av Dorrego 2520 (1425) Buenos Aires Argentina

More information

Simple Network Management Protocol

Simple Network Management Protocol CHAPTER 32 Simple Network Management Protocol Background Simple Network Management Protocol (SNMP) is an application-layer protocol designed to facilitate the exchange of management information between

More information

Use Case 29: Data Acquisition from External DMS Network Monitoring Subsystem

Use Case 29: Data Acquisition from External DMS Network Monitoring Subsystem Use Case Description DMS (T. Berry, Data Acquisition)-03 Use Case 29: Data Acquisition from External DMS Network Monitoring Subsystem Summary: This use case describes how an Energy Management System (EMS)

More information

ETSI TR 101 303 V1.1.2 (2001-12)

ETSI TR 101 303 V1.1.2 (2001-12) TR 101 303 V1.1.2 (2001-12) Technical Report Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON) Release 3; Requirements definition study; Introduction to service and network

More information

Internet-Accessible Power Monitoring & Control Systems

Internet-Accessible Power Monitoring & Control Systems Internet-Accessible Power Monitoring & Control Systems By GE Specification Engineers Keith B. Brock, P.E. Robert P. Hansen, PhD, P.E. Introduction Accessing electrical system information from any location

More information

10 Gigabit Ethernet: Scaling across LAN, MAN, WAN

10 Gigabit Ethernet: Scaling across LAN, MAN, WAN Arasan Chip Systems Inc. White Paper 10 Gigabit Ethernet: Scaling across LAN, MAN, WAN By Dennis McCarty March 2011 Overview Ethernet is one of the few protocols that has increased its bandwidth, while

More information

Securing Distribution Automation

Securing Distribution Automation Securing Distribution Automation Jacques Benoit, Cooper Power Systems Serge Gagnon, Hydro-Québec Luc Tétreault, Hydro-Québec Western Power Delivery Automation Conference Spokane, Washington April 2010

More information

ITU-T Kaleidoscope Conference Innovations in NGN. Managing NGN using the SOA Philosophy. Y. Fun Hu University of Bradford y.f.hu@bradford.ac.

ITU-T Kaleidoscope Conference Innovations in NGN. Managing NGN using the SOA Philosophy. Y. Fun Hu University of Bradford y.f.hu@bradford.ac. ITU-T Kaleidoscope Conference Innovations in NGN Managing NGN using the SOA Philosophy Y. Fun Hu University of Bradford y.f.hu@bradford.ac.uk Next Generation Network (NGN) A IP/IMS based network Provide

More information

The EMSX Platform. A Modular, Scalable, Efficient, Adaptable Platform to Manage Multi-technology Networks. A White Paper.

The EMSX Platform. A Modular, Scalable, Efficient, Adaptable Platform to Manage Multi-technology Networks. A White Paper. The EMSX Platform A Modular, Scalable, Efficient, Adaptable Platform to Manage Multi-technology Networks A White Paper November 2002 Abstract: The EMSX Platform is a set of components that together provide

More information

Simple Network Management Protocol

Simple Network Management Protocol A Seminar Report on Simple Network Management Protocol Submitted in partial fulfillment of the requirement for the award of degree Of Computer Science SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org

More information

Comprehensive Asset Performance Management. Power Transmission and Distribution

Comprehensive Asset Performance Management. Power Transmission and Distribution Comprehensive Asset Performance Management Power Transmission and Distribution Comprehensive Asset Performance Management Siemens Asset Performance Management System (APMS) enables utilities to get the

More information

3GPP TS 32.372 V8.0.0 (2008-12)

3GPP TS 32.372 V8.0.0 (2008-12) TS 32.372 V8.0.0 (2008-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Security services for Integration

More information

Secure Access Link. Table of Contents. Introduction. Background. avaya.com. Introduction... 1. Background... 1. Secure Access Link...

Secure Access Link. Table of Contents. Introduction. Background. avaya.com. Introduction... 1. Background... 1. Secure Access Link... Secure Access Link Table of Contents Introduction... 1 Background... 1 Secure Access Link... 2 Components... 3 Aggregated Traffic... 5 Flexible Authentication. and Authorization... 6 Complete Control over.

More information

TELECOMMUNICATION SERVICE MANAGEMENT

TELECOMMUNICATION SERVICE MANAGEMENT CITR TECHNICAL JOURNAL VOLUME 1 1 TELECOMMUNICATION SERVICE MANAGEMENT QINZHENG KONG, GRAHAM CHEN, AND GLENN HOLLIMAN Abstract The development of standard platform approaches to the management of telecommunication

More information

NETASQ & PCI DSS. Is NETASQ compatible with PCI DSS? NG Firewall version 9

NETASQ & PCI DSS. Is NETASQ compatible with PCI DSS? NG Firewall version 9 NETASQ & PCI DSS Is NETASQ compatible with PCI DSS? We have often been asked this question. Unfortunately, even the best firewall is but an element in the process of PCI DSS certification. This document

More information

IEC 61850 SCL - MORE THAN INTEROPERABLE DATA EXCHANGE BETWEEN ENGINEERING TOOLS

IEC 61850 SCL - MORE THAN INTEROPERABLE DATA EXCHANGE BETWEEN ENGINEERING TOOLS IEC 61850 SCL - MORE THAN INTEROPERABLE DATA EXCHANGE BETWEEN ENGINEERING TOOLS Wolfgang Wimmer ABB Baden, Switzerland wolfgang.wimmer@ch.abb.com Abstract The IEC 61850 SCL language for Substation Configuration

More information

CHAPTER THREE, Network Services Management Framework

CHAPTER THREE, Network Services Management Framework CHAPTER THREE, Acronyms and Terms 3-3 List of Figures 3-4 1 Introduction 3-5 2 Architecture 3-6 2.1 Entity Identification & Addressing 3-7 2.2 Management Domain Registration and Information Service 3-7

More information

Managing a Fibre Channel Storage Area Network

Managing a Fibre Channel Storage Area Network Managing a Fibre Channel Storage Area Network Storage Network Management Working Group for Fibre Channel (SNMWG-FC) November 20, 1998 Editor: Steven Wilson Abstract This white paper describes the typical

More information

ABSTRACT INTRODUCTION MATERIALS AND METHODS

ABSTRACT INTRODUCTION MATERIALS AND METHODS JOURNAL OF AGRICULTURE & SOCIAL SCIENCES 1813 2235/2005/01 2 156 160 http://www.ijabjass.org Design and Implementation of Network Operational Management Systems for Integrated and Automated Management

More information

FOXBORO. I/A Series SOFTWARE Product Specifications. I/A Series Intelligent SCADA SCADA Platform PSS 21S-2M1 B3 OVERVIEW

FOXBORO. I/A Series SOFTWARE Product Specifications. I/A Series Intelligent SCADA SCADA Platform PSS 21S-2M1 B3 OVERVIEW I/A Series SOFTWARE Product Specifications Logo I/A Series Intelligent SCADA SCADA Platform PSS 21S-2M1 B3 The I/A Series Intelligent SCADA Platform takes the traditional SCADA Master Station to a new

More information

SERIES M: TELECOMMUNICATION MANAGEMENT, INCLUDING TMN AND NETWORK MAINTENANCE Integrated services digital networks

SERIES M: TELECOMMUNICATION MANAGEMENT, INCLUDING TMN AND NETWORK MAINTENANCE Integrated services digital networks International Telecommunication Union ITU-T M.3705 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (03/2013) SERIES M: TELECOMMUNICATION MANAGEMENT, INCLUDING TMN AND NETWORK MAINTENANCE Integrated services

More information

Integration Using the MultiSpeak Specification

Integration Using the MultiSpeak Specification Integration Using the MultiSpeak Specification By: Gary A. McNaughton, Cornice Engineering, Inc. and Robert Saint, National Rural Electric Cooperative Association Introduction Over the years many different

More information

Wireless Communications for SCADA Systems Utilizing Mobile Nodes

Wireless Communications for SCADA Systems Utilizing Mobile Nodes , pp. 1-8 http://dx.doi.org/10.14257/ijsh.2013.7.5.01 Wireless Communications for SCADA Systems Utilizing Mobile Nodes Minkyu Choi Security Engineering Research Support Center, Daejon, Republic of Korea

More information

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi What Is Network Management? In general, network management is a service that employs a variety of tools, applications, and devices to assist human network managers in monitoring and maintaining networks.

More information

OPERATIONS CAPITAL. The Operations Capital program for the test years is divided into two categories:

OPERATIONS CAPITAL. The Operations Capital program for the test years is divided into two categories: Filed: September 0, 00 EB-00-0 Tab Schedule Page of OPERATIONS CAPITAL.0 INTRODUCTION Operations Capital funds enhancements and replacements to the facilities required to operate the Hydro One Transmission

More information

SNMP -overview. Based on: W.Stallings Data and Computer Communications

SNMP -overview. Based on: W.Stallings Data and Computer Communications SNMP -overview Based on: W.Stallings Data and Computer Communications Network Management -SNMP Simple Network Management Protocol (not so simple ) Dominant standardized network management scheme in use

More information

Considerations In Developing Firewall Selection Criteria. Adeptech Systems, Inc.

Considerations In Developing Firewall Selection Criteria. Adeptech Systems, Inc. Considerations In Developing Firewall Selection Criteria Adeptech Systems, Inc. Table of Contents Introduction... 1 Firewall s Function...1 Firewall Selection Considerations... 1 Firewall Types... 2 Packet

More information

Cyber Security Management for Utility Operations by Dennis K. Holstein (Opus Publishing) and Jose Diaz (Thales esecurity)

Cyber Security Management for Utility Operations by Dennis K. Holstein (Opus Publishing) and Jose Diaz (Thales esecurity) Cyber Security Management for Utility Operations by Dennis K. Holstein (Opus Publishing) and Jose Diaz (Thales esecurity) Abstract Strong identity management enforced with digital authentication mechanisms

More information

SCADA Protocols and Security

SCADA Protocols and Security WHITE PAPER ON SCADA Protocols and Security Prepared by Mohammed Samiuddin www.itmr.ac.in Contents INTRODUCTION... 2 SCADA PROTOCOL AND SECURITY... 3 SCADA PROTOCAL... 3 DISTRIBUTED NETWORK PROTOCAL (DNP)...

More information

CYBER SECURITY: SYSTEM SERVICES FOR THE SAFEGUARD OF DIGITAL SUBSTATION AUTOMATION SYSTEMS. Massimo Petrini (*), Emiliano Casale TERNA S.p.A.

CYBER SECURITY: SYSTEM SERVICES FOR THE SAFEGUARD OF DIGITAL SUBSTATION AUTOMATION SYSTEMS. Massimo Petrini (*), Emiliano Casale TERNA S.p.A. 21, rue d Artois, F-75008 PARIS D2-102 CIGRE 2012 http : //www.cigre.org CYBER SECURITY: SYSTEM SERVICES FOR THE SAFEGUARD OF DIGITAL SUBSTATION AUTOMATION SYSTEMS Massimo Petrini (*), Emiliano Casale

More information

CONTROL SYSTEM VENDOR CYBER SECURITY TRENDS INTERIM REPORT

CONTROL SYSTEM VENDOR CYBER SECURITY TRENDS INTERIM REPORT Energy Research and Development Division FINAL PROJECT REPORT CONTROL SYSTEM VENDOR CYBER SECURITY TRENDS INTERIM REPORT Prepared for: Prepared by: California Energy Commission KEMA, Inc. MAY 2014 CEC

More information

Network Security Infrastructure Testing

Network Security Infrastructure Testing Network Security Infrastructure Testing Version 1.2 October 12, 2005 Prepared by: Sandia National Laboratories Center for SCADA Security Project Lead Ray Parks Technical Lead Jason Hills Technical Support

More information

Contents Introduction Why Fax over IP? How Real-time Fax over IP works Implementation with MessagePlus/Open Summary. About this document

Contents Introduction Why Fax over IP? How Real-time Fax over IP works Implementation with MessagePlus/Open Summary. About this document Fax over IP Contents Introduction Why Fax over IP? How Real-time Fax over IP works Implementation with MessagePlus/Open Summary About this document This document describes how Fax over IP works in general

More information

ABB North America. Substation Automation Systems Innovative solutions for reliable and optimized power delivery

ABB North America. Substation Automation Systems Innovative solutions for reliable and optimized power delivery ABB North America Substation Automation Systems Innovative solutions for reliable and optimized power delivery Substation Automation Systems Advanced substation automation, protection and control solutions

More information

Service Identifier Comparison module Service Rule Comparison module Favourite Application Server Reinvocation Management module

Service Identifier Comparison module Service Rule Comparison module Favourite Application Server Reinvocation Management module Service Broker for Managing Feature Interactions in IP Multimedia Subsystem Anahita Gouya, Noël Crespi {anahita.gouya, noel.crespi @int-evry.fr}, Institut National des télécommunications (GET-INT) Mobile

More information

WDM network management

WDM network management IO2654 Optical Networking WDM network management Paolo Monti Optical Networks Lab (ONLab), Communication Systems Department (COS) http://web.it.kth.se/~pmonti/ 1! Lecture objectives Overview of the control

More information

An Intelligent Alternative Approach to the efficient Network Management

An Intelligent Alternative Approach to the efficient Network Management Revista de Sistemas de Informação da FSMA n. 10 (2012) pp. 10-18 http://www.fsma.edu.br/si/sistemas.html An Intelligent Alternative Approach to the efficient Network Management Antonio Martín, Carlos León,

More information

Introduction to Network Management

Introduction to Network Management Introduction to Network Management Chu-Sing Yang Department of Electrical Engineering National Cheng Kung University Outline Introduction Network Management Requirement SNMP family OSI management function

More information

European Wind Energy Conference & Exhibition. 7 10 May 2007, Milan.

European Wind Energy Conference & Exhibition. 7 10 May 2007, Milan. THE USE OF IEC 61400-25 STANDARD TO INTEGRATE WIND POWER PLANTS INTO THE CONTROL OF POWER SYSTEM STABILITY E. SAN TELMO, I. CANALES, J. L. VILLATE, E. ROBLES, S. APIÑANIZ ROBOTIKER, Parque Tecnológico

More information

Remote Management. Vyatta System. REFERENCE GUIDE SSH Telnet Web GUI Access SNMP VYATTA, INC.

Remote Management. Vyatta System. REFERENCE GUIDE SSH Telnet Web GUI Access SNMP VYATTA, INC. VYATTA, INC. Vyatta System Remote Management REFERENCE GUIDE SSH Telnet Web GUI Access SNMP Vyatta Suite 200 1301 Shoreway Road Belmont, CA 94002 vyatta.com 650 413 7200 1 888 VYATTA 1 (US and Canada)

More information

Telecommunications Management

Telecommunications Management Telecommunications Management Network: Vision vs. Reality Although very few organizations can claim today that TMN has improved their ability to manage their telecommunications network, there is no doubt

More information

Network Management - SNMP

Network Management - SNMP Network Management - SNMP Simple Network Management Protocol Networks are indispensable More complexity makes failure more likely Require automatic network management tools Standards required to allow

More information

Architecture of distributed network processors: specifics of application in information security systems

Architecture of distributed network processors: specifics of application in information security systems Architecture of distributed network processors: specifics of application in information security systems V.Zaborovsky, Politechnical University, Sait-Petersburg, Russia vlad@neva.ru 1. Introduction Modern

More information

Performance Management for Next- Generation Networks

Performance Management for Next- Generation Networks Performance Management for Next- Generation Networks Definition Performance management for next-generation networks consists of two components. The first is a set of functions that evaluates and reports

More information

RIG Acceptance Test (RAT) Procedures

RIG Acceptance Test (RAT) Procedures RIG Acceptance Test (RAT) Procedures RIG Acceptance Test (RAT) Procedure 0 Print Date 2 /20/2007 REVISION HISTORY REVISON NO. DATE DESCRIPTION 1.0 Initial Release 0 Update Logo and Links i RIG Acceptance

More information

PARAMETERS TO BE MONITORED IN THE PROCESS OF OPERATION WHEN IMPLEMENTING NGN TECHNICAL MEANS IN PUBLIC TELECOMMUNICATION NETWORKS

PARAMETERS TO BE MONITORED IN THE PROCESS OF OPERATION WHEN IMPLEMENTING NGN TECHNICAL MEANS IN PUBLIC TELECOMMUNICATION NETWORKS Draft Recommendation Q.3902 PARAMETERS TO BE MONITORED IN THE PROCESS OF OPERATION WHEN IMPLEMENTING NGN TECHNICAL MEANS IN PUBLIC TELECOMMUNICATION NETWORKS Summary This Recommendation describes the main

More information

Presentation of Technical Specification to TSG SA

Presentation of Technical Specification to TSG SA Technical Specification Group Services and System Aspects Meeting #23, Phoenix, USA, 15-18 March 2004 TSGS#23(04)0122 Source: Title: Document for: Agenda Item: 7.5.3 SA5 (Telecom Management) New Rel-6

More information

Management Services for Performance Verification in Broadband Multi-Service Networks

Management Services for Performance Verification in Broadband Multi-Service Networks Management Services for Performance Verification in Broadband Multi-Service s Abstract Panos Georgatsos 1, David Griffin 2 This paper presents a practical management system for performance monitoring and

More information

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories:

TCP/IP works on 3 types of services (cont.): TCP/IP protocols are divided into three categories: Due to the number of hardware possibilities for a network, there must be a set of rules for how data should be transmitted across the connection media. A protocol defines how the network devices and computers

More information

DigiPoints Volume 2. Student Workbook. Module 10 Network Management

DigiPoints Volume 2. Student Workbook. Module 10 Network Management Network Management Page 10.1 DigiPoints Volume 2 Module 10 Network Management Summary In this module, students learn engineering and operational information about Network Management. Module Objectives

More information

A DNP3 Protocol Primer

A DNP3 Protocol Primer A Protocol Primer Introduction This is a primer for people who want a quick understanding of without having to comb through the tedious details of a complex specification. The writing style is meant to

More information

THE FUTURE OF SMART GRID COMMUNICATIONS

THE FUTURE OF SMART GRID COMMUNICATIONS THE FUTURE OF SMART GRID COMMUNICATIONS KENNETH C. BUDKA CTO STRATEGIC INDUSTRIES MAY 2014 THE GRID OF THE FUTURE WIDE-SCALE DEPLOYMENT OF RENEWABLES INCREASED ENERGY EFFICIENCY PEAK POWER REDUCTION, DEMAND

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Packet Switching and Computer Networks Switching As computer networks became more pervasive, more and more data and also less voice was transmitted over telephone lines. Circuit Switching The telephone

More information

Introduction to Networks

Introduction to Networks www.eazynotes.com Maninder Kaur [Page No. 1] Introduction to Networks Short Answer Type Questions Q-1. Which Technologies of this age had led to the emergence of computer network? Ans: The technologies

More information

IEEE Standards Activities in the Smart Grid Space (ICT Focus)

IEEE Standards Activities in the Smart Grid Space (ICT Focus) This document contains supplemental information referenced by the European Rolling Plan for ICT Standardisation IEEE Standards Activities in the Smart Grid Space (ICT Focus) Overview IEEE, through the

More information

Communications and Computer Networks

Communications and Computer Networks SFWR 4C03: Computer Networks and Computer Security January 5-8 2004 Lecturer: Kartik Krishnan Lectures 1-3 Communications and Computer Networks The fundamental purpose of a communication system is the

More information

data integration/exchange part 2: future technical and business opportunities

data integration/exchange part 2: future technical and business opportunities techtorial M. Kezunovic, A. Abur, A. Edris, D. Sobajic data integration/exchange part 2: future technical and business opportunities IIN THE UTILITY INDUSTRY, LIKE in many other major industries, it is

More information

NETASQ MIGRATING FROM V8 TO V9

NETASQ MIGRATING FROM V8 TO V9 UTM Firewall version 9 NETASQ MIGRATING FROM V8 TO V9 Document version: 1.1 Reference: naentno_migration-v8-to-v9 INTRODUCTION 3 Upgrading on a production site... 3 Compatibility... 3 Requirements... 4

More information

Chapter 2 PSTN and VoIP Services Context

Chapter 2 PSTN and VoIP Services Context Chapter 2 PSTN and VoIP Services Context 2.1 SS7 and PSTN Services Context 2.1.1 PSTN Architecture During the 1990s, the telecommunication industries provided various PSTN services to the subscribers using

More information

A Proposed Integration of Hierarchical Mobile IP based Networks in SCADA Systems

A Proposed Integration of Hierarchical Mobile IP based Networks in SCADA Systems , pp. 49-56 http://dx.doi.org/10.14257/ijsh.2013.7.5.05 A Proposed Integration of Hierarchical Mobile IP based Networks in SCADA Systems Minkyu Choi 1 and Ronnie D. Caytiles 2 1 Security Engineering Research

More information

Securing VoIP Networks using graded Protection Levels

Securing VoIP Networks using graded Protection Levels Securing VoIP Networks using graded Protection Levels Andreas C. Schmidt Bundesamt für Sicherheit in der Informationstechnik, Godesberger Allee 185-189, D-53175 Bonn Andreas.Schmidt@bsi.bund.de Abstract

More information

Off-the-shelf Packaged Software Systems And Custom Software Analysis By Gamal Balady MASS Group, Inc.

Off-the-shelf Packaged Software Systems And Custom Software Analysis By Gamal Balady MASS Group, Inc. Off-the-shelf Packaged Software Systems And Custom Software Analysis By Gamal Balady MASS Group, Inc. April 1, 2004 1 Presentation Overview I. Packaged Software Systems vs. Custom Software Systems II.

More information

Recommended IP Telephony Architecture

Recommended IP Telephony Architecture Report Number: I332-009R-2006 Recommended IP Telephony Architecture Systems and Network Attack Center (SNAC) Updated: 1 May 2006 Version 1.0 SNAC.Guides@nsa.gov This Page Intentionally Left Blank ii Warnings

More information

A Telephone Domain Name System (T-DNS) for Internet Telephony Service at All IP Network

A Telephone Domain Name System (T-DNS) for Internet Telephony Service at All IP Network A Telephone Domain Name System (T-DNS) for Telephony Service at All IP Network o Mi-Ryong Park, Chang-Min Park, and Jong-Hyup Lee Router Technology Department, Network Research Lab., ETRI 161 Kajong-Dong,

More information

HP OEMF: Alarm Management in Telecommunications Networks

HP OEMF: Alarm Management in Telecommunications Networks HP OEMF: Management in Telecommunications s This article explains the HP OpenView Element Management Framework concept, which is based on the HP OpenView Fault Management Platform (FMP) and complements

More information

Secure Machine to Machine Communication on the example of Smart Grids

Secure Machine to Machine Communication on the example of Smart Grids Corporate Technology Secure Machine to Machine Communication on the example of Smart Grids 10.ITG Fachtagung Zukunft der Netze 2011, Steffen Fries Siemens AG, CT T, GTF IT Security : +49 89 636 53403 :

More information

Network Management Architectures for Broadband Satellite Multimedia Systems

Network Management Architectures for Broadband Satellite Multimedia Systems Network Architectures for Broadband Multimedia Systems obert J. Mort Systek Consulting Ltd., Havant, UK robert.mort@etsi.org Matteo Berioli DL, Germany matteo.berioli@dlr.de Haitham Cruickshank, University

More information

CHAPTER 2 MODELLING FOR DISTRIBUTED NETWORK SYSTEMS: THE CLIENT- SERVER MODEL

CHAPTER 2 MODELLING FOR DISTRIBUTED NETWORK SYSTEMS: THE CLIENT- SERVER MODEL CHAPTER 2 MODELLING FOR DISTRIBUTED NETWORK SYSTEMS: THE CLIENT- SERVER MODEL This chapter is to introduce the client-server model and its role in the development of distributed network systems. The chapter

More information

Customer information on the replacement of LUA/CDIF access technology. Last revised: Mar. 17, 2015

Customer information on the replacement of LUA/CDIF access technology. Last revised: Mar. 17, 2015 access technology 1. GENERAL At the moment, your EDI application (e.g., your EDI converter) uses our interactive interface, Local User Agent (LUA) or the CDIF protocol embedded in it (for a proprietary

More information

Overview of Routing between Virtual LANs

Overview of Routing between Virtual LANs Overview of Routing between Virtual LANs This chapter provides an overview of virtual LANs (VLANs). It describes the encapsulation protocols used for routing between VLANs and provides some basic information

More information

Comparison of SNMP. Versions 1, 2 and 3

Comparison of SNMP. Versions 1, 2 and 3 Comparison of SNMP 1 Comparison of SNMP Versions 1, 2 and 3 Eddie Bibbs Brandon Matt ICTN 4600-001 Xin Tang April 17, 2006 Comparison of SNMP 2 During its development history, the communities of researchers,

More information

How To Interwork On An Ip Network

How To Interwork On An Ip Network An Overview of - Interworking 2001 RADVISION. All intellectual property rights in this publication are owned by RADVision Ltd. and are protected by United States copyright laws, other applicable copyright

More information

Comparison of Routable Control System Security Approaches

Comparison of Routable Control System Security Approaches PNNL-20531 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Comparison of Routable Control System Security Approaches TW Edgar MD Hadley TE Carroll DO Manz JD Winn June 2011

More information

SNMP. Simple Network Management Protocol

SNMP. Simple Network Management Protocol SNMP Simple Network Management Protocol Introduction SNMP Simple Network Management Protocol A set of standards for network management Protocol Database structure specification Data objects A set of standardized

More information

Substation Automation Using IEC61850 Standard

Substation Automation Using IEC61850 Standard Substation Automation Using IEC6850 Standard R. P. Gupta, Member, IEEE Abstract Electric power utilities, at present, are facing problem of interoperability among Intelligent Electronic Devices (IEDs)

More information

Heterogeneous Tools for Heterogeneous Network Management with WBEM

Heterogeneous Tools for Heterogeneous Network Management with WBEM Heterogeneous Tools for Heterogeneous Network Management with WBEM Kenneth Carey & Fergus O Reilly Adaptive Wireless Systems Group Department of Electronic Engineering Cork Institute of Technology, Cork,

More information

A QOS DISTRIBUTION MONITORING SCHEME FOR PERFORMANCE MANAGEMENT OF MULTIMEDIA NETWORKS

A QOS DISTRIBUTION MONITORING SCHEME FOR PERFORMANCE MANAGEMENT OF MULTIMEDIA NETWORKS A QOS DISTRIBUTION MONITORING SCHEME FOR PERFORMANCE MANAGEMENT OF MULTIMEDIA NETWORKS Yuming Jiang, Chen-Khong Tham, Chi-Chung Ko Department Electrical Engineering, National University Singapore, 119260

More information

SGTech Europe 2015 September 22 th Amsterdam. Pedro Gama, Head of SCADA & Telecom Department at EDP Distribuição, SA

SGTech Europe 2015 September 22 th Amsterdam. Pedro Gama, Head of SCADA & Telecom Department at EDP Distribuição, SA Time-Critical Applications - applying the latest tools and techniques to guarantee QoS for time-critical applications and services over IP/Ethernet/MPLS telecom networks Pedro Gama, Head of SCADA & Telecom

More information

SNMP Network Management Concepts

SNMP Network Management Concepts SNMP Network Management Concepts Chu-Sing Yang Department of Electrical Engineering National Cheng Kung University Outline Background Basic Concepts Summary The Origins of TCP/IP Starts at 1969, and founded

More information

SITEL Voice Architecture

SITEL Voice Architecture SITEL Voice Architecture www.sitel.com SIP Voice Architecture: What is it? And how contact center operators can save money using it. By: Kevin Weier, Director, Global Voice Infrastructure and Architecture,

More information

MODEL OF SOFTWARE AGENT FOR NETWORK SECURITY ANALYSIS

MODEL OF SOFTWARE AGENT FOR NETWORK SECURITY ANALYSIS MODEL OF SOFTWARE AGENT FOR NETWORK SECURITY ANALYSIS Hristo Emilov Froloshki Department of telecommunications, Technical University of Sofia, 8 Kliment Ohridski st., 000, phone: +359 2 965 234, e-mail:

More information

Overview ENUM ENUM. VoIP Introduction (2/2) VoIP Introduction (1/2)

Overview ENUM ENUM. VoIP Introduction (2/2) VoIP Introduction (1/2) Overview Voice-over over-ip (VoIP) ENUM VoIP Introduction Basic PSTN Concepts and SS7 Old Private Telephony Solutions Internet Telephony and Services VoIP-PSTN Interoperability IP PBX Network Convergence

More information