Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are



Similar documents
Cisco Fog Computing Solutions: Unleash the Power of the Internet of Things

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS

The Internet of Things:

Circuit Protection is Key in Maintaining Growth for The Internet of Things

How To Understand The Power Of The Internet Of Things

Predicting From the Edge in an

INTERNET OF THINGS: SCIENCE FICTION OR BUSINESS FACT?

Making Machines More Connected and Intelligent

Machina Research. Where is the value in IoT? IoT data and analytics may have an answer. Emil Berthelsen, Principal Analyst April 28, 2016

TS03: Operational Excellence by Leveraging Internet of Things Technologies

Dynamic M2M Event Processing Complex Event Processing and OSGi on Java Embedded

CONECTIVIDAD EN LA ERA DEL IOT THE INTERNET OF THINGS

The Industrial Internet of Things. Overcoming Adoption Challenges to Release the Value Within IIoT

The Internet of Everything

WHITEPAPER BEST PRACTICES

A ZK Research Whitepaper. November e t. It s INTERNET OF THINGS

Fog in Support of Emerging IoT Applications

FWD. What the Internet of Things will mean for business

Connected Manufacturing

Industrial Dr. Stefan Bungart

The Internet of Things

MES and Industrial Internet

The Wireless World - 5G and Beyond. Björn Ekelund Ericsson Research

Enterprise Application Enablement for the Internet of Things

The Internet of Things (IoT) and Industrial Networks. Guy Denis Rockwell Automation Alliance Manager Europe 2015

USE CASES BROADBAND EXPERIENCE EVERYWHERE, ANYTIME SMART VEHICLES, TRANSPORT & INFRASTRUCTURE MEDIA EVERYWHERE CRITICAL CONTROL OF REMOTE DEVICES

Enabling Manufacturing Transformation in a Connected World. John Shewchuk Technical Fellow DX

Reimagining Business with SAP HANA Cloud Platform for the Internet of Things

Industrial Internet of Things Bears Fruit with Connected Services for Plant Assets and Fleet Migration

A Forrester Consulting Thought Leadership Paper Commissioned By Zebra Technologies. November 2014

I. TODAY S UTILITY INFRASTRUCTURE vs. FUTURE USE CASES...1 II. MARKET & PLATFORM REQUIREMENTS...2

DATA MANAGEMENT FOR THE INTERNET OF THINGS

Cisco to work with JDA to make Jaipur a smart city- Economic Times-21 May

Streaming Analytics and the Internet of Things: Transportation and Logistics

The Purview Solution Integration With Splunk

CISCO WIDE AREA APPLICATION SERVICES (WAAS) OPTIMIZATIONS FOR EMC AVAMAR

Attunity Better Data Movement For The Internet Of Things

State-of-the-Art Headquarters Includes Centralized Physical Security

T r a n s f o r m i ng Manufacturing w ith the I n t e r n e t o f Things

high performance solutions for a connected world

Informix The Intelligent Database for IoT

Blueprints and feasibility studies for Enterprise IoT (Part Two of Three)

In the pursuit of becoming smart

Copyright 2014, Neudesic. All rights reserved.

Critical Asset Protection Oil and Gas Protection

Kepware Whitepaper. Enabling Big Data Benefits in Upstream Systems. Steve Sponseller, Business Director, Oil & Gas. Introduction

REAL-TIME STREAMING ANALYTICS DATA IN, ACTION OUT

Optimizing Energy Operations with Machine-to-Machine Communications

Homeland Security Solutions

Synapse s SNAP Network Operating System

Cisco Global Cloud Index: Forecast and Methodology,

How To Use Inmarsat M2M On A Sim Card

Remote Management White Paper 27th June, 2012

White Paper. How Streaming Data Analytics Enables Real-Time Decisions

Cloud-ready network architecture

Industrial Internet & Advanced Manufacturing

The future of Big Data A United Hitachi View

BOOST YOUR BUSINESS WITH M2M TECHNOLOGY

Cisco Integrated Video Surveillance Solution: Expand the Capabilities and Value of Physical Security Investments

YOU VS THE SENSORS. Six Requirements for Visualizing the Internet of Things. Dan Potter Chief Marketing Officer, Datawatch Corporation

How to Choose the Right Industrial Firewall: The Top 7 Considerations. Li Peng Product Manager

Connected Services. New Manufacturing Models Increase Revenue Growth. Authors Kevin Sullivan Ram Muthukrishnan. April 2013

Cisco Incident Response and Workforce Enablement for the Utility

SMART TRANSPORT KEEPING STUDENTS CONNECTED AND SAFE WITH THE SMART SCHOOL BUS

The Internet of Things: Opportunities & Challenges

Four Ways High-Speed Data Transfer Can Transform Oil and Gas WHITE PAPER

Big Data & Analytics for Semiconductor Manufacturing

Harnessing the Data Flood: Oracle s Visionary Platform from Device to Data Center. Chris Baker Senior Vice President Worldwide ISV/OEM Java Sales

HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica

Manufacturing and the Internet of Everything

Fast Innovation requires Fast IT

How Network Operators Do Prepare for the Rise of the Machines

Lights. Sensors. Action.

Vortex White Paper. Simplifying Real-time Information Integration in Industrial Internet of Things (IIoT) Control Systems

The Internet of Things

StruxureWare TM Center Expert. Data

Internet of Things: Consumerisation of Technology.

Building a Scalable Big Data Infrastructure for Dynamic Workflows

SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON

The Next Wave of Big Data Analytics: Internet of Things and Sensor Data. November 6, 2014 Hannah Smalltree, Director

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time

Enabling Real-Time Sharing and Synchronization over the WAN

ProtectWise: Shifting Network Security to the Cloud Date: March 2015 Author: Tony Palmer, Senior Lab Analyst and Aviv Kaufmann, Lab Analyst

Lean manufacturing in the age of the Industrial Internet

Transforming industries: energy and utilities. How the Internet of Things will transform the utilities industry

Big Data overview. Livio Ventura. SICS Software week, Sept Cloud and Big Data Day

Mobile Edge Computing: Unleashing the value chain

How the Internet of Things Will Transform the Manufacturing Industry

BIG (SMART) DATA ANALYTICS IN ENERGY TRENDS AND BENEFITS

Transcription:

White Paper Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are What You Will Learn The Internet of Things (IoT) is generating an unprecedented volume and variety of data. But by the time the data makes its way to the cloud for analysis, the opportunity to act on it might be gone. This white paper, intended for IT and operational technology professionals, explains a new model for analyzing and acting on IoT data. It is called either edge computing or Fog computing: Analyzes the most time-sensitive data at the network edge, close to where it is generated instead of sending vast amounts of IoT data to the cloud. Acts on IoT data in milliseconds, based on policy. Sends selected data to the cloud for historical analysis and longer-term storage. What IoT Means to Your Business The IoT speeds up awareness and response to events. In industries such as manufacturing, oil and gas, utilities, transportation, mining, and the public sector, faster response time can improve output, boost service levels, and increase safety. Imagine it: On a factory floor, a temperature sensor on a critical machine sends readings associated with imminent failure. A technician is dispatched to repair the machine in time to avoid a costly shutdown. In oil and gas exploration, sensors on oil pipelines register a pressure change. In response, pumps automatically slow down to avert a disaster. In utilities, ruggedized cameras at remote field substations detect an intruder and alert security officers. Almost instantaneous analysis reveals similar events at other substations, automatically raising the alert to the highest level. Connecting new kinds of things to the Internet also creates new business opportunities. Examples include pay-asyou-drive vehicle insurance, lighting-as-a-service, and machine-as-a-service (Maas). What IoT Means to Your Infrastructure Capitalizing on the IoT requires a new kind of infrastructure. Today s cloud models are not designed for the volume, variety, and velocity of data that the IoT generates. Billions of previously unconnected devices are generating more than two exabytes of data each day. An estimated 50 billion things will be connected to the Internet by 2020. Moving all data from these things to the cloud for analysis would require vast amounts of bandwidth. Today s cloud models are not designed for the volume, variety, and velocity of data that the IoT generates. 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 6

These billions of new things also represent countless new types of things (Figure 1). Some are machines that connect to a controller using industrial protocols, not IP. Before this information can be sent to the cloud for analysis or storage, it must be translated to IP. Figure 1. Connecting More and Different Kinds of Things Directly to the Cloud Is Impractical Compounding the challenge, IoT devices generate data constantly, and often analysis must be very rapid. For example, when the temperature in a chemical vat is fast approaching the acceptable limit, corrective action must be taken almost immediately. In the time it takes for temperature readings to travel from the edge to the cloud for analysis, the opportunity to avert a spoiled batch might be lost. Handling the volume, variety, and velocity of IoT data requires a new computing model. The main requirements are to: Minimize latency: Milliseconds matter when you are trying to prevent manufacturing line shutdowns or restore electrical service. Analyzing data close to the device that collected the data can make the difference between averting disaster and a cascading system failure. Analyzing data close to the device that collected the data can make the difference between averting disaster and a cascading system failure. Conserve network bandwidth: Offshore oilrigs generate 500 GB of data weekly. Commercial jets generate 10 TB for every 30 minutes of flight. It is not practical to transport vast amounts of data from thousands or hundreds of thousands of edge devices to the cloud. Nor is it necessary, because many critical analyses do not require cloud-scale processing and storage. Address security concerns: IoT data needs to be protected both in transit and at rest. This requires monitoring and automated response across the entire attack continuum: before, during, and after. Operate reliably: IoT data is increasingly used for decisions affecting citizen safety and critical infrastructure. The integrity and availability of the infrastructure and data cannot be in question. Collect and secure data across a wide geographic area with different environmental conditions: IoT devices can be distributed over hundreds or more square miles. Devices deployed in harsh environments such as roadways, railways, utility field substations, and vehicles might need to be ruggedized. That is not the case for devices in controlled, indoor environments. 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 2 of 6

Move data to the best place for processing: Which place is best depends partly on how quickly a decision is needed. Extremely time-sensitive decisions should be made closer to the things producing and acting on the data. In contrast, big data analytics on historical data needs the computing and storage resources of the cloud. Traditional cloud computing architectures do not meet all of these requirements. The prevailing approach moving all data from the network edge to the data center for processing adds latency. Traffic from thousands of devices soon outstrips bandwidth capacity. Industry regulations and privacy concerns prohibit offsite storage of certain types of data. In addition, cloud servers communicate only with IP, not the countless other protocols used by IoT devices. The ideal place to analyze most IoT data is near the devices that produce and act on that data. We call it Fog computing. Fog Computing 101 What Is It? The fog extends the cloud to be closer to the things that produce and act on IoT data (Figure 2). These devices, called fog nodes, can be deployed anywhere with a network connection: on a factory floor, on top of a power pole, alongside a railway track, in a vehicle, or on an oil rig. Any device with computing, storage, and network connectivity can be a fog node. Examples include industrial controllers, switches, routers, embedded servers, and video surveillance cameras. IDC estimates that the amount of data analyzed on devices that are physically close to the Internet of Things is approaching 40 percent. 1 There is good reason: analyzing IoT data close to where it is collected minimizes latency. It offloads gigabytes of network traffic from the core network, and it keeps sensitive data inside the network. Analyzing IoT data close to where it is collected minimizes latency. It offloads gigabytes of network traffic from the core network. And it keeps sensitive data inside the network. Figure 2. The Fog Extends the Cloud Closer to the Devices Producing Data DATACENTER/CLOUD FOG DEVICE Examples of Fog Applications Presentation_ID 2015 Cisco and/or its affiliates. All rights reserved. Cisco Public 5 Fog applications are as diverse as the Internet of Things itself. What they have in common is monitoring or analyzing real-time data from network-connected things and then initiating an action. The action can involve machine-to-machine (M2M) communications or human-machine interaction (HMI). Examples include locking a door, changing equipment settings, applying the brakes on a train, zooming a video camera, opening a valve in response to a pressure reading, creating a bar chart, or sending an alert to a technician to make a preventive repair. The possibilities are unlimited. 1 IDC FutureScape: Worldwide Internet of Things 2015 Predictions. 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 3 of 6

Production fog applications are rapidly proliferating in manufacturing, oil and gas, utilities, transportation, mining, and the public sector. When to Consider Fog Computing Data is collected at the extreme edge: vehicles, ships, factory floors, roadways, railways, etc. Thousands or millions of things across a large geographic area are generating data. It is necessary to analyze and act on the data in less than a second. How Does Fog Work? Developers either port or write IoT applications for fog nodes at the network edge. The fog nodes closest to the network edge ingest the data from IoT devices. Then and this is crucial the fog IoT application directs different types of data to the optimal place for analysis, as shown in Table 1: The most time-sensitive data is analyzed on the fog node closest to the things generating the data. In a Cisco Smart Grid distribution network, for example, the most time-sensitive requirement is to verify that protection and control loops are operating properly. Therefore, the fog nodes closest to the grid sensors can look for signs of problems and then prevent them by sending control commands to actuators. Data that can wait seconds or minutes for action is passed along to an aggregation node for analysis and action. In the Smart Grid example, each substation might have its own aggregation node that reports the operational status of each downstream feeder and lateral. Data that is less time sensitive is sent to the cloud for historical analysis, big data analytics, and long-term storage (see sidebar). For example, each of thousands or hundreds of thousands of fog nodes might send periodic summaries of grid data to the cloud for historical analysis and storage. Table 1. Fog Nodes Extend the Cloud to the Network Edge Fog Nodes Closest to IoT Devices Fog Aggregation Nodes Cloud Response time Milliseconds to subsecond Seconds to minutes Minutes, days, weeks Application examples M2M communication Haptics 2, including telemedicine and training Visualization Simple analytics Big data analytics Graphical dashboards How long IoT data is stored Transient Short duration: perhaps hours, days, or weeks Months or years Geographic coverage Very local: for example, one city block Wider Global 2 Haptics is controlling technology using the sense of touch. A realistic experience requires feedback in less than 1 millisecond. 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 4 of 6

What Happens in the Fog and the Cloud Fog nodes: Receive feeds from IoT devices using any protocol, in real time Run IoT-enabled applications for real-time control and analytics, with millisecond response time Provide transient storage, often 1 2 hours Send periodic data summaries to the cloud The cloud platform: Receives and aggregates data summaries from many fog nodes Performs analysis on the IoT data and data from other sources to gain business insight Can send new application rules to the fog nodes based on these insights Benefits of Fog Computing Extending the cloud closer to the things that generate and act on data benefits the business in the following ways: Greater business agility: With the right tools, developers can quickly develop fog applications and deploy them where needed. Machine manufacturers can offer MaaS to their customers. Fog applications program the machine to operate in the way each customer needs. Better security: Protect your fog nodes using the same policy, controls, and procedures you use in other parts of your IT environment. Use the same physical security and cybersecurity solutions. Deeper insights, with privacy control: Analyze sensitive data locally instead of sending it to the cloud for analysis. Your IT team can monitor and control the devices that collect, analyze, and store data. Lower operating expense: Conserve network bandwidth by processing selected data locally instead of sending it to the cloud for analysis. Conclusion Fog computing gives the cloud a companion to handle the two exabytes of data generated daily from the Internet of Things. Processing data closer to where it is produced and needed solves the challenges of exploding data volume, variety, and velocity. Fog computing accelerates awareness and response to events by eliminating a round trip to the cloud for analysis. It avoids the need for costly bandwidth additions by offloading gigabytes of network traffic from the core network. It also protects sensitive IoT data by analyzing it inside company walls. Ultimately, organizations that adopt fog computing gain deeper and faster insights, leading to increased business agility, higher service levels, and improved safety. 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 5 of 6

For More Information Fog computing is here today, as part of the Cisco IoT system. It can make your business more agile, faster to respond, and more innovative. To learn more, visit: www.cisco.com/go/iot. Printed in USA C11-734435-00 04/15 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 6 of 6