Structural Bonding Alternatives for Plastics

Similar documents
Adhesive Bonding of Natural Stone

Scotch-Weld TM. Acrylic Adhesives. DP8405NS Green. Product Data Sheet. Date: March 2014 Supersedes: August 2013

How To Make An Led Lamphead

Product Sheet. Silicone Adhesive Sealants. RTV Silicone Adhesive Sealants

3M Scotch-Weld EPX Two-component structural adhesives and applicator guns

Technical Data Sheet February 2014

Scotch-Weld TM. DP410 Off-White. Product Data Sheet. Product Description. Key Features Rapid cure at room temperature; cure rate may be accelerated

RTV159. RTV157 and RTV159 High Strength Silicone Adhesive Sealants

Development of an innovative bio-based structural adhesive

PRODUCT INFORMATION : ADHESIVES DELIVERING THE FUTURE OF COMPOSITE SOLUTIONS ADHESIVES. contact@gurit.com

Thermal Adhesives Ther-O-Bond 1500

How To Test A Base Axe

RTV162. Electronic Grade Silicone Adhesive Sealant

Scotch-Weld. Low-Odor Acrylic Adhesives DP810 DP810 NS. Technical Data June, 2004

IS800 Series. Technical Data Sheet IS802, IS803, IS808, IS Description. Key Features and Benefits. Typical Physical Properties

Scotch-Weld TM. Epoxy Adhesive 1838 B/A Green 1838 B/A Tan 1838-L B/A Translucent. Technical Data February, Product Description

PP / PE X X X X (X) X PA (X) X

Loctite Instant Adhesives Discover Our Entire Portfolio Including the Latest Innovations

Redux Film Adhesives, Foaming Films, Primers and Liquid Shims. About HEXCEL

Electron Beam Technology for Pressure Sensitive Adhesive Applications

3M Thermally Conductive Adhesive Transfer Tapes

Crystal Clear Sealant

3M Dual Lock Reclosable Fastener

This presentation is courtesy of

3 Scotch-Seal TM. Polyurethane Sealant 540 Polyurethane Adhesive Sealant 560. Technical Data July, 2008

3M Thermally Conductive Epoxy Adhesive TC-2810

Two component epoxy paste adhesive

PC-Concrete Injectable Concrete Anchoring and Repair System

Temperature C Cure time to reach hours LSS > 1MPa minutes

High Performance PSA in Sheet Membrane in Water Protection

3 Dual Lock Reclosable Fasteners

Selection Guide Matching 3M structural adhesives to your performance requirements

3 Scotch-Weld TM. Epoxy Adhesive EC-3333 B/A. Technical Data May 2010

CORROSION ENGINEERING RESIN-BASED POLYMER CONCRETES AND GROUTS

Industry. Rail Leading Innovation in a Dynamic Industry. Sika Services AG

Basic Properties and Application of Auto Enamels

ADHESIVE BONDING PERFORMANCE OF GA COATED 590 MPa TENSILE STRENGTH STEELS

stick Fast tm Basic Use Information Cyanoacrylate Adhesives What is it? How does it cure?

3 Scotch-Weld TM. Epoxy Adhesive DP110 Translucent and Gray. Technical Data December, 2009

Black epoxy paste adhesive system

Radiation Curable Components and Their use in Hard, Scratch Resistant Coating Applications

more than you expect Threadlockers, sealants and adhesives

DUPONT PERFORMANCE POLYMERS Joint Design: A Critical Factor in Strong Bonds GENERAL GUIDELINES FOR ULTRASONIC, VIBRATION AND SPIN WELDING

SC2000 CEMENT BONDING PROCEDURES

3 Scotch-Weld TM. Urethane Adhesives 3532 B/A 3535 B/A 3549 B/A. Technical Data January, 2010

Phosphoric Acid Anodized Aluminum Honeycomb

3M Thermal Bonding Film AF42

Sika Membran System For Sealing and Waterproofing Construction Gaps in Building Façades

Surface Engineering Solutions Rebuild, Repair and Protect Industrial Equipment

SECTION 623 CONCRETE BONDING COMPOUND, EPOXY MORTAR AND EPOXY POLYMER CONCRETE OVERLAY SECTION CONCRETE BONDING COMPOUND.

CLICKBOND FASTENER OVERVIEW:

Construction. 3-part thixotropic epoxy patching mortar. Product Description. Tests

Technical Data July, 2015

Rubber-to-Metal Bonding

ROVACE HP-2931 High Performance Vinyl Acetate/Acrylic Copolymer Emulsion

Bonding, Sealing and Coating Solutions for Laptops & Tablets

Concrete Repair. Applications and Procedures

Loctite adhesives have been specified by the world s major speaker manufacturers for over two decades. With the most diversified line of adhesives

Bonding, Sealing and Coating Solutions for Mobile Devices

Adhesive Recommendation for Altro Flooring. Porous (absorbent) subfloors (most wood subfloors and some concrete)

Scotch-Weld. Epoxy Adhesive. DP190 Translucent and Gray. Technical Data April, 2010

Two component epoxy paste adhesive. Ideal for bonding GRP, SMC and dissimilar substrates

referenceguide Reference Guide for Pressure-Sensitive Adhesive Tapes great to work with

INDUSTRIAL FLOORING INSTALLATION CHALLENGES. James C. Ziegler, ArmorSeal Product Manager Sherwin Williams Cincinnati, Ohio, USA

Reliable and comprehensive bonding solutions

How To Make A Hot Melt Adhesive

Construction. Sikadur-Combiflex. Sealing system for cracks and problem joints with large movements DESCRIPTION

738-B-297 POLYMERIC CONCRETE BRIDGE DECK OVERLAY. (Adopted )

3 Destructible Vinyl Label Material 7613T / 7930T

3 Scotch-Weld TM. Urethane Adhesives 3532 B/A 3535 B/A 3549 B/A. Technical Data March, 2002

The BASA Guide to the ISO Classification of Sealants for Building Construction

DENT 5351 Final Examination 2007 NAME

Solvent Cementing Instructions For Plastic Pipe & Fittings

Shaft Repair Rebuild and Maintenance Guide

Good Boards = Results

3M Scotch-Weld Structural Adhesives. Product. Selection Guide. Matching 3M Structural Adhesives to your performance requirements

peel adhesion 2 breaking load 4 rolling ball 6 shear adhesion 7 carton test 9 summary test methods 11

Crevice Corrosion on Stainless Steel Propeller Shafts

Effects of Tg and CTE on Semiconductor Encapsulants

STAYFLEX CORROSION CONTROL AND THERMAL INSULATION SYSTEM

Guide Specification STAYFLEX CORROSION CONTROL AND THERMAL INSULATION SYSTEM

ENVIRONMENTAL EFFECTS ON COATINGS

3M Scotch-Weld Epoxy Adhesive

Technical Data May, 2015

Two-Shot Silico e Thermoplastic Medical Molding

WATERPROOFING OF REINFORCED CONCRETE FLAT ROOF 12

Active Alignment for Cameras in Mobile Devices and Automotive Applications

Document Library TS Data Sheet M Windo-Weld Super Fast Urethane. Data Sheet. Public

1. Initial Precautions 2. Technical Precautions and Suggestions 3. General Information and Cure Stages 4. Understanding and Controlling Cure Time

ACRYLICS. The properties of the resulting acrylics vary depending on the nature of the alkyl groups both on the alcohol and the acrylic acid.

Resistance of Plastics to Gamma Irradiation

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS

Precast Concrete Parking Structures

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager

Tractor Painting Tips

0816 Series 100% Silicone Sealant Architectural Grade/0816OI RD PRO Industrial Grade RTV 100% Silicone Sealant: What is the base chemistry for Red

3 Technical Bulletin 3M TM VHB TM Durability

Colorado State University. Durrell Center Roof Repair

Property Test/Standard Description. semi gloss (35-70) Flash point ISO 3679 Method 1 34 C IED (2010/75/EU) (calculated)

3M Electrically Conductive Adhesive Transfer Tape 9703

Transcription:

Success Secured with LOCTITE Structural Bonding Alternatives for Plastics By Rachel Nashett, Henkel Corporation Reviewed December 2014 by Robert Ignatzek, Global Technology Manager, Henkel AG & Co. KgaA Contact Us

Abstract Plastics have become an integral part of everyday life. It would be difficult to identify a manufacturing process which does not use plastics in one form or another. Even products which appear to be composed exclusively of metals are usually coated, sealed, or adhesively joined using polymeric materials which improve the performance, appearance, and longevity of metal products. Plastics have achieved widespread acceptance due to the virtually limitless combinations of plastic types, fillers, and additives which can be compounded at relatively low costs and processed by a wide variety of methods. When designing assemblies made from or including plastics, it is often critical to structurally hold assemblies together with a reliable mechanism. Plastics can be reliably fastened to a wide variety of substrates using an engineered adhesive solution. BACKGROUND Adhesives are being introduced into the production market to help reduce the cost, time, and waste associated with the usage of traditional mechanical fasteners and welding to provide structural integrity to assemblies. Industrial adhesives have been used to effectively bond dissimilar substrates, distribute stress loads and vibrational forces, and increase the ascetics of structural assemblies. In today s competitive market, streamlining production and creating better, more reliable assemblies are critical factors to ensuring the success of modern manufactures. Adhesives have been successfully used to displace solvent welding in the plastics industry, join dissimilar substrates, and provide structural integrity to a wide variety of products and applications. Typical adhesive applications range from bonding critical medical components to heavy equipment. To ensure the structural integrity of an adhesively joined assembly, appropriate time should be taken to evaluate bond joint design and adhesive selection.. According to the Engineers Guide to Plastics published by Materials Engineering, adhesives are effective in bonding at least 36 different types of plastics. Other commonly used methods of joining plastics are not capable of joining nearly as many types of plastics. DESIGN CONSIDERATIONS When bonded correctly, the low tensile strengths of plastics and a large joint overlap can result in substrate failure of an assembly prior to an adhesive bond joint failure. There are five main types of forces which can be applied to adhesively bonded joints: tensile, shear, compression, peel, and cleavage. Tensile force is the force applied to an adhesively bonded joint when pulling the assembly apart perpendicularly to the bond line and adjoining substrate. Many types of adhesive perform well when tested in the tension plane. Structural Bonding Alternatives for Plastics Page 2

Shear force is the force applied when substrates in an adhesively bonded joint are pulled parallel from one another along a plane. In most adhesive qualification and testing, structural properties of an adhesive are evaluated in the shear plane. Many structural adhesives perform well when subjected to shear forces. Compression is the optimal force in which to place on an adhesively bonded assembly. Compressive force is the force applied to an assembly when the adhesively bonded substrates are pushed together perpendicularly by an outside force. Peel and cleavage forces are similar to each other, and are the least desirable forces to apply to an adhesively bonded assembly. Peel and cleavage forces are applied to the leading edge of an adhesively bonded assembly. These forces apply an uneven distribution of stress to the edge of the bonded materials. Once the adhesive begins to pull apart along the leading edge, the fractures being created in the adhesive may begin propagate through bond line. Figure 1: Example of Tensile Force Figure 2: Example of Shear Force Figure 3: Example of Compression Force Structural Bonding Alternatives for Plastics Page 3

Figure 4: Example of Peel Force The force, or forces, which may be applied to the bond joint, are critical in the adhesive selection process. Some adhesive perform better under certain conditions, or have been designed to withstand specific forces better than other adhesives. During the adhesive selection process, manufacturers should consider the environmental conditions the assembly will be exposed to throughout its intended usage period. Temperature, UV exposure, surface contamination, surface treatments, and solvent and chemical exposure are all environmental factors which should be considered during adhesive selection. Different adhesive chemistries are designed to meet specific manufacturing and end use conditions. AVAILABLE STRUCTURAL ADHESIVE TECHNOLOGIES A wide variety of adhesive technologies is available to meet the bonding needs of manufacturers. The top performing adhesives used for the structural bonding of plastics fall into three main adhesive categories: epoxies, cyanoacrylates, and methyl methacrylates. Choosing which type of adhesive is appropriate for a manufacturing system depends on the materials being bonded, joint design, and the projected end use conditions of the assemble. Epoxy Adhesives Epoxies are structural adhesives which come in one- and two-part systems. Epoxies provide unlimited gap filling capabilities and cure-through depth, excellent thermal and chemical resistance, high cohesive strength (strength within the adhesive), low shrinkage, good shear and peel strength, and many epoxies are machinable and paintable. Epoxies also have formulating versatility which can easily facilitate custom epoxy formulations. Epoxies cure when covalent bonds between the epoxy resin and hardener are formed. Catalysts can be added to the epoxy system to increase the cure rate. Heat can also increase the cure rate of an epoxy adhesive system. Controlled heat application can increase the crosslinking density of the adhesive in the bond area, resulting in higher cured strengths. There are a few limitations to epoxy adhesive systems. Epoxy systems tend to have a slow cure rate, with a fixture time between 5 minutes and 2 hours. Slow cure may be beneficial in a situation where it takes extended time to join parts after adhesive application, or if parts need to be repositioned after being mated. Structural Bonding Alternatives for Plastics Page 4

Epoxies do exotherm during cure, so consideration needs to be taken if a manufacturer intends to use epoxies on highly sensitive parts. If a manufacturer is bonding parts with a large bondline gap, or parts which will endure high temperatures, or harsh chemicals, epoxies may be a bonding solution. Cyanoacrylates Cyanoacrylates (CAs) are single component, quick fixturing, room-temperature curing adhesives, which provide excellent adhesion to most substrates. Due to the single component nature of CAs, these adhesives can be easily automated and integrated into production lines. CAs come in a wide range of viscosities from water thin to gels, and have good resistance to moisture and non-polar chemicals. Cyanoacrylates anionicly polymerize in the presence of a weak base such as water (which can be present in the form of humidity from the air on parts), and the neutralization of acid stabilizers present in the adhesive. As the acid stabilizers in the cyanoacrylate are neutralized, rapid polymerization occurs. CAs do have some limitations: CAs bond to skin rapidly, have limited gap filling and curing capabilities, poor polar solvent resistance (isopropanol, acetone, methylene chloride), and poor long-term durability on glass substrates. Other limitations of CAs include slow cure speed on dry or acidic surfaces, poor impact resistance and peel strength (due to the ridged nature of the cured adhesive), poor high temperature performance, and low bond strengths to polyolefins. Accelerators are solvent-based products designed to increase the cure speed of cyanoacrylates, reduce fixture time, and increase the gap cure capabilities of the adhesive system. Primers are solvent-based products which are applied to a substrate and used to assist in promoting adhesion on difficult to bond substrates, with low surface energy, such as polyolefins. Some CAs contain rubber toughening agents which enhance peel and impact strengths, of CAs, on bonded assemblies. Surface insensitive adhesives provide enhanced bonding performance on acidic surfaces, and enhanced adhesive performance in low humidity curing environments. Surface insensitive CAs typically provide the highest adhesive bond strengths on most plastics. In destructive assembly testing, often the plastic material fails before the adhesive. Two Part Cyanoacrylates Two-part cyanoacrylates are one of the newest breakthrough innovations in the cyanoacrylate adhesive industry. Two-part CAs are two-component, extremely quick fixturing, room-temperature curing adhesives that provide excellent adhesion to a wide verity of substrates. Due to the dual component nature of two-part CAs, these adhesives are slightly more difficult to automate and integrate into production lines then standard CAs. Currently two-part CAs are only available as gels. Two-part CAs have excellent resistance to moisture and nonpolar chemicals. Structural Bonding Alternatives for Plastics Page 5

Two-part CA adhesive systems are only available in dual cartridges with a single use mix nozzle. One side of the cartridge contains the cyanoacrylate monomer resin, and the other side of the cartridge contains a proprietary catalyst which promotes the cure of the adhesive system. Like the epoxies adhesive systems, two-part CAs do exotherm during cure. Since they are not limited to a moisture cure system, two-part CAs have wide gap filling and curing capabilities, unlike traditional one-part CA adhesives. Two-part CAs have a more rapid speed of cure than one-part CAs, and provide enhanced bonding performance on acidic surfaces and in low humidity curing environments. Two-part CAs also provide high bond strengths on most plastics. Like one-part CAs, in destructive assembly testing, often the plastic material fails before the adhesive. Methyl Methacrylate Adhesives Methyl Methacrylate (MMA) adhesives are two-component, resin and hardener, structural adhesive systems. MMAs cure at room temperature when the resin and hardener are mixed at the proper ratio. The resins in MMA systems consist of an elastomer dissolved in acrylic monomers, mixed with peroxides. The elastomers in the adhesive formulation provide MMAs with strength and temperature resistance. The peroxides in the MMA adhesive formulations begin to decompose when exposed to the MMA hardener, or catalyst, creating free radicals; resulting in polymerization. MMA adhesive systems form high strength structural bonds to plastics, composites, and metals. MMAs are versatile adhesives with a variety of available formulations to meet the needs of a manufacturer. These adhesive materials can handle a high loading of rubber fillers, and still maintain exceptional strength properties. Rubber fillers result in a polymer with excellent peel and impact strength. MMAs are also available with glass beads mixed into the formulations, which assist in providing a consistent bondline thickness. MMA adhesive systems are flammable, exothermic, some have a limited cure depth of 0.03 inches, and they tend to have a strong odor. MMA adhesives provide exceptional adhesion to a wide variety of substrates, exceptional chemical resistance, high peel and impact strength, good gap filling properties, and cure speeds ranging from 5 minutes to 1 hour. MMA adhesives can develop fixture strength in 2 minutes and full strength in 4 to 24 hours. Unlike other adhesive systems, MMAs have the ability to cut through a variety of surface contaminations and provide strong reliable bonds. CONCLUSION Adhesives are being rapidly introduced into the production world to provide cost and time savings, reduce waste, and to build better, stronger, more reliable assemblies. When selected properly, adhesives can be used to reliably fasten plastics to a wide variety of substrates. Choosing an adhesive to bond an assembly can be a tricky process. If an adhesive is introduced during, or even after, the design phase of a project; the manufacturing process can be easily streamlined and a higher quality, lower cost assembly can be brought to market. ### Structural Bonding Alternatives for Plastics Page 6