Acid-Base Titration. Experiment OBJECTIVES

Similar documents
Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

Acid Base Titrations

18 Conductometric Titration

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

ph: Measurement and Uses

TITRATION CURVES, INDICATORS, AND ACID DISSOCIATION CONSTANTS

EXPERIMENT 10: TITRATION AND STANDARDIZATION

Lab #10 How much Acetic Acid (%) is in Vinegar?

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

Chem 1B Saddleback College Dr. White 1. Experiment 8 Titration Curve for a Monoprotic Acid

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

The Determination of an Equilibrium Constant

The Determination of Acid Content in Vinegar

1. To perform a potentiometric titration of a sample of Liquid Drano with hydrochloric acid.

Experiment 17: Potentiometric Titration

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

Determination of the Amount of Acid Neutralized by an Antacid Tablet Using Back Titration

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

Acid-Base Titrations Using ph Measurements

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

Drop Counter Sensor Product Number: ENDRP-AD100

Determining the Identity of an Unknown Weak Acid

GA/7 Potentiometric Titration

Analyzing the Acid in Vinegar

Acid-Base Titrations. Setup for a Typical Titration. Titration 1

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.

Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?

TITRATION OF VITAMIN C

Neutralization Reactions. Evaluation copy

Endothermic and Exothermic Reactions. Evaluation copy. Mg(s) + 2 HCl(aq) H 2 (g) + MgCl 2 (aq)

POTENTIOMETRIC TITRATION OF A WEAK ACID

Experiment 7: Titration of an Antacid

Juice Titration. Background. Acid/Base Titration

EXPERIMENT INTRODUCTION TO INDICATORS AND ACID-BASE TITRATIONS

Acid Dissociation Constants and the Titration of a Weak Acid

TITRATION OF AN ACID; USING A ph METER. The ph meter is an instrument that measures the ph of a solution and affords a

Determination of Citric Acid in Powdered Drink Mixes

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure ml Erlenmeyer flask. Vernier computer interface

Calcium Analysis by EDTA Titration

Experiment 6 Titration II Acid Dissociation Constant

Experiment 4 (Future - Lab needs an unknown)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Laboratory Chemistry THE POTENTIOMETRIC TITRATION OF AN ACID MIXTURE 1

Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy

Electrical Conductivity of Aqueous Solutions

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

COMMON LABORATORY APPARATUS

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets

Acid Base Titration: ph Titration Curve

Neutralizing an Acid and a Base

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Household Acids and Bases

Experiment 3 Limiting Reactants

EXPERIMENT 7. Identifying a Substance by Acid-Base Titration

Evaluation copy. Energy Content of Foods. computer OBJECTIVES MATERIALS

Analysis of Vitamin C Using Iodine. Introduction

Phosphates (ortho- and total)

CSUS Department of Chemistry Experiment 8 Chem.1A

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE ABSORPTION OF CARBON DIOXIDE INTO WATER

Phenolphthalein-NaOH Kinetics

Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1

Determination of a Chemical Formula

Evaluation copy. Case File 9. A Killer Cup of Coffee? GlobalTech manager dies

Recovery of Elemental Copper from Copper (II) Nitrate

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

PERCENT ACETIC ACID IN VINEGAR EXPERIMENT 15

Molar Mass and the Ideal Gas Law Prelab

Designing An Experiment Using Baking Soda and Vinegar

Extraction: Separation of Acidic Substances

Direct ISE Method Method to 1000 mg/l Na + Sodium ISE

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Experiment 6 Coffee-cup Calorimetry

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

ph Measurements of Common Substances

Properties of Acids and Bases

CHM1 Review for Exam 12

Related concepts Kohlrausch s law, equivalent conductivity, temperature dependence of conductivity, Ostwald s dilution law.

Enzyme Action: Testing Catalase Activity

The Determination of an Equilibrium Constant

EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet. by Professor David Cash. September, 2008

Color, True and Apparent

Properties of Acids and Bases

9. Analysis of an Acid-Base Titration Curve: The Gran Plot

Calibration of Volumetric Glassware

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

Color, True and Apparent

Osmosis. Evaluation copy

Total Water Hardness

Chemistry 111 Laboratory Experiment 8: Stoichiometry in Solution Standardization of Sodium Hydroxide

PREPARATION AND PROPERTIES OF A SOAP

Nitrogen, Ammonia. Known Addition ISE Method 1 Method Minimum of 0.8 mg/l NH 3 N. Ammonia ISE. Test preparation. Instrument-specific table

A Beer s Law Experiment

Transcription:

Experiment 24 A titration is a process used to determine the volume of a solution needed to react with a given amount of another substance. In this experiment, you will perform 2 titrations; one using potassium acid phthalate (KHC 8 H 4 O 4 )(KHP) with a basic sodium hydroxide solution, NaOH. The concentration of the NaOH solution will be determined. Hydrogen ions from the KHP react with hydroxide ions from the NaOH in a one-to-one ratio to produce water in the overall reaction: KHC 8 H 4 O 4 (aq) + NaOH (aq) H 2 O(l) + NaKC 8 H 4 O 4 (aq) In the second part of the experiment, an unknown acetic acid (HC 2 H 3 O 2 ) solution will be titrated with the NaOH solution from the first part of the experiment. This is also a one-to-one ratio reaction: HC 2 H 3 O 2 (aq) + NaOH (aq) H 2 O(l) + NaC 2 H 3 O 2 (aq) When a KHP solution is titrated with an NaOH solution, the ph of the acidic solution is initially low. As base is added, the change in ph is quite gradual until close to the equivalence point, when equiar amounts of acid and base have been mixed. Near the equivalence point, the ph increases very rapidly, as shown in Figure 1. The change in ph then becomes more gradual again, before leveling off with the addition of excess base. This is also the case with an acetic acid solution being titrated with NaOH. The procedure for Part 1 and 2 of this experiment is basically the same; just different acids in each case. The first part is done to find the concentration of the NaOH solution and the second part is done to determine the concentration of the unknown. In this experiment, you will use a computer to monitor ph as you titrate. The region of most rapid ph change will then be used to determine the equivalence point. The volume of NaOH titrant used at the equivalence point will be used to determine the arity of the HCl. ph Volume NaOH (ml) Figure 1 OBJECTIVES In this experiment, you will Chemistry with Computers 24-1

Experiment 24 Use a ph Sensor to monitor changes in ph as sodium hydroxide solution is added to the acid solutions Plot a graph of ph vs. volume of sodium hydroxide solution added. Use the graph to determine the equivalence point of the titration. Use the results to calculate the concentration of the hydrochloric acid solution. Two methods are described below. we will be using only Method 1. MATERIALS Materials for both Method 1 (buret) and Method 2 (Drop Counter) computer magnetic stirrer (if available) Vernier computer interface stirring bar or Microstirrer (if available) Logger Pro wash bottle Vernier ph Sensor distilled water Acetic acid solution of unknown ring stand concentration 50% by weight NaOH solution 1 utility clamp pipet bulb or pump 250 ml beaker Materials required only for Method 1 (buret) 50 ml buret 2nd utility clamp 5 ml pipet 2nd 250 ml beaker CHOOSING A METHOD Method 1 has the student deliver volumes of NaOH titrant from a buret. After titrant is added, and ph values have stabilized, the student is prompted to enter the buret reading manually and a ph-volume data pair is stored. Method 2 uses a Vernier Drop Counter to take volume readings. NaOH titrant is delivered drop by drop from the reagent reservoir through the Drop Counter slot. After the drop reacts with the reagent in the beaker, the volume of the drop is calculated, and a ph-volume data pair is stored. METHOD 1: Measuring Volume Using a Buret 1. Obtain and wear goggles. 2. Add 50 ml of distilled water to a 250 ml beaker. Accurately weigh between 0.600g and 0.700 g of KHP, recording the exact mass on the data sheet. Add the KHP to the beaker of water 3. Place the beaker on a magnetic stirrer and add a stirring bar. 4. Use a utility clamp to suspend a ph Sensor on a ring stand as shown here. Position the ph Sensor in the HCl solution and adjust its position so it will not be struck by the stirring bar. Turn on the magnetic stirrer, and adjust it to a medium stirring rate (with no splashing of solution). 24-2 Chemistry with Computers

5. Prepare your NaOH solution by adding approximately 250 ml of distilled water to a 500 ml Florence flask. Then add about 3 ml of a 50% by mass NaOH solution to the water. CAUTION: Sodium hydroxide solution is caustic. Avoid spilling it on your skin or clothing. Rinse out the graduated cylinder with a couple of ml of distilled water twice and add the rinsings to the Florence flask and mix well. You will use this solution for all the titrations in today's experiment. 6. Obtain a 50 ml buret and rinse the buret with a few ml of the NaOH solution. Use a utility clamp to attach the buret to the ring stand as shown here. Fill the buret a little above the 0.00 ml level of the buret with the NaOH solution. Drain a small amount of NaOH solution into a waste beaker so it fills the buret tip and leaves the NaOH at the 0.00 ml level of the buret. Dispose of the waste solution from this step as directed by your teacher. 7. Connect the ph Sensor to the computer interface. Prepare the computer for data collection by opening the file 24a Acid-Base Titration from the Chemistry with Computers folder. Check to see that the ph value is between 2 and 3. 7. Before adding NaOH titrant, click and monitor ph for 5-10 seconds. Once the displayed ph reading has stabilized, click. In the edit box, type 0 (for 0 ml added). Press the ENTER key or click to store the first data pair for this experiment. 8. You are now ready to begin the titration. This process goes faster if one person manipulates and reads the buret while another person operates the computer and enters volumes. a. Add the next increment of NaOH titrant (enough to raise the ph about 0.15 units). When the ph stabilizes, again click. In the edit box, type the current buret reading, to the nearest 0.01 ml. Press ENTER or click. You have now saved the second data pair for the experiment. b. Continue adding NaOH solution in increments that raise the ph by about 0.15 units and enter the buret reading after each increment. Proceed in this manner until the ph is between 3.5 and 4.0. c. When a ph value of approximately 3.5 is reached, change to a one-drop increment. Enter a new buret reading after each increment. Note: It is important that all increment volumes in this part of the titration be equal; that is, one-drop increments. A convenient way to do this is to turn the stopcock 180 quickly and smoothly. d. After a ph value of approximately 10 is reached, again add larger increments that raise the ph by about 0.15 ph units, and enter the buret level after each increment. e. Continue adding NaOH solution until the ph value remains constant. 9. When you have finished collecting data, click. Dispose of the beaker contents as directed by your teacher. 10. Print copies of the table and the graph. 11. If time permits, repeat the procedure. 12. For Part 2, Obtain a 5.00 ml volumetric pipet, clean it thoroughly, rinsing finally with tap water (twice), distilled water (once) and twice with your unknown sample. Be sure to record your unknown #. Using this pipet, carefully and accurately measure 5.00 ml of your unknownr sample into two clean 250 ml Erlenmeyer flasks. The instructor will illustrate proper pipetting technique. Titrate each with the standardized NaOH solution, using the above method. Chemistry with Computers 24-3

Experiment 24 METHOD 2: Measuring Volume with a Drop Counter 1. Obtain and wear goggles. 2. Connect the ph Sensor to CH 1 of the computer interface. Lower the Drop Counter onto a ring stand and connect its cable to DIG/SONIC 1. 3. Add 40 ml of distilled water to a 100 ml beaker. Use a pipet bulb (or pipet pump) to pipet 5.00 ml of the HCl solution into the 100 ml beaker with distilled water. CAUTION: Handle the hydrochloric acid with care. It can cause painful burns if it comes in contact with the skin. 4. Obtain approximately 40 ml of ~0.1 M NaOH solution in a 250 ml beaker. Record the precise NaOH concentration in your data table. CAUTION: Sodium hydroxide solution is caustic. Avoid spilling it on your skin or clothing. 5. Obtain the plastic 60 ml reagent reservoir. Note: The bottom valve will be used to open or close the reservoir, while the top valve will be used to finely adjust the flow rate. For now, close both valves by turning the handles to a horizontal position. Rinse it with a few ml of the ~0.1 M NaOH solution. Use a utility clamp to attach the reagent reservoir to the ring stand. Add the remainder of the NaOH solution to the reagent reservoir. Drain a small amount of NaOH solution into the 250 ml beaker so it fills the reservoir s tip. To do this, turn both valve handles to the vertical position for a moment, then turn them both back to horizontal. 6. Prepare the computer for data collection by opening the file 24b Acid-Base (Drop Count) from the Chemistry with Computers folder. Check to see that the ph value is between 1.5 and 2.5. 7. To calibrate drops so that a precise volume of titrant is recorded in units of milliliters: a. From the Experiment menu, choose Calibrate DIG 1: Drop Counter (ml). b. Proceed by one of these two methods: If you have previously calibrated the drop size of your reagent reservoir and want to continue with the same drop size, select the Manual button, enter the number of Drops / ml, and click. Then proceed directly to Step 8. If you want to perform a new calibration, select the Automatic button, and continue with Step c below. c. Place a 10 ml graduated cylinder directly below the slot on the Drop Counter, lining it up with the tip of the reagent reservoir. d. Open the bottom valve on the reagent reservoir (vertical). Keep the top valve closed (horizontal). e. Click the Start button. f. Slowly open the top valve of the reagent reservoir so that drops are released at a slow rate (~1 drop every two seconds). You should see the drops being counted on the computer screen. g. When the volume of NaOH solution in the graduated cylinder is between 9 and 10 ml, close the bottom valve of the reagent reservoir. h. Enter the precise volume of NaOH (read to the nearest 0.1 ml) in the edit box. Record the number of Drops / ml displayed on the screen for possible future use. 24-4 Chemistry with Computers

i. Click. Discard the NaOH solution in the graduated cylinder as indicated by your instructor and set the graduated cylinder aside. 8. Assemble the apparatus. a. Place the magnetic stirrer on the base of the ring stand. b. Insert the ph Sensor through the large hole in the Drop Counter. c. Attach the Microstirrer to the bottom of the ph Sensor, as shown in the small picture. Rotate the paddle wheel of the Microstirrer and make sure that it does not touch the bulb of the ph Sensor. d. Adjust the positions of the Drop Counter and reagent reservoir so they are both lined up with the center of the magnetic stirrer. e. Lift up the ph Sensor, and slide the beaker containing the HCl solution onto the magnetic stirrer. Lower the ph Sensor into the beaker. f. Adjust the position of the Drop Counter so that the Microstirrer on the ph Sensor is just touching the bottom of the beaker. g. Adjust the reagent reservoir so its tip is just above the Drop Counter slot. 9. Turn on the magnetic stirrer so that the Microstirrer is stirring at a fast rate. 10. You are now ready to begin collecting data. Click. No data will be collected until the first drop goes through the Drop Counter slot. Fully open the bottom valve the top valve should still be adjusted so drops are released at a rate of about 1 drop every 2 seconds. When the first drop passes through the Drop Counter slot, check the data table to see that the first data pair was recorded. 11. Continue watching your graph to see when a large increase in ph takes place this will be the equivalence point of the reaction. When this jump in ph occurs, let the titration proceed for several more milliliters of titrant, then click. Turn the bottom valve of the reagent reservoir to a closed (horizontal) position. 12. Dispose of the beaker contents as directed by your teacher. 13. Print copies of the table. 14. Print copies of the graph. 15. If time permits, repeat the procedure. PROCESSING THE DATA 1. Use your graph and data table to determine the volume of NaOH titrant used in each trial. Examine the data to find the largest increase in ph values upon the addition of 1 drop of NaOH solution. Find and record the NaOH volume just before this jump. 2. Find and record the NaOH volume after the drop producing the largest ph increase was added. Chemistry with Computers 24-5

Experiment 24 3. Determine the volume of NaOH added at the equivalence point. To do this, add the two NaOH values determined above and divide by two. 4. Calculate the number of es of NaOH used. 5. Using the equation for the neutralization reaction given in the introduction, determine the number of es of HCl used. 6. Calculate the HCl concentration using the volume of unknown HCl you pipeted out for each titration. 7. If you did two titrations, determine the average [HCl] in /L. DATA TABLE FOR PART 1 Mass of KHP (Formula Weight = 204.23) g g NaOH volume added before the largest ph increase ml ml NaOH volume added after the largest ph increase ml ml Volume of NaOH added at equivalence point Moles KHP ml ml Moles NaOH Concentration of NaOH Average [NaOH] /L /L M 24-6 Chemistry with Computers

DATA TABLE FOR PART 2 Molarity of NaOH (from Part 1, last line) M M NaOH volume added before the largest ph increase ml ml NaOH volume added after the largest ph increase ml ml Volume of NaOH added at equivalence point Moles NaOH ml ml Moles acetic acid in unknown Concentration of acetic acid in unknown Average [acetic acid] /L /L M Chemistry with Computers 24-7

Experiment 24 EQUIVALENCE POINT DETERMINATION: An Alternate Method An alternate way of determining the precise equivalence point of the titration is to take the first and second derivatives of the ph-volume data. The equivalence point volume corresponds to the peak (maximum) value of the first derivative plot, and to the volume where the second derivative equals zero on the second derivative plot. 1. In Method 1, view the first-derivative graph ( ph/ vol) by clicking the on the vertical-axis label (ph), and choose First Derivative. You may need to autoscale the new graph by clicking the Autoscale button,. In Method 2, you can also view the first derivative graph (ph/ vol) on Page 2 of the experiment file by clicking on the Next Page button,. On Page 2 you will see a plot of first derivative vs. volume. 2. In Method 1, view the second-derivative graph ( 2 ph/ vol 2 ) by clicking on the vertical-axis label, and choosing Second Derivative. In Method 2, view the second-derivative on Page 3 by clicking on the Next Page button,. 24-8 Chemistry with Computers

Prestudy Lab #8 Name Section 1.(5 points) A 0.5984 gram sample of acid potassium phthalate (GFW = 204.23) requires 19.35 ml of a NaOH solution to completely neutralize it using phenolphthalein as an indicator. What is the arity of the NaOH solution? 2.(5 points) A 10.00 ml sample a of an acetic acid, HC 2 H 3 O 2 solution requires 21.87 ml of a 0..1987 M NaOH solution to completely neutralize it using a phenolphthalein indicator. Calculate the arity of the acetic acid solution. HC 2 H 3 O 2 + NaOH NaC 2 H 3 O 2 + H 2 O Chemistry with Computers 24-9