Developmental Outcome at 6.5 Years After Acidosis in Term Newborns: A Population-Based Study



Similar documents
A8b. Resuscitation of a Term Infant with Meconium Staining. Session Summary. Session Objectives. References

ST Segment Analysis (STAN) as an Adjunct to Electronic Fetal Monitoring, Part II: Clinical Studies and Future Directions

Measurement of fetal scalp lactate to determine fetal well being in labour

Fetal Acid Base Status and Umbilical Cord Sampling. David Acker, MD

Umbilical cord blood lactate: A valuable tool in the assessment of fetal metabolic acidosis

Cerebral Palsy An Expensive Enigma

Identification of peripartum near-miss for perinatal audit

Cord Blood Lactate and ph Values at Term and Perinatal Outcome: A Retrospective Cohort Study

Second stage fetal heart rate patterns and neonatal acid-base status Faridah Hanim Zam Zam 1, Nazimah Idris 2, Tham Seng Woh 1

The National Survey of Children s Health The Child

Cord Blood Lactate and ph Values at Term and Perinatal Outcome: A Retrospective Cohort Study

How To Compare Pregnancy Complications With Pregnancy And Labor

New Estimates of the Economic Benefits of Newborn Screening for Congenital Hypothyroidism in the US

THE LABOUR ADMISSION CTG An assessment of the test s predictive values, reliability and effect How the test is perceived by practicing midwives

Why the INFANT Study

CORD BLOOD COLLECTION / ANALYSIS- AT BIRTH

Cerebral palsy can be classified according to the type of abnormal muscle tone or movement, and the distribution of these motor impairments.

Cerebral palsy, neonatal death and stillbirth rates Victoria,

The effect of blood gas and Apgar score on cord blood cardiac Troponin I

Correlation between Umbilical Cord ph and Apgar Score in High Risk Pregnancy

SWISS SOCIETY OF NEONATOLOGY. Umbilical cord complications in two subsequent pregnancies

Newborn outcomes after cesarean section for fetal distress in BC

Early Signs of Puberty in Very Young Children with Cerebral Palsy and Similar Conditions by Susan Agrawal

Cord Blood Erythropoietin and Markers of Fetal Hypoxia

FETAL SCALP LACTATE RESEARCH STUDY COMPARISON OF TWO POINT OF CARE METERS

Identifying the Scopes of Services for People with Disabilities in Travis County Executive Summary

The Facts about Cerebral Palsy

The importance of acidosis in asphyxia

Cerebral palsy (CP) was defined before the specific

SOUTHERN WEST MIDLANDS NEWBORN NETWORK

BIRTH ASPHYXIA The New Consensus Statement

Age at First Measles-Mumps. Mumps-Rubella Vaccination in Children with Autism and School-Matched Control Subjects. Frank DeStefano, MD, MPH

Re-Evaluation of Cord Blood Arterial and Venous Reference Ranges for ph, po 2, pco 2, According to Spontaneous or Cesarean Delivery

Cerebral palsy and clinical negligence litigation: a cohort study

Epidemiology 521. Epidemiology of Maternal and Child Health Problems. Winter / Spring, 2010

DSM-5. Presented by CCESC School Psychologist Interns: Kayla Dodson, M.Ed. Ellen Doll, M.S. Rich Marsicano, Ph.D. Elaine Wahl, Ph.D.

Umbilical Arterial Blood Gas and Perinatal Outcome in the Second Twin according to the Planned Mode of Delivery

UMBILICAL CORD CLAMPING FOR TERM INFANTS 37 WEEKS

The Initial and 24 h (After the Patient Rehabilitation) Deficit of Arterial Blood Gases as Predictors of Patients Outcome

What do we mean by birth asphyxia

ORANGE COUNTY CARE COORDINATION COLLABORATIVE FOR KIDS

A. Evidence for an individually adjustable standard to assess birth weight:

Cerebral Palsy. p. 1

Genetic Aspects of Mental Retardation and Developmental Disabilities

British Association of Perinatal Medicine. The Management of Babies born Extremely Preterm at less than 26 weeks of gestation

Addressing Substance Use in Pregnancy

Developmental Disabilities

The relationship between umbilical cord arterial ph and serious adverse neonatal outcome: analysis of consecutive validated samples

Severe Newborn Encephalopathy Unrelated to Intrapartum Hypoxic Events: 3 Case Reports

Brain Injury during Fetal-Neonatal Transition

C. P. Noel McCarthy, MD Risk Reduction Strategies in Risk Obstetrics & Gynecology

Acknowledgements. Who was Compromised at birth? Research Question: Do lactate levels obtained from cord blood correlate to blood gas analysis?

Long-term survival of children with cerebral palsy in Okinawa, Japan

DEVELOPMENTAL SCREENING IN PRIMARY CARE: THE EFFECTIVENESS OF CURRENT PRACTICE AND RECOMMENDATIONS FOR IMPROVEMENT

Differentiation between normal and abnormal fetal growth

2016 CODING FOR FETAL ALCOHOL SPECTRUM DISORDERS

Cerebral Palsy. In order to function, the brain needs a continuous supply of oxygen.

Cerebral Palsy: Intervention Methods for Young Children. Emma Zercher. San Francisco State University

65G Eligibility for Agency Services Definitions. (1) Autism means any condition which is part of the autism spectrum disorder and which meets

Cerebral Palsy , The Patient Education Institute, Inc. nr Last reviewed: 06/17/2014 1

A Study on Patients with Cerebral Palsy

An overview of Intellectual Developmental Disability Functioning levels of Mental Retardation/Intellectual Disability Autism

REQUIREMENTS FOR REGIONAL CENTER ELIGIBILITY HAVE CHANGED

Marc J. Tassé, PhD Nisonger Center UCEDD The Ohio State University

Baltimore, MD * The Corporation Trust Inc 351 West Camden Street * Baltimore, MD KATHLEEN WARD, M.D South Hanover Street *

Evaluation of cardiotocographic and cord blood changes in induced labor with dinoprostone and misoprostol

Project LINNAEUS. A classification system for adverse events in healthcare ESQH

Survival rates for regional cohorts of extremely preterm infants have increased through the 1990s;

BORN Ontario: Clinical Reports Hospitals Part 1 May 2012

INTRAPARTUM PATHWAYS TO NEONATAL NEUROLOGIC INJURY - A LAWYER S VIEW OF THE MEDICINE

Umbilical Cord Blood Gas Analysis at Delivery: A Time for Quality Data

Correlation of Fetal Heart Rate Tracings and Scalp Stimulation Test in Labor with Cord Blood ph and Perinatal Outcome

Chapter 4: Eligibility Categories

OET: Listening Part A: Influenza

Umbilical cord blood gas analysis at the time of

NIHR HTA Programme. 14 January 2013

By Dr. Mindy Aisen CEO and Director United Cerebral Palsy Research and Educational Foundation CEREBRAL PALSY RESEARCH

Special Education Coding Criteria 2014/2015. ECS to Grade 12 Mild/Moderate Gifted and Talented Severe

I.O. Phd International Research Program

Outline Chapter 1 Child Psychology 211 Dr. Robert Frank. 1 What is child development, and how has its study evolved?

Umbilical Cord Blood Sampling

Obstetric Guideline 6B ELECTRONIC FETAL MONITORING IN LABOUR, SCALP SAMPLING, & CORD BLOOD GASES

ROLE OF SCHOOL PSYCHOLOGIST AS A RELATED SERVICE PROVIDER

Accommodations STUDENTS WITH DISABILTITES SERVICES

Does training in obstetric emergencies improve neonatal outcome?

Perinatal features and umbilical cord blood gases in newborns complicated with nuchal cord

The Roles of School Psychologists Working Within a Pediatric Setting

Hearing Tests for Children with Multiple or Developmental Disabilities by Susan Agrawal


Swedish EXPRESS Study

Babies After SCOPE: Evaluating the Longitudinal Impact using Neurological and Nutritional Endpoints

Ambulatory Outcome in Children with Developmental Delay. Rehab Al-Marzooq, MRCP, Arab Board, DCH*

How To Test For Fetal Blood

3030. Eligibility Criteria.

Priya Rajan, MD Northwestern University September 13, 2013

Doppler Ultrasound in the Management of Fetal Growth Restriction Chukwuma I. Onyeije, M.D. Atlanta Perinatal Associates

Individuals Affected by Fetal Alcohol Spectrum Disorder (FASD) and Their Families: Prevention, Intervention and Support

Epilepsy 101: Getting Started

The New England. Copyright 2001 by the Massachusetts Medical Society THE CONTINUING VALUE OF THE APGAR SCORE FOR THE ASSESSMENT OF NEWBORN INFANTS

Is it Time for UK Obstetricians to Accept Fetal Scalp Lactate as an Alternative to Scalp ph?

Transcription:

Developmental Outcome at 6.5 Years After Acidosis in Term Newborns: A Population-Based Study AUTHORS: Maria Hafström, MD, PhD, a Siv Ehnberg, RN, b Sofia Blad, PhD, c Håkan Norén, MD, PhD, d Cecilia Renman, MD, b Karl Gustaf Rosén, MD, PhD, e and Ingemar Kjellmer, MD, PhD a a Department of Pediatrics, Institute of Clinical Science, The Queen Silvia Children s Hospital, and c Perinatal Centre, Department of Physiology, University of Gothenburg, Gothenburg, Sweden; b Central Department of School Health Care, City of Gothenburg, Sweden; d Department of Obstetrics and Gynaecology, Perinatal Centre, Sahlgrenska University Hospital, Gothenburg, Sweden; and e School of Engineering, University of Borås, Borås, Sweden KEY WORDS child development, outcome assessment, term infants, newborn, metabolic acidosis, population based ABBREVIATIONS BDecf base deficit in the extracellular fluid CHS Child Health Service CTG cardiotocography SCBU special care baby unit STAN-ST waveform analysis of fetal electrocardiogram www.pediatrics.org/cgi/doi/10.1542/peds.2011-2831 doi:10.1542/peds.2011-2831 Address correspondence to Maria Hafström, MD, PhD, The Queen Silvia Children s Hospital, Sahlgrenska universitetssjukhuset, S-416 85 Göteborg, Sweden. E-mail: maria.hafstrom@vgregion.se PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). Copyright 2012 by the American Academy of Pediatrics FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose. FUNDING: The study was supported by grants from the AnnMari and Per Ahlqvist Foundation, Torbjörn Jebner s foundation for neuropediatric research, and the Adlerbert Research foundation. WHAT S KNOWN ON THIS SUBJECT: Conflicting results exist concerning long-term outcome in healthy infants with metabolic acidosis at birth. WHAT THIS STUDY ADDS: Neonates who appear well after perinatal metabolic acidosis do not have an increased risk of neurologic or behavioral problems in need of referral actions or pedagogic arrangements at the age of 6.5 years. abstract OBJECTIVES: Infants who develop encephalopathy after perinatal asphyxia have an increased risk of death and adverse neurologic outcome. Conflicting results exist concerning outcome in healthy infants with metabolic acidosis at birth. The aim of the current study was to evaluate whether metabolic acidosis at birth in term infants who appear healthy is associated with long-term developmental abnormalities. METHODS: From a population-based cohort (14 687 deliveries), 78 infants were prospectively identified as having metabolic acidosis (umbilical artery ph, 7.05 and base deficit in the extracellular fluid.12.0 mmol/l). Two matched controls per case were selected. The child health and school health care records were scrutinized for developmental abnormalities. RESULTS: Outcome measures at 6.5 years of age for 227 of 234 children (97%) were obtained. No differences were found concerning neurologic or behavioral problems in need of referral action or neurodevelopmental diagnosis in comparison of control children with acidotic children who had appeared healthy at birth, ie, had not required special neonatal care or had no signs of encephalopathy. CONCLUSIONS: Infants born with cord metabolic acidosis and who appear well do not have an increased risk for neurologic or behavioral problems in need of referral actions or special teaching approaches at the age of 6.5 years. Pediatrics 2012;129:1 7 PEDIATRICS Volume 129, Number 6, June 2012 1

Perinatal asphyxia is known to be a major cause of neonatal and childhood morbidity and mortality. Infants who develop encephalopathy have an increased risk of death and adverse neurologic outcome. Perinatal asphyxia causes fetal acidosis manifested as low umbilical cord ph at birth. Analysis of umbilical cord ph has become part of routinecareandservesasaquality measure of obstetric care and provides some risk assessment for the infant. In a Swedish study, 1 6.5% of acidotic infants had cerebral complications in the neonatal period, comparable with the rate in a study by Fee et al 2 where 6 of 110 infants with cord artery ph,7.05 had encephalopathy. The extensive review by Malin et al 3 on the association between umbilical cord ph and perinatal long-term outcome corroborates these findings but also highlights the lack of high-quality, longterm follow-up studies for other measures of adverse outcome than cerebral palsy. The association between low cord ph in a low-risk population and longterm outcome is still unclear. In this meta-analysis, an initial search of 5690 citations gave 51 primary articles, but only 17 addressed long-term outcome measures, where 7 of these studies examined the association between arterial cord ph and long-term outcome beyond cerebral palsy. Odd et al 4 described that infants who were resuscitated but who remained well afterward had an increased risk for low IQ score compared with those not requiring resuscitation, but they found no difference in the aspect of neuropsychological functioning. 5 These studies did not report the infants ph level. In the study of Ingemarsson et al, 1 infants with acidemia at birth had more problems with speech development at 4 years of age than controls. This study also included the infants with encephalopathy. Dennis et al 6 compared infants with acidemia at birth with nonacidotic infants having normal Apgar scores and low Apgar scores for performance in neurodevelopmental tests at age 4.5 years. They found no association between acidosis and neurodevelopmental function. The retrospective cohort study by Svirko et al 7 correlated arterial ph at birth with childhood tests for nonverbal intelligence, grammar comprehension, and literacy. Although a negative correlation was found, only at extreme levels of acidosis was an increased incidence of overt brain injury established. Wilschut et al 8 found that, in a sample of infants with a large variation in umbilical artery ph and without severe neonatal neurologic abnormalities, acid-base status at birth and quality of general movements at 3 months of age are not predictive of motor milestone achievement and cognitive and behavioral functioning at 4 years. It has been suggested that neonatal complications are associated with metabolic rather than respiratory acidosis. 9 Respiratory acidosis arises in the early stages of impaired blood supply to the fetus, and hypoxemia and hypercapnia occur that lead to a reduction in ph with a normal base deficit. If hypoxia is prolonged, anaerobic metabolism results, and the base deficit rises secondary to the presence of lactic acidosis and consumption of buffering substances. The Child Health Service (CHS) program and the school health program assess the health and development of all children living in Sweden at specified ages. The first examination in school health care is made at the age of about 6.5 years. This evaluation is done by the school physician and the school nurse. The children are examined, and parents are interviewed. An educational assessment made by the child s teacher and aspecified parent report are included. The school health records routinely contain a summary of the child s preschool health service record (CHS) record. A written summary is made on the basis of these records. Data from these assessments have previously been used in follow-up studies. 1,10 The aim of the current study was to take advantage of all such data to evaluate whether metabolic acidosis at birth in term infants who appear healthy is associated with developmental abnormalities up to the age of 6.5 years. METHODS The definition of metabolic acidosis in this study is umbilical artery ph,7.05 and base deficit in the extracellular fluid (BDecf).12.0 mmol/l. This definition was chosen in accordance with other studies that used the combination of ph and BDecf. 2,11 13 A cutoff value of 7.00 is often used when cord artery ph has been the single definition of acidosis. In this situation, however, the low ph is most often a result of the combination of respiratory and metabolic acidosis. 14 BDecf was calculated according to Wiberg et al. 11 As part of the introduction of the new STAN methodology for intrapartum fetal surveillance, combining an automatic continuous evaluation of the ST segment of the fetal electrocardiogram (STAN) with conventional fetal heart rate analysis (carditocography [CTG]), a prospective observational study covering the total population of deliveries at term in the city of Gothenburg and surrounding areas was conducted over 2 years (October 2000 to September 2002). 12 Of the 14 687 term deliveries, 78 cases had cord artery metabolic acidosis (group A). Control cases (group B) were identified as the 2 adjacent deliveries monitored with the same technique CTG or CTG and ST analysis in combination, delivered at the same gestational age, of the same gender, having a cord artery ph of.7.10 and in whom there was no need of care in the neonatal ward. A flowchart is shown in Fig 1. 2 HAFSTRÖM et al

FIGURE 1 Flowchart for the study population. The infants with metabolic acidosis were assigned to 4 groups according to their need of treatment in the neonatal period (groups A1 and A2) and planned level of follow-up (groups A3 and A4). Figure 1 shows the categorization. Healthy is defined as not admitted to the special care baby unit (SCBU) (group A2) or being assigned only for ordinary health care followup (group A4). Acidotic infants who initially had been admitted to the SCBU but not assigned to any extra follow-up were also included in group A4. The physician in charge decided the level of neonatal care (SCBU or not) based on clinical judgment and prevailing routines and likewise chose the level of follow-up (special development assessment or not). The children were identified by using the Swedish national registration system and the school health database system. The records were scrutinized for developmental data, referral actions, or proceedings for specific educational support by one and the same experienced school health nurse (S.E.) with the use of a specific protocol. Data extraction from these protocols, evaluations, and categorization (Table 1) were performed independently by 2 experienced pediatricians (M.H., I.K.) blinded to the conditions at birth. TABLE 1 Neurodevelopmental Categorization Criteria Category Criteria 1 No symptoms or divergence in educational or neurodevelopmental aspect. No referral activitiesexcept for the following diagnoses and symptoms: health problems concerningasthma, allergy, enuresis, growth, obesity, visual problems that are fully compensated for with glasses, or hearing evaluation associated with otitis. 2 Divergence noted for speech, language and behavior but no referral action taken. Visual problems not fully compensated by glasses, ie, squint. 3 Divergence for speech, language, behavior, and motor problems where referral action is obtained. Specific educational arrangements in the school system. 4 Specified diagnosis in the area of neurodevelopment. 5 Dead. Lost to follow-up Lost to follow-up, including children who had emigrated. The Regional Ethical Review Board of the Faculty of Medicine, University of Gothenburg, approved the current study. In the prospective poweranalysis based on data from 70 index and 140 control children, a significance level of 5% and a power of 0.88 were achieved when 20% of the index and 5% of the control population demonstrated developmental abnormalities. If the numbers were instead 15% and 5%, respectively, the power was estimated to be 0.63. Because 11 of 78 allocation groups were not complete, a matched-pair analysis was omitted, and the difference between the groups was calculated by using the Mann Whitney nonparametric test. The results are given as median values and range. The x 2 distribution test was used to analyze the frequency of the different categories in the different acidotic groups (A, A2, and A4) and the control group (B). The STATISTICA 6.0 statistical package was used. RESULTS All of the 234 children were identified by the Swedish national registration system.fourhaddied,and4hademigrated from Sweden. Of the remaining 226 health records that were possible to find, 223 (98.7%) were found and surveyed. Two records from the control group and 1 from the index group could not be located (Fig 1). These 11 missing records came from different allocation groups. Both controls were found for the remaining 67 index cases. Data from the examinations done at 6.5 years of age were obtained in all but 6 of the studied files. Four of these had a neurodevelopment diagnosis and were followed at a habilitation center according to the CHS (category 4, Table 1), 1 had been referred to a neuropsychiatric assessment (category 3), and PEDIATRICS Volume 129, Number 6, June 2012 3

a normal educational assessment at 6.5 years of age as well as a normal report were obtained in 1 child, allowing us categorize this child to category 1. All but 1 infant had arterial umbilical cord ph in this study, and all but 3 had arterial umbilical BDecf values recorded atbirth.atthesingleoccasionwhenboth arterial values were missing, umbilical venous samples were available. This made it possible to categorize this infant to the acidotic group. The child was treated at the SCBU and followed at the special development assessment clinic. Table 2 provides a detailed description of the characteristics of the study population. There were in all 13 children with a poor outcome: 4 died (category 5) and 9 had abnormal neurodevelopment(category 4). Of the children who died (1 boy, 3 girls) in the perinatal period, all had severe metabolic acidosis (range for ph 6.62 6.97 and for BDecf 15.3 19.9) and low Apgar scores measured at 1, 5, and 10 minutes (range, 0 2, 0 7, and 0 8). Three of the children had a severe encephalopathy according to Sarnat and Sarnat criteria, 15 and the fourth (with Apgar score 2, 7, 8) died in Escherichia coli sepsis. The 4 infants in the acidotic group, who were later assigned a neurodevelopment diagnosis, all had an affected Apgar score (range, 0 5, 0 6, and 4 7), low ph (range, 6.87 7.02), and high BDecf (range, 13.1 15.3). Clinical signs of encephalopathy 15 were seen in 3 of these infants, and the fourth had meconium aspiration. This child later received a diagnosis of atypical autism. Four of these 8 infants were delivered by caesarean delivery, 2 by vacuum extraction, and the remaining 2 by spontaneous cephalic delivery. The infants treated at the SCBU received care according to the current routines at the time, eg, no hypothermia was given for encephalopathy. None of the 5 children in the control group who, at 6.5 years of age, had a neurodevelopmental diagnosis was in the need of hospital care during the neonatal period. They had no sign of asphyxia (Apgar score range, 7 9, 9 10, and 9 10), had a normal ph (range, 7.17 7.31), and Bdecf (range, 23.92 to 3.70), and no clinical sign of encephalopathy. At 6.5 years of age, 2 had Ehler-Danlos syndrome, both with known heredity, 1 had Asperger syndrome, 1 had attention-deficit/hyperactivity disorder in need of medical treatment, and the fifth had a generalized mild developmental delay. A flowchart of the population, including the distribution between the different groups, is shown in Fig 1. Table 3 shows the distribution of cases in the different categories. All infants born with metabolic acidosis who appeared healthy at birth and who were not treated in the SCBU (A2) were without neurodevelopmental diagnosis at 6.5 years of age, but 8 (8/33 = 24%) were categorized as having a divergence for speech, language, behavior, or motor problems where referral action was taken or had specific educational arrangements in the school system (category 3). Fourofthe13infantswhowerefollowed at the special assessment clinic (A3) developed a neurodevelopmental diagnosis(category 4); of the remaining 9, 3 were classified to category 3. In total, 54% of the children in this group had special needs (7/13). None of the 59 infants with metabolic acidosis who only followed the normal CHS program and the school health program (A4) developed a neurodevelopmental diagnosis (category 4), but 13 infants fulfilled the criterion for category 3 (13/59 = 22%). In the control group(b), referral actions or educational arrangements had been done in 31 of the 151 (21%) (the 5 with a neurodevelopmental diagnosis included) and, in the total acidotic group, 24 of 76 (A) (32%) had an adverse outcome (dead, neurodevelopmental diagnosis, or referral actions). No statistical differences were found when the control group (B) was compared with acidotic infants who appeared healthy at birth and were not admitted to the SCBU (A2) nor in a comparison of the control group with the acidotic infants who had only ordinary health care follow-up (A4). In this comparison, the 26 infants who had initially been admitted to the SCBU but who were only followed up at the regular CHS are included. A statistical difference was found when all children who had been acidotic at birth (A) were compared with the control group (B). DISCUSSION This study shows that term infants with severe metabolic acidosis in cord blood who appear healthy at birth do not have an increased risk of neurologic or behavioral problems in need of referral actions or educational support at the age of 6.5 years. Likewise, acidotic newborns that were transferred for supervision to the SCBU but did not exhibit symptoms of encephalopathy did not have increased risks of problems at 6.5 years. However, a difference emerges when the entire cohort of acidotic children in this population is compared with the control group. In the acidotic group, 10.6%, and, in the control group, 3.3% exhibited a neurodevelopmental diagnosis ordied. This difference is related to increased risks for children with acidosis and neonatal encephalopathy. Only a few studies have addressed the question of long-term outcome in healthy infants with metabolic acidosis at birth. Malin et al 3 conclude that low cord ph is substantially associated with neonatal mortality and morbidity and cerebral palsy in childhood and that these outcomes justify increased surveillance of infants born with a low cord ph. The studies published have 4 HAFSTRÖM et al

TABLE 2 Characteristics of Study Population Measure Acidosis Control Group, B SCBU, A1 Maternity Ward, A2 Special Developmental Assessment, A3 Child Health Clinic, A4 Number 43 35 13 61 156 Gender: boys/girls (% boys) 30/13 (70) 17/18 (49) 9/4 (69) 37/24 (61) 94/62 (60) Gestation: wk + d 40+5, NS (37+6 to 43+1) 41+0, NS (37+6 to 42+6) 41+2 NS (37+6 to 42+2) 40+6 NS (37+6 to 43+1) 40+6 (37+0 to 43+1) Method of birth **** NS NS NS Spontaneous cephalic, n (%) 18 (42) a 29 (83) 7 (54) 39 (64) 115 (74) Caesarean delivery, n (%) 18 (42) a 5 (14) 3 (23) 9 (15) 25 (16) Instrumental (vacuum 7 (16) a 1 (3) 3 (23) 13 (21) 16 (10) extraction), n (%) Birth weight, g 3540 NS (2580 4920) 3555 NS (2360 4935) 3480 NS (2615 4120) 3540 NS (2360 4935) 3650 (2650 5630) Umbilical artery, (ph) 6.93**** (6.62 7.04) a 6.98**** (6.85 7.04) a 6.91**** (6.70 7.02) a 6.97**** (6.70 7.04) a 7.23 (7.10 7.41) Umbilical artery, Bdecf 14.73**** (12.27 19.89) a 13.03**** (12.20 16.57) a 15.04**** (12.27 19.59) a 13.35**** (12.10 17.74) a 3,63 (23.92 to 10.17) Apgar score at 1 min 3**** (0 9) a 7**** (3 9) a 4**** (0 9) a 6**** (1 9) a 9(3 10) Apgar score at 5 min 6**** (0 10) a 9**** (7 10) a 5**** (0 10) a 9**** (3 10) a 10 (8 10) Apgar score at 10 min 8**** (0 10) a 10 NS (8 10) 6**** (3 10) a 10**** (6 10) a 10 (9 10) Outcome assessment Ordinary health care 26 35 0 61 156 follow-up, n Special development 13 0 13 0 0 assessment, n Age at assessment 6.50, NS (5.75 7.18) 6.42 NS (5.42 7.67) 6.58 NS (5.75 7.17) 6.42 NS (5.42 7.67) 6.42 (5.33 7.33) Mortality, n 4 0 0 0 0 Lost to follow-up, n 2 5 Head circumference at 0.13, NS (25.76 to 2.51) 0.64 NS (21.44 to 2.41) 0.13 NS (25.76 to 1.06) 0.24 NS (22.15 to 2.51) 0.13 (22.89 to 2.93) 18 mo (SDS) Weight at 6.5 y (SDS) 20.28** (22.66 to 2.04) a 0.74 NS (21.58 to 4.71) 20.67** (22.60 to 1.41) a 0,03 NS (22.66 to 4.71) 0.31 (22.94 to 5.11) Height at 6.5 y (SDS) 20.21** (22.71 to 1.87) a 0.48 NS (21.65 to 1.97) 20.58* (22.47 to 0.61) a 0.18 NS (22.71 to 1.97) 0.34 (22.87 to 3.38) BMI 15.55 NS (13.15 19.72) 16.37 NS (13.66 25.41) 14.96 NS (13.15 19.23) 15.90 NS (13.31 25.41) 15.84 (12.91 24.68) The figures are shown as median (range). The statistical calculations are made in comparison with the control group (B). SDS, SD score (Z score); NS, not significant. **** P,.0001, *** P,.001, ** P,.01, * P,.05. a Significant results are indicated with *. TABLE 3 Distribution of Cases (n, %) in the Different Categories Category Complete Acidotic Group, A Acidotic SCBU, A1 Acidotic, No SCBU, A2 Acidotic, Special Development Assessment, A3 Acidotic, Ordinary Health Care, A4 Control Group, B 1 41 (53.9%) 22 (51.2%) 19 (57.6%) 5 (38.5%) 36 (61.0%) 93 (61.6%) 2 11 (14.5%) 5 (11.6%) 6 (18.2%) 1 (7.7%) 10 (16.9%) 27 (17.9%) 3 16 (21.1%) 8 (18.6%) 8 (24.2%) 3 (23.1%) 13 (22.0%) 26 (17.2%) 4 4 (5.3%) 4 (9.3%) 0 4 (30,8%) 0 5 (3.3%) 5 4 (5.3%) 4 (9.3%) 0 0 0 0 Lost to follow-up 2 0 2 0 2 5 Sum 78 43 35 13 61 156 x2 test Compared groups (A) to (B) (A2) to (B) (A4) to (B) Significance P,.001*** NS NS For definition of categorization definition see Table 1. NS, not significant. conflicting results, varying inclusion criteria concerning infants with or without symptoms of encephalopathy, and varying definitions of acidosis (ph level) (see the introduction). The studies published have not had the same main goal as this study, namely to separate the healthy and sick acidotic infants. In light of this, our study brings new knowledge. We demonstrate that metabolic acidosis in cord blood is not associated with increased developmental problems at the age when children start school, unless acidosis is combined with encephalopathy. The anthropometric data for the acidotic children defined as healthy in the newborn period (groups A2 and A4) and controls were similar. The significant difference seen for the other groups(a1 and A3) is expected, because they include the children with a neurodevelopmental diagnosis. Strengths of This Study We have a population-based study where the matching of controls was done prospectively at birth according to strict criteria. The incidence of metabolic acidosisincordbloodisverysimilar tothat PEDIATRICS Volume 129, Number 6, June 2012 5

observed in another contemporaneous population-based material from West Sweden. 13 In the acidotic group, 8 of 78 infants died in the neonatal period or developed a neurodevelopment diagnosis. For 2 of these infants, no obvious clinical signs of encephalopathy 15 were found. These figures correspond to those in clinical material from similar demographic situations 1,13 and suggest that our material is representative. Five children in the control group had a neurodevelopmental diagnosis. For the childrenwithattention-deficit/hyperactivity disorder, Asperger syndrome, and mild mental retardation, this might be expected.concerningthe2childrenwith Ehler-Danlos syndrome, we have no other explanation than chance. Very high follow-up rates were achieved. All but 3 school records possible to find were located and scrutinized. If we include the records of the 4 who died in the neonatal period, 227 of 234 (97%) records could be found and the outcome information retrieved. This was made possible by the Swedish national registration system in combination with the national CHS and school health program where all children have health and development assessments at defined ages. The same nurse with long experience of the Swedish school health system scrutinized all records and filled in the protocols. Data extraction from these protocols and evaluation and categorization (Table 1) were performed by 2 experienced pediatricians who at that time were blinded to the conditions at birth. These factors increase the accuracy of the material. The use of strictly defined metabolic acidosis levels instead of just ph levels increases the accuracy of the study. This is discussed in the introduction. All but 1 infant in this study had arterial cord ph values, and arterial BDecf values were recorded in all but 3. This was made possible by strict clinical routines in the delivery wards for this procedure. The advantage of also basing the study on umbilical arterial samples instead of mixed or venous samples is well documented. 14 Weakness of This Study The categorization of being healthy in the neonatalperiod (groupa2 anda4) is partly a subjective judgment. However, all acidotic infants who developed a neurodevelopmental diagnosis were treated in the SCBU and assigned to this follow-up. We believe that the corresponding results in these 2 comparisons groups (A2 and A4) strengthen the result that metabolic acidosis in the perinatal period above all increases the risk for neurologic or behavioral problems or need of referral actions or educational arrangements at the age of 6.5 years if the infant already shows symptoms during the neonatal period. We believe that the differences we obtain when including all acidotic infants in a comparison strengthen these results. Outcome data were retrospectively collected. This is in part compensated by the fact the matching of controls at birth was done prospectively. The disadvantages of making chart reviews and not examining all children are obvious. The possibility that minor neurodevelopmental problems at the age of 6.5 and after only 0.5 to 1 year in the school system are not yet discovered or are not yet reported must be taken into consideration. This problem is assumed to be similar in the control group. The reservation that a larger cohort of acidotic infants could possibly detect less frequent divergences must be made. CONCLUSIONS Infants born with cord metabolic acidosis and who appear well do not have an increased risk for neurologic or behavioral problems in need of referral actions or pedagogic arrangements at the age of 6.5 years. ACKNOWLEDGMENTS Dr Aimon Niklasson MD, PhD is acknowledged for excellent help concerning growth parameters. REFERENCES 1. Ingemarsson I, Herbst A, Thorngren-Jerneck K. Long term outcome after umbilical artery acidaemia at term birth: influence of gender and duration of fetal heart rate abnormalities. Br J Obstet Gynaecol. 1997;104(10): 1123 1127 2. Fee SC, Malee K, Deddish R, Minogue JP, Socol ML. Severe acidosis and subsequent neurologic status. Am J Obstet Gynecol. 1990;162(3):802 806 3. Malin GL, Morris RK, Khan KS. Strength of association between umbilical cord ph and perinatal and long term outcomes: systematic review and meta-analysis. BMJ. 2010;340:c1471 4. Odd DE, Lewis G, Whitelaw A, Gunnell D. Resuscitation at birth and cognition at 8 years of age: a cohort study. Lancet. 2009; 373(9675):1615 1622 5. Odd DE, Whitelaw A, Gunnell D, Lewis G. The association between birth condition and neuropsychological functioning and educational attainment at school age: a cohort study. Arch Dis Child. 2011;96(1):30 37 6. Dennis J, Johnson A, Mutch L, Yudkin P, Johnson P. Acid-base status at birth and neurodevelopmental outcome at four and one-half years. Am J Obstet Gynecol. 1989; 161(1):213 220 7. Svirko E, Mellanby J, Impey L. The association between cord ph at birth and intellectual function in childhood. Early Hum Dev. 2008;84(1):37 41 8. Wildschut J, Feron FJ, Hendriksen JG, et al. Acid-base status at birth, spontaneous motor behaviour at term and 3 months and 6 HAFSTRÖM et al

neurodevelopmental outcome at age 4 years in full-term infants. Early Hum Dev. 2005;81(6):535 544 9. Low JA, Panagiotopoulos C, Derrick EJ. Newborn complications after intrapartum asphyxia with metabolic acidosis in the term fetus. Am J Obstet Gynecol. 1994;170(4):1081 1087 10. Lindström K, Fernell E, Westgren M. Developmental data in preschool children born after prolonged pregnancy. Acta Paediatr. 2005;94(9):1192 1197 11. Wiberg N, Källén K, Olofsson P. Base deficit estimation in umbilical cord blood is influenced by gestational age, choice of fetal fluid compartment, and algorithm for calculation. Am J Obstet Gynecol. 2006;195(6):1651 1656 12. Norén H, Blad S, Carlsson A, et al. STAN in clinical practice the outcome of 2 years of regular use in the city of Gothenburg. Am J Obstet Gynecol. 2006;195(1):7 15 13. Noren H, Carlsson A. Reduced prevalence of metabolic acidosis at birth: an analysis of established STAN usage in the total population of deliveries in a Swedish district hospital. Am J Obstet Gynecol. 2010;202(6): 546.e1 7. 14. Rosén KG, Murphy KW. How to assess fetal metabolic acidosis from cord samples. J Perinat Med. 1991;19(3):221 226 15. Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976;33(10):696 705 PEDIATRICS Volume 129, Number 6, June 2012 7