Word order in Lexical-Functional Grammar Topics M. Kaplan and Mary Dalrymple Ronald Xerox PARC August 1995 Kaplan and Dalrymple, ESSLLI 95, Barcelona 1
phrase structure rules work well Standard congurational languages like English for S! NP S NP...... make it easy to encode subcategorization, and functions, and predicate-argument relations grammatical Kaplan and Dalrymple, ESSLLI 95, Barcelona 2
Japanese: scrambling S NP NP V P Adj N P oikaketa N chase inu dog o ACC tiisai ga kodomotati NOM children small OR S NP NP V N P N P oikaketa Adj chase tiisai ga kodomotati NOM children small inu dog o ACC Kaplan and Dalrymple, ESSLLI 95, Barcelona 3
PRED Warlpiri: breakdown of phrasal grouping S NP Aux NP V NP N N kapala Pres wajilipinyi N chase kurdujarrarlu children maliki dog witajarrarlu small 3 2 PRED `chase' 2 3 PRED `children' 5 4 SUBJ SPEC `the' MODS f[ PRED `small' ]g 4 5 `dog' OBJ SPEC `the' Kaplan and Dalrymple, ESSLLI 95, Barcelona 4
( AP LFG: Original rules with regular right-hand sides allow for C-structure considerable exibility Concatenation, Union, Kleene-closure )!! V (NP) (NP) PP* (S) because of factoring of syntactic information into Possible domains: dierent Subcategorization is not dened congurationally Kaplan and Dalrymple, ESSLLI 95, Barcelona 5
>< >: ( AP ( AP ( AP >= >; Regular sets also closed under intersection and Observe: complementation E.g., suppose that NP and S cannot cooccur: )!! V (NP) (NP) PP* (S) { * NP * S * vs. 8 )! 9 (NP) (NP) PP* )!! V PP* (S) Kaplan and Dalrymple, ESSLLI 95, Barcelona
combinations of regular predicates: Boolean generalizations, but Factor don't change formal power or structural domain ID: S! [NP,] abbreviates S! [* NP *]\[NP* NP*] LP: NP < abbreviates :[* * NP *] S! NP can be factored to S! [ NP, ] \ [ NP < ] Kaplan and Dalrymple, ESSLLI 95, Barcelona
( AD PP Ignore Adverbs! V [(NP) (NP) PP* () (S)]/AD Equivalent, but misses a generalization: )! V AD* (NP) AD* (NP) * () AD* (S) [A B]/C A B C C C Kaplan and Dalrymple, ESSLLI 95, Barcelona 8
cross-serial dependencies: Germanic c-structure to functional constraints on word order Beyond Kaplan and Dalrymple, ESSLLI 95, Barcelona 9
dependencies in Dutch Cross-serial (195): Flat c-structure Evers S 0 dat S NP NP NP V 0 Jan zijn zoon geneeskunde V V 0 wil V V 0 laten studeren Kaplan and Dalrymple, ESSLLI 95, Barcelona 10
V 0! V 0 @ for cross-serial dependencies: Accounting Kaplan, Peters, and Zaenen (1982) Bresnan, 0 1 1 0 V A @ A! 0 @ NP (" OBJ)=# (" XCOMP)=# 1 V 0 A (" XCOMP)=# Assumes hierarchical constituent structure Kaplan and Dalrymple, ESSLLI 95, Barcelona 11
zijn his 0 V NP zoon son NP V V 0 geneeskunde medicine wil wanted V V 0 laten let studeren study S 0 dat S NP Jan 3 2 SUBJ [`Jan'] 3 PRED `want' 2 SUBJ PRED `let' OBJ [`his son'] 3 XCOMP 2 SUBJ 5 4 4 4 XCOMP 5 PRED `study' 5 OBJ [`medicine'] Kaplan and Dalrymple, ESSLLI 95, Barcelona 12
with the Bresnan et al. (1982) solution: Problems dominance chains (Johnson 198) Non-branching S 0 dat S NP Jan V 0 V V 0 NP heeft has V V 0 een a liedje song willen wanted V zingen sing Kaplan and Dalrymple, ESSLLI 95, Barcelona 13
with the Bresnan et al. (1982) solution: Problems of complex structures (Moortgat) Coordination.. dat Jan een liedje schreef en trachtte te verkopen.... that Jan a song wrote and tried to sell.. Kaplan and Dalrymple, ESSLLI 95, Barcelona 14
SUBJ)=# (" NP =# " OBJ)=# OR (" XCOMP OBJ)=# (" =# " 0 V #2" 0 #2" V 0 V =# " V =# " V XCOMP)=# (" 0 V =# " V S Jan NP een liedje schreef trachtte te verkopen Kaplan and Dalrymple, ESSLLI 95, Barcelona 15
uncertainty eliminates nonbranching chains: Functional (198) Johnson 0 1 1 0 V A @ A! 0 @ NP (" OBJ)=# (" XCOMP + )=# Also solves the coordination problem Kaplan and Dalrymple, ESSLLI 95, Barcelona 1
Nonbranching dominance chains eliminated S 0 dat S NP Jan NP V 0 een liedje V V 0 heeft V V 0 willen V zingen Kaplan and Dalrymple, ESSLLI 95, Barcelona 1
But how to correlate word order and grammatical functions? S 0 dat S NP NP NP V 0 Jan zijn his zoon son geneeskunde medicine V V 0 wil wanted V V 0 laten let studeren study Kaplan and Dalrymple, ESSLLI 95, Barcelona 18
cats) holds i CAT(f; is some n 2 1 (f) such that (n) 2 cats there Description by inverse correspondence inverse of the correspondence relation The f-structure properties based on c-structure relations induces f1: h SUBJ f2:[ ] i n1:s n2:np n3: n4:n n5:v Example: F-structure \category" Thus: CAT(f1, S), CAT(f1, V), but not CAT(f2, ) Kaplan and Dalrymple, ESSLLI 95, Barcelona 19
PRED) = `becomeh(" SUBJ), (" XCOMP)i' (" XCOMP SUBJ) = (" SUBJ) (" XCOMP), fa, Ng) _ CAT((" XCOMP), N) CAT((" Complement selection by functional category become became a leader. John became tall. John John became in the park. * John became to go. * compare ACOMP, VCOMP,... (Kaplan and Bresnan 1982) Kaplan and Dalrymple, ESSLLI 95, Barcelona 20
[ ] [ ] A Functional View of X-Bar Theory A maximal node n can be of category XP if CAT((n), X). XP X justies an XP label This though the XP does not dominate an X: even XP X Kaplan and Dalrymple, ESSLLI 95, Barcelona 21
order on strings (dening relation) Total order on trees (dening relation) Partial word order possibilities: Functional Precedence Constraining 1984, Kaplan 198) (Bresnan Precedence: Not dened on f-structure C-precedence < c naturally induces an f-structure But: relation < f via inverse of correspondence \precedence" Kaplan and Dalrymple, ESSLLI 95, Barcelona 22
f1 < f f2 i for all n1 2 1 (f1) and for all n2 2 1 (f2), n1 < c n2 1 partitions c-structure nodes into equivalence classes is many-to-one because Functional Precedence two f-structure elements f1 and f2, f 1 f-precedes f2 if and For if all the nodes that map onto f1 c-precede all the nodes only that map onto f2: Kaplan and Dalrymple, ESSLLI 95, Barcelona 23
f1 < f f2 f1 < f f3 f2 < f f3 4 5 Example: 3 2 ] f1:[ ] f2:[ f3:[ ] Kaplan and Dalrymple, ESSLLI 95, Barcelona 24
f1 < f f2 f2 < f f1 but f1 = f2 and f1 < f f1 Some properties of f-precedence: Not antisymmetric, not transitive ) not an order because is not onto 2 3 f1:[ ] 4 5 f2:[ ] Kaplan and Dalrymple, ESSLLI 95, Barcelona 25
ball fell. The the ball. Fell dog chased the ball. The Chased the ball the dog. * NP SUBJ NP OBJ Some properties of f-precedence: Can order non-sisters! NP, S ] [ S f (" OBJ) < SUBJ) (" V Kaplan and Dalrymple, ESSLLI 95, Barcelona 2
Anaphora word order (Zaenen and Kaplan 1994) Constrained/free crossover (Bresnan 1984, 1994) Weak slightly dierent denition) (with Applications: etc. Kaplan and Dalrymple, ESSLLI 95, Barcelona 2
B C Rules for Dutch! NP V 0 (" XCOMP OBJ)=# 0 1 0 V XCOMP)=# (" V 0! V A @ (" XCOMP + OBJ) < f (" OBJ) Kaplan and Dalrymple, ESSLLI 95, Barcelona 28
Extending the solution to Swiss German.. das [er] [sini chind] [mediziin] wil la schtudiere.... that [he] [his children] [medicine] wants let study.... `that he wants to let his children study medicine.'.. das [er] wil [sini chind] la [mediziin] schtudiere.... das [er] [sini chind] wil la [mediziin] schtudiere.... das [er] [mediziin] [sini chind] wil la schtudiere.... das [er] [sini chind] wil [mediziin] la schtudiere.. But:... das [er] wil la [sini chind] [mediziin] schtudiere. *... that [he] wants let [his children] [medicine] study Generalization: the nominal arguments of a particular verb precede it. All Kaplan and Dalrymple, ESSLLI 95, Barcelona 29
0! V V f (" NGF) #< All the nominal arguments of a particular verb precede it:! [ NP (" XCOMP NGF)=# V 0, XCOMP )=# (" ] Kaplan and Dalrymple, ESSLLI 95, Barcelona 30
Topicalization in Dutch: NP dependents can be topicalized, even from within an All XCOMP: boek] heeft Jan de kinderen laten lezen. [Het book has Jan the children let read. The `Jan let the children read this book'. on word-order that apply to dependents in their Restrictions positions do not operate when those elements middle-eld appear in topic (foreeld) position. Kaplan and Dalrymple, ESSLLI 95, Barcelona 31
B @ XCOMP + )=# (" C A Generalization about middle-eld word order: S 0! XP S, where XP = f j 9 j : : :g NP 8 = < XCOMP (" NGF) = # ; : COMP V 0! NP (" XCOMP NGF)=# 0 1 0 V XCOMP)=# (" V 0! V (" XCOMP + NGF)< f (" NGF) But topicalized elements do not satisfy this constraint. Kaplan and Dalrymple, ESSLLI 95, Barcelona 32
S 0 NP S het boek V NP NP V 0 heeft Jan de kinderen laten lezen 2 3 TOPIC [the book] let PRED SUBJ [Jan] [the children] 2 3 OBJ PRED read XCOMP 4 4 5 SUBJ 5 OBJ the book f-precedes Jan and the children! Kaplan and Dalrymple, ESSLLI 95, Barcelona 33
and n2 are X-codominated i the lowest node of type X that n1 n1 is also the lowest node of type X that dominates n1 n 2 n1 n1 and n2 are n2 n1 n2 n1 and n2 are the condition: Rening ordering conditions to operate Restrict just within the domain Dene: dominates n2. NP NP -codominated NOT -codominated Kaplan and Dalrymple, ESSLLI 95, Barcelona 34
f-precedes f2 relative to X i for all n 1 in 1 (f1) and for all f1 in 1 (f2), n1 and n2 are X-codominated and n1 < c n2. n2 We write: f1 <X f f2 Relativized f-precedence: For two f-structure elements f1 and f2 and a category X, Kaplan and Dalrymple, ESSLLI 95, Barcelona 35
B @ XCOMP + NGF)< f (" NGF) (" C A Dutch topicalization: F-precedence relative to 0 1 V 0! V 0 V XCOMP)=# (" Imposes ordering constraints only on -codominated nodes between foreeld nodes Constraints between middle-eld nodes Constraints No constraints between foreeld and middle-eld Kaplan and Dalrymple, ESSLLI 95, Barcelona 3
Some dicult word order constraints can be captured with exible c-structure notation LFG's More complex word order constraints involve an interaction functional and phrasal requirements between The LFG correspondence architecture provides mathematically precise and linguistically useful notions for expressing Summary such constraints Kaplan and Dalrymple, ESSLLI 95, Barcelona 3